
 

	
	
	
EDA397	/	DIT191	Agile	Development	Processes	
Exam	
	
Thursday,	Jun	2nd,	2016	
	
Examiner	
Eric	Knauss		 	 +46	31	772	10	80		
	
Contact	person	during	exam	
Magnus	Ågren		 +46	736	47	24	91	
	
Allowed	tools	/	material	
None	except	pen/pencil	and	eraser	
General information 
Numbers within parentheses show the maximal points awarded for each question. Maximal points can be given if: 

- The answer is correct and correctly motivated. 
- The presentation of the answer is readable and clear. 
- The answer is given in English. 

One	sheet	of	paper	may	only	contain	parts	of	solutions	belonging	to	one	question.	
		
Grading	
The	grades	on	this	exam	are	based	on	your	total	score	on	the	questions.	For	Chalmers	
students:	
0	–	23	points:			 Fail	
24	–	35	points:		 3	
36	–	47	points:	 4	
48	–	60	points:	 5	
For	GU	students:	
0	–	23	points:			 Fail	
24	–	47	points:		 G	(Pass)	
48	–	60	points:	 VG	(Pass	with	distinction)	
	
Results	
Exam	results	will	be	made	available	through	Ladok.	
Review	
The	exam	review	will	take	place	in	Aug-18,	13:00	–	15:00,	in	Room	J473.	
General	hint:	Please	be	concise	in	your	answers	and	make	sure	that	you	answer	the	
question.	Keep	in	mind	that	we	always	require	you	to	motivate	your	answer	and	to	
demonstrate	a	good	understanding	of	the	subject	matter.	Points	will	be	given	for	a)	
correctness	of	your	answer,	b)	soundness	of	your	argumentation,	and	c)	general	
demonstration	of	knowledge.	



 

	
The	Agile	Manifesto	states	the	following	fundamental	values:	
	

Individuals	and	interactions	over	processes	and	tools	
Working	software	over	comprehensive	documentation	
Customer	collaboration	over	contract	negotiation	
Responding	to	change	over	following	a	plan	

Task	1:	Test-driven	dev.	and	automated	tests	(12p;	max	1pg)	
In	this	course,	we	have	focused	on	the	eXtreme	Programming	practice	TestFirst.		

a) Describe	the	steps	of	the	TestFirst	practice	and	for	each	step	give	a	short	statement	
on	why	it	is	important.	(4p)	

b) When	is	TestFirst	difficult	to	apply,	when	is	it	easy	to	apply?	(4p)	
c) State	two	other	XP	practices	that	support	development	of	high	quality	software	and	

explain	how	they	complement	TestFirst.	(4p)	

Task	2:	Relate	Kanban	and	Agile	Development	(12p;	max	1pg)	

	
a) With	respect	to	the	Figure	above,	what	should	each	of	the	4	actors	(product	owner,	

pair-1,	pair-2,	ops-team)	do	next?	Where	several	valid	alternatives	exist,	briefly	
outline	them	and	decide	which	one	should	be	taken.	Please	give	a	reason	(4x	2p	=	8p).	

b) With	respect	to	the	four	fundamental	values	of	the	agile	manifesto,	discuss	whether	
Kanban	is	or	is	not	an	agile	method.	For	each	fundamental	value,	support	your	
argument	with	concrete	examples	of	Kanban	principles	and	core	practices	(4p).	

	

Task	3:	People	and	Communication	Centric	Dev.	(12p;	max	1pg)	
a) Pick	and	describe	four	Scrum	practices.	For	each,	discuss	how	as	well	as	what	kind	of	

feedback	and	communication	it	supports.	(4x	2.5p	=	10p)	
b) How	do	the	Scrum	practices	from	part	a)	and	their	feedback	interact	to	support	agile	

software	development?	(2p)	



 

Task	4:	Adapt	Agile	Methodology	to	Culture	(12p;	max	1pg)	
Edward	T.	Hall	distinguishes	low-context	cultures	and	high-context	cultures.	While	the	
former	relies	on	explicit	and	direct	communication,	the	latter	emphasizes	interpersonal	
relationships	and	the	exact	meaning	of	communication	often	depends	on	the	context	of	these	
relationships.		

