) CHALMERS | (%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Architecture and Agility for
complex systems

The case of automotive domain

Patrizio Pelliccione
Associate Professor (Docent), Chalmers|GU

www.patriziopelliccione.com

A
| ‘|“| (i \'l\‘}‘

«\

\ 'A!

¥ A‘\l'l

\4 a'\M
N l

»_ e
g'»

NIVERSITY OF GOTHENBURG

About myself...

WALLENBERG
AUTONOMOUS
SYSTEMS PROGRAM

4Robots
),

NGEA

Next Generation Electrical Architecture

Autonomous and smart systems
* Adaptation
* Evolution

Achieving complex Collaborative Missions
via Decentralized Control and Coordination
of Interacting Robots

Next Generation Electrical Architecture —
Volvo Cars and many suppliers

HALMERS ‘ UNIVERSITY OF GOTHENBURG

oooooooooooooooooo

Software architecture —
building metaphor

No comparable intuition for software G'*F’ub"c&;E:g,zgtgx'afrggzimg’o%ﬁz
« We must be more methodological and analytical ~ § ™= -
in our approach

Software is intrinsically intangible
* More difficult to measure, analyze, and evaluate
qualities
Software more malleable than physical :
bu||d|ng materials - http//\afllckrcom/pho(tos/bro /5?()'%232 .

« Types of changes unthinkable in a physical
domain

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and " “Muséidh o ontemp orar¥ Art (Nm Bra2|l)

Source:-hitp: //www flickr.eom/pho os/howwn/7457617764/

Practice. Wiley Publishing. ' e

Architecture Standard

- |ISO/IEC/IEEE 42010:2011, Systems and
software engineering — Architecture
description — December 2011

« Joint ISO and IEEE revision of IEEE Std 1471,
first published in 2000

« The standard is method-neutral: it is intended
for use by architects employing various
architecting1 methods.

Architecture: (system)
fundamental concepts or
properties of a system in
its environment embodied
in its elements,
relationships, and in the
principles of its design and
evolution

UNIVERSITY OF GOTHENBURG

Some facts about architecture

- Every application has an architecture

(] i hsy
r— il |
f H||i i
1]
i |
’ i
&

Russian Embassy (Havana, Cuaba)
‘ http://upload.wikimedia.crg/wikipedia/commons/d/dZ/Russian_embassy_in_Havana.jpg

- -

UNIVERSITY OF GOTHENBURG

Some facts about architecture
- Every application has an architecture

« The architecture of a system can be characterized by the
principal design decisions made during its development

Architecture underlying command-line shell programs

ls invoices | grep —-e August | sort

Architectural style pipe-and-filter

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and Practice. \Wiley Publishing.

;) UNIVERSITY OF GOTHENBURG

Some facts about architecture

Every application has an architecture

« The architecture of a system can be characterized by the
principal design decisions made during its development

Every application has at least one architect
« Perhaps not known by that title or recognized for what is done

Architecture is not a phase of development

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and Practice. \Wiley Publishing.

stakeholders

concerns

Software
Architecture
synthesis co

@ Architectural constraints
Constraints and requirements @ e

b :

/
Software C4
Architecture
Architectural é

requirements Evaluation and
Decisions making

Patrizio Pelliccione, Paola Inverardi and Henry Muccini, CHARMY: A Framework for Designing and Verifying Architectural Specifications (2009),
in: IEEE Transactions on Software Engineering (TSE), 35:3(325 - 346)

NIVERSITY OF GOTHENBURG

Software architecture characteristics

Multitude of stakeholders
« Dealing with a broad variety of concerns and stakeholders, and has a multidisciplinary nature.

Separation of concerns

- Stakeholder concerns are addressed by modeling and describing the architecture from
separate points of view associated with the various stakeholder concerns.

Quality-driven
« Architecture of a system is closely related to its quality attributes, such as fault-tolerance,
backward compatibility, extensibility, reliability, maintainability, availability, security, usability,
and other such —ilities.
Recurring styles

« Common terms for recurring solutions are architectural style, strategy or tactic, reference
architecture and architectural patterns.

Conceptual integrity

« The architect assumes the role of “keeper of the vision”, making sure that changes to the
systems are in line with the architecture, hence preserving conceptual integrity.

UNIVERSITY OF GOTHENBURG

Software architecture benefits

. Easlis for analysis of software systems' behavior before the system has been
uilt.

« Substantial cost-saving and risk-mitigation.

* Basis for re-use of elements and decisions.
« Saving design costs and mitigating the risk of design mistakes.

« Support for early design decisions which have high impact on a system's
development, deployment and maintenance life.

* Prevent schedule and budget overruns.

* Facilitate communication among stakeholders, contributing to a system that
better fulfills their needs.

« Substantial cost-saving and risk-mitigation: communicate about design decisions before the
system is implemented, when they are still relatively easy to adapt.

NIVERSITY OF GOTHENBURG

Agile architecture

1. A system or software architecture that is versatile, easy to evolve, to modify, flexible
in a way, while still resilient to changes

2. An agile way to define an architecture, using an iterative lifecycle, allowing the
architectural design to tactically evolve gradually, as the problem and the constraints
are better understood

& The two are not the same

= you can have a non-agile development process leading to a flexible, adaptable architecture,
and vice versa,

= an agile process may lead to a rather rigid and inflexible architecture.
= One does not imply the other.

