
1

1
2016-
10-22

Knowit

Change requires
insight

1.Knowit
2. Why go Agile – why scale?

3. Scaling Agile Frameworks

4. LeSS Framework

5. SAFe Framework

6. Comparisons

7. Discussions / Reflections

2

Page 3

Daniel Borgentun

Region Manager at Knowit
Agile Enterprise Coach

Systems Architect

Daniel.borgentun@knowit.se

Luleå

Umeå

Örnsköldsvik

Sundsvall

Gävle

Helsinki

Tallinn

Malmö
Köpenhamn

Oslo

Borlänge

Jönköping
Göteborg

Linköping

UppsalaSandviken

Örebro
Arendal

Bergen

Stavanger

Kristiansand

Stockholm
(HQ)Karlstad

We are here!

3

Knowit shortly

• Nordic consultant company

• 2000 experts

• 1200 specialists developing IT

solutions

• 500 consultants in the largest digital

agency in the Nordics

• 230 management consultants

Knowit
Insight

Digital
Business

Development
IT Strategy

Scaled Agile
& Lean

Organisation

Transformation
Management

Organisation
al

Development

Human
Resource

Management

Project
Management

Quality
Management

Business
Innovation

Public
Management

Energy
Management

Security

Sourcing
Management

Business
Intelligence

4

1. Knowit

2.Why go Agile – why scale?
3. Scaling Agile Frameworks

4. LeSS Framework

5. SAFe Framework

6. Comparisons

7. Discussions / Reflections

Page 8

It is not the strongest of the species
that survives, nor the most intelligent

that survives. It is the one that is
most adaptable to change.

Survival of the fittest

5

Page 9

Page 10

The era of Big Bang disruption

Big Bang Disruption collapses Everett Rogers’s classic
bell curve of five distinct customer segments for
technology adoption—innovators, early adopters, early
majority, late majority and laggards.

When Big Bang Disruptors take off, they do so quickly,
rising and falling less like a curve and more like a shark’s
fin. Now, there are only two market segments: trial users
and everybody else

6

Page 11

F-35 Lightning IIISSSpace Shuttle Boeing 787 Airbus A380Orion

Space flight systems Aeronautical systems

100 000 000

F-35 Lightning IIISSSpace Shuttle Boeing 787 Airbus A380Orion

400 000 2 300 000 2 300 000 (in dev.) 14 000 000 24 000 000 100 000 000

Software Software Software Software intensive systemsintensive systemsintensive systemsintensive systems

Current estimates state that a typical (high-end) car
today contains between 50 000 000 and 100 000 000
lines of code.

L
in

es
 O

f
C

o
d

e

Automotive software is comparable in
size (and thus complexity) to the most
advanced aeronautical systems.

A brand new car from
western part of Sweden

60 000 000
(rough estimate)

Source: Martin Hiller, Volvo
Cars

Page 12

Software size evolution at a big car company

Source: Martin Hiller, Volvo
Cars

7

Page 13

Page 15

The Project ParadoxThe Project ParadoxThe Project ParadoxThe Project Paradox

Tobias Fors, Citerus AB

8

What is Agile?

Simon Powers

1. Knowit

2. Why go Agile – why scale?

3.Scaling Agile Frameworks
4. LeSS Framework

5. SAFe Framework

6. Comparisons

7. Discussions / Reflections

9

Scrum of
Scrums

Nexus

LeSS

SAFe

FrameworksFrameworksFrameworksFrameworks

1. Knowit

2. Why go Agile – why scale?

3. Scaling Agile Frameworks

4.LeSS Framework
5. SAFe Framework

6. Comparisons

7. Discussions / Reflections

10

ScalingScalingScalingScaling agileagileagileagile
withwithwithwith LLLLeSS SS SS SS

“L“L“L“LeSS is Scrum applied to many teams working together on SS is Scrum applied to many teams working together on SS is Scrum applied to many teams working together on SS is Scrum applied to many teams working together on
one product”one product”one product”one product”

21

• How can we apply the principles, purpose,
elements, and elegance of Scrum in a large-scale
context, as simply as possible.

LeSS is Scrum

• Cross-functional, cross-component, — to create
done items and a shippable product.

… applied to
many teams

• Towards a common goal to deliver one common
shippable product at the end of a common Sprint.