a) Discuss	the	impact	of	low-context	and	high-context	cultures	on	eXtreme	
Programming	and	support	your	argument	with	3	examples	of	practices.	(3x	2p	=	6p)	

b) Discuss	the	impact	of	low-context	and	high-context	cultures	on	Scrum	and	support	
your	argument	with	3	examples	of	practices	(3x	2p	=	6p)	

Task	5:	Transition	to	Agile	and	Agile	Spirit	(12p;	max	1	pg)	
Consider	a	project	with	problems:	
	
The	project	has	a	large	requirements	specification	that	is	subject	to	frequent	changes.	The	
best	designers	do	nothing	but	manage	changes	to	this	specification	and	their	impact	on	other	
artifacts	such	as	design	specification,	source	code	and	test	specification.	Project	members	say	
things	like		“It‘s	just	too	many	documents.	[...]	Sure	we	need	both	user	requirements	
specification	and	system	requirements	specification.	But	often,	I	change	code	and	then	go	
back	to	adjust	the	requirements.“	and	“Why	is	the	customer	not	working	on	the	user	req.	
spec?	Are	they	confused	by	the	many	changes	themselves?“	and	“System	requirements	
specification?	I	know	it	is	supposed	to	be	useful.	But	currently	I	just	try	to	keep	it	in	sync	
with	the	unit	tests	we	are	writing.“	and	“We	probably	should	adjust	the	design	document.	It	
is	outdated,	but	so	far	we	seem	to	be	all	on	the	same	page.	It	would	be	such	a	pain	to	bring	it	
up	to	date!“	
	
For	this	project,	answer	the	following	questions	by	highlighting	differences	between	agile	
and	plan-driven	development,	by	referring	to	the	agile	manifesto,	and	by	giving	examples:	

a) Short	term:	How	can	you	deal	in	an	agile	way	with	the	fact	that	the	project	is	late?	
Would	you	delay	the	release,	deliver	less	functionality,	or	do	you	focus	on	delivering	
the	functionality	you	and	the	customer	agreed	on,	but	cut	costs	in	quality	assurance?	
(6p)	

b) Long	term:	What	should	be	done	to	make	the	project	more	agile	(e.g.	for	future	
releases)?	(6p)	

	



 

Sketch	of	Answers	

	
General	comment:	In	this	exam,	we	test	for	sufficient	knowledge,	but	also	for	the	student’s	
ability	to	apply	it	in	a	structured	argumentation	and	to	transfer	it	to	new	situations.	Thus,	
most	of	the	Tasks	do	not	have	a	single	correct	answer.	In	the	following,	we	will	sketch	what	
we	would	judge	as	a	good	answer.	Note,	that	we	will	give	points	even	for	incorrect	answers	
as	long	as	they	are	supported	by	a	solid	argumentation.	
	
Answer	to	Task	1	
a)	Steps	of	test	first:	

• Write	the	test	–	there	must	be	one	to	start	with.	
• Let	the	test	fail	–	verifies	that	the	failing	case	is	possible.	
• Implement	until	test	passes	–	creates	just	the	sought	functionality.	
• Refactor	–	refines	the	implementation	beoynd	bare	passing.	

	
b)	Test	first	can	be	difficult	to	apply	for	example	with:	

• unclear	requirements	
• interactions	with	external	software	(API	calls	or	IO)	
• GUIs	

	
Test	first	is	easier	to	apply	for	example	with:	

• precise	requirements	
• computational	logic,	algorithmic	code	
• small	concise	fuctions	
• stand	alone,	self-contained	implementations	

	
c)		
	
Answer	to	Task	2	
a)	1p	is	given	per	what	each	actor	should	do,	1p	given	per	why	each	actor	should	do	that.	
	
Product	owner	selects	one	task	–	because	of	select	limit.	
Pair-1	keeps	working	on	C	–	because	they	aren't	done.	
Pair-2	helps	the	ops-team,	for	example	improving	the	infrastructure	to	alleviate	the	problem	
the	ops-team	experience	–	because	the	ops-team	are	blocked.	
Ops-team	continue	working	on	A	–	because	it's	ongoing	(not	yet	live).	
	
b)	Below	are	given	the	Kanban	principles	and	core	practices,	marked	+/-	for	whether	they	
can	be	said	to	correspond	to,	or	contradict,	the	agile	manifesto.	Note	that	these	are	our	
suggestions,	see	the	general	comment	above.	
	
Principles:	
+	Start	with	shat	you	do	now	
+	Agree	to	pursue	incremental/evolutionary	change	
–	Respect	the	current	processes,	roles,	responsibilities,	and	titles	



 

+	Leadership	on	all	levels	
	
Core	practices:	
+	Visualize	
+	Limit	WIP	
+/-	Manage	flow	
–	Make	policies	explicit	
+	Implement	feedback	
+	Improve	collaboratively,	evolve	experimentally	
	
Answer	to	Task	3	
a)	Describe	four	Scrum	practices	(what	the	practice	means	=0,5p)	and	address	both	how	the	
feedback	(1p)	and	communication	(1p)	takes	place	within	each	practice.	
Use	information	such	as:	

• …team	member	communicate	by	written…	
• ….face-to-face	communication	with…	
• …gives	feedback	on….	to...	
• …illustrated	by	burn-down-chart…	
• During	stand-up	meeting	…discussed	in	team….	

	
b)	1p	per	Scrum	practice	and	its	interaction	with	agile	software	development;	1p	per	
explanation	of	how	the	practices	interact	with	each	other.	
	
Answer	to	Task	4	
a)	Points	are	given	for	sound	arguments	describing	the	impact	from	culture	on	specific	XP	
practices.	Definitions	of	culture	are	accepted	liberally;	Hall's	low-	and	high-context	cultures	
serve	as	examples.	
	
b)	As	for	a)	but	with	3	practices	from	Scrum.	
	
Answer	to	Task	5	
General	comment:	It	is	important	to	read	both	parts	first.	Short	term	here	was	supposed	to	
refer	to	the	immediate	future,	potentially	within	this	month.	Long	term	refers	to	setting	up	a	
good,	agile	project	culture.	Independent	from	the	parts	a)	and	b),	Task	5	asks	for	
“highlighting	differences	between	agile	and	plan-driven	development,	by	referring	to	the	agile	
manifesto,	and	by	giving	examples”.	Only	few	students	have	done	this	in	both	parts	and	we	
value	that.		
	
Part	a)	The	correct	answer	is	to	reduce	functionality.	Quality	cannot	be	sacrificed	in	agile,	it	
would	also	backfire	in	the	near	future,	when	additional	bug	reports	increase	the	time	
pressure	even	more.	Delaying	the	release	might	be	necessary	in	the	very	next	days	but	
should	be	discouraged.	Most	agile	methods	advocate	time	boxing.	In	addition,	we	should	not	
delay	customer	feedback.	An	answer	around	those	lines	would	receive	3	points.	An	
additional	1	point	would	be	given	for	highlighting	differences	between	agile	and	plan-driven	
(e.g.	that	delaying	the	release	would	be	the	proper	thing	to	do	in	plan-driven,	since	the	
delivery	is	defined	in	a	contract).	Similarly,	if	the	answer	referred	to	the	agile	manifesto	(e.g.	
customer	collaboration	over	contract	negotiation	to	further	showcase	differences	and	make	
a	point	for	reduced	functionality),	1	point	was	granted.	If	the	answer	was	sufficiently	
specific,	1	point	was	given	for	“example”.	



 

Part	b)	Since	most	students	did	already	compare	to	plan-driven	in	part	a),	we	did	not	give	
points	for	this	here.	Similarly,	we	felt	that	marking	for	the	example	would	be	unfair,	since	b)	
in	nature	is	more	abstract.	As	long	as	the	answer	was	specific	enough,	we	did	not	deduct	
points.	We	did	however	expect	students	to	use	the	manifesto,	which	offers	a	reference	for	
completeness.	We	gave	1.5	points	for	each	manifesto	statement	that	was	used,	but	deducted	
points,	if	only	one	side	was	used	(e.g.	working	software	or	reduction	of	documentation,	but	
not	both),	as	well	as	when	the	proposed	measures	were	not	connected	in	a	good	way.	
	

	