… working
together

• A broad complete end-to-end customer-centric
solution that real customers use.… on one product

11

Three design Three design Three design Three design principlesprinciplesprinciplesprinciples for for for for LLLLeSSSSSSSS

1. Simple and barely sufficient

2. Build up instead of tailor down

3. Descaling over scaling

22

BACKGROUNDBACKGROUNDBACKGROUNDBACKGROUND

23

Bas Vodde and Craig Larman

• large + multisite + ‘offshore’

• large-scale embedded systems

• large-scale financial systems

• large-scale telecom systems
Less.works

2009 2010 Aug 2016

12

LLLLeSSSSSSSS PrinciplesPrinciplesPrinciplesPrinciples

24

LLLLeSSSSSSSS PrinciplesPrinciplesPrinciplesPrinciples

25

13

Two FrameworksTwo FrameworksTwo FrameworksTwo Frameworks
- LeSS and LeSS Huge

36

37

LLLLeSSSSSSSS

14

• The Product Owner need to

proactively ensure the old

structures are replaced, and act

as a connector of developers

and users.

• Prioritization over Clarification

38

Product Product Product Product ownerownerownerowner

• A Scrum Master is not part-

time team member, team

representative or “team

lead”

• Role often misunderstood by

organizations new to agile

39

ScrumScrumScrumScrum MasterMasterMasterMaster

15

40

Product Product Product Product backlogbacklogbacklogbacklog refinementrefinementrefinementrefinement

41

Sprint planningSprint planningSprint planningSprint planning

16

42

Sprint Sprint Sprint Sprint reviewreviewreviewreview and and and and retrospectiveretrospectiveretrospectiveretrospective

43

LLLLeSSSSSSSS HUGE HUGE HUGE HUGE –––– Stacks Stacks Stacks Stacks ofofofof LLLLeSSSSSSSS

17

44

LLLLeSSSSSSSS HUGE HUGE HUGE HUGE –––– RequirementRequirementRequirementRequirement areasareasareasareas

ManagersManagersManagersManagers

46

18

50

Organizational structureOrganizational structureOrganizational structureOrganizational structure

• Surprisingly simple structure

• LeSS Huge may add

• Support, such as CM & CI

• Undone Departments, such as Architecture, QA & Test

• Competence & Coaching

LeSS HugeLeSS

Summary Summary Summary Summary
- More with LeSS

59

19

60

Do more
System optimization

Empirical process control

“Barely sufficient methodology”

Descaling with simplicity & freedom

Teams own & evolve their processes

Value

Experimenting & learning & improving

Theory Y

Build up from “why”

Do less
Local optimization

Defined & prescriptive processes

Big methodology

Scaling with complexity & control

Defined processes pushed on to teams

Waste, roles, artifacts, processes (delete, don’t add)

Conforming to “best practices”

Theory X

Tailoring down

MoreMoreMoreMore withwithwithwith LLLLeSSSSSSSS

1. Knowit

2. Why go Agile – why scale?

3. Scaling Agile Frameworks

4. LeSS Framework

5.SAFe Framework
6. Comparisons

7. Discussions / Reflections

20

62© 2016 Scaled Agile, Inc. All Rights Reserved.
V4.0.0 V4.0.0© 2016 Scaled Agile, Inc. All Rights Reserved.

SAFe® in 8 Pictures
A Walkthrough of the Scaled Agile Framework®

63© 2016 Scaled Agile, Inc. All Rights Reserved. 63

Proven

21

64© 2016 Scaled Agile, Inc. All Rights Reserved.

65© 2016 Scaled Agile, Inc. All Rights Reserved. 65

The Levels

22

66© 2016 Scaled Agile, Inc. All Rights Reserved.

67© 2016 Scaled Agile, Inc. All Rights Reserved. 67

The People

23

68© 2016 Scaled Agile, Inc. All Rights Reserved.

69© 2016 Scaled Agile, Inc. All Rights Reserved. 69

The Backlogs

24

70© 2016 Scaled Agile, Inc. All Rights Reserved.

71© 2016 Scaled Agile, Inc. All Rights Reserved. 71

The Cadence

25

72© 2016 Scaled Agile, Inc. All Rights Reserved.

73© 2016 Scaled Agile, Inc. All Rights Reserved. 73

Quality

26

74© 2016 Scaled Agile, Inc. All Rights Reserved.

75© 2016 Scaled Agile, Inc. All Rights Reserved. 75

Relentless Improvement

27

76© 2016 Scaled Agile, Inc. All Rights Reserved.

77© 2016 Scaled Agile, Inc. All Rights Reserved. 77

Value Delivery

28

78© 2016 Scaled Agile, Inc. All Rights Reserved.

79© 2016 Scaled Agile, Inc. All Rights Reserved.

29

1. Knowit

2. Why go Agile – why scale?

3. Scaling Agile Frameworks

4. LeSS Framework

5. SAFe Framework

6. Comparisons

7.Discussions / Reflections

6.99© 2016 Scaled Agile, Inc. All Rights Reserved. 6.99

6.2 Prioritize the Program Backlog