& In the best of worlds, we’d like to have an agile process, leading to a flexible
architecture.

Taken from the Philippe Kruchten:

UNIVERSITY OF GOTHENBURG

Naive thinking
&> By being agile, an architecture will gradually emerge, out of bi-weekly refactorings.

& This belief was amplified by a rather poorly worded principle #11 in the agile manifesto[1],
which states that:
= “The best architectures, requirements, and designs emerge from self-organizing teams.”

& and cemented by profuse amount of repeated mantras like:
= YAGNI (You Ain’t Gonna Need It) or
= No BUFD (No Big Up-Front Design), or

= “Defer decision to the last responsible moment”. (This principle is neither prescriptive, nor testable,
as Séguin et al. showed in [2], so it is probably not a principle, but merely an observation or a

wish.)

[1]1 Agile Alliance, Manifesto for Agile Software Development, June 2001
[2] N. Séguin, G. Tremblay, and H. Bagane, Agile Principles as Software Engineering Pr|nC|pIes An Analysis, vol. 111, Lecture Notes in Business
Information Processing, C. Wohlin, Ed. Berlin Heidelberg: Springer, 2012, pp. 1-15.

Taken from the Philippe Kruchten:

]
[
=]
m
z
o5
jas
T
o
)
o3
o
>
=
w
a1
/|
2
z,
=]

CHALMERS |

However

easily retrofitted on an existing
system by means of simple
decisions have to be taken early,
although not all at once up front

refactoring
Much of the architectural

» Key architectural choices cannot be

a\\) > OODOOOUOUUUUOOO <

00 oo oannc

Jﬂv J&UDOUOUqu- -
v.UOcDD

Mo Q . /
DOooUOOQ Y \M -
CENOO000ng (<

Sotooooo oA

Inspired by:

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Architecting in practice...

Development Verification - ST

Feature

____________ g

Function

_________________ B e e e i e

uondiosap
a1N)oa)IyoIy

Electrical Architecture

" “Big-bang”

.)
Parallel development: Component integration:

1 1
1 1
1 1
1 1
1 1
1 1
1 1
! suppliers + In-house !
1 1
' development '
! !
1 1

uolnejuswa|dw|

Collaboration based on
\ l contracts S/

NIVERSITY OF GOTHENBURG

Architecting in practice...

Architecture degradation

uondiosap
a1N)oa)IyoIy

» Architectural drift - discrepancies
that do not violate any decision that =
is documented in the as-intended ‘/
architecture)

 Architectural erosion - some
decisions violate the as-intended
architecture

uolnejuswa|dw|

Discrepancy between as-intended
and as-implemented architectures !

UNIVERSITY OF GOTHENBURG

Risk of architectural erosion

« The actual architecture of the car is not
exactly the one conceived by the architects
« The architecture is also emerging during
development (bottom-up)
« Some architectural decisions are made
unconsciously

* Which decisions have an impact on the
architecture? — not easy

« Some “actual” architects do not have the title
of architect

4)

Architecture

Ideas/vision
of the system to be

realized
_ J

GAP
" Design

Actual blueprint for
the implementation
teams, being used in
their daily work, and

\ evolving over time /

UNIVERSITY OF GOTHENBURG

Limitations of the actual architecture description

* Importance varies over time

- Easily becomes out of date

* Too many details

« Variability management

« Should better document the design decisions

Should better document / make explicit the assumptions made

« Should be a living document connected with the other development
phases

« Should handle different views and viewpoints of different stakeholders’
concerns

 Present and Future mixed in the same document

State of Practice

U. Eliasson, R. Heldal, P. Pelliccione, J.Lantz (2015) Architecting in the Automotive Domain: Descriptive vs Prescriptive Architecture In: In Proceedings
of 12th Working IEEE / IFIP Conference on Software Architecture (WICSA 2015), IEEE, Montreal, Canada.
R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag, J. Whittle, Descriptive vs Prescriptive Models in Industry, Models 2016, St-Malo, France, 2016

HALMERS

Recent work: Architecture Gap Survey

Involved Volvo Cars (VCG), Volvo Group Truck Technology (VGTT),

Ericlzson, Jeppesen AB, plus many other companies around the
wor

« Research questions that we are investigating:

|s the architecture driving the development?

Is the architecture “emerging” from the development?

Is there an/\)/ gap between what specified in the architecture and what is
developed”

If so, what are the reasons for that and what are the consequences?

How could the architecture description be improved to be more useful
during the development and maintenance phases?

CHALMERS @ﬁ, UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

What is the purpose of an architecture
description

Understanding which part of the system should implement specific _
requirements

Understanding the impact of changes -

Reasoning about future products -

Giving a high-level description of the system under implementation -
Educate new employees —

Defining components and connectors of the system —

Statement

Defining architecture rules —

Defining architecture requirements —
Defining architecture principles —

Defining a blueprint for the development —

Communicating architectural decisions —

o-
(o)
o
s
o
%_

Replies

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

How much do you agree with the following statement

The architecture description is updated to incorporate changes from design or implementation

Only Architect 30% 70%
Architect +other roles | 25% 75%
Not Architect | 41% 59%

All 32% 68%

The architecture does not change after design or implementation work have started

Only Architect ; 85% ! 15%
Architect +other roles 85% 15%
Not Architect 79% 21%

All 83% | 17%

Architecture driving — =
- - architecture emerges {tom up
the implementation or Only Architect | 48% i 520

Architect +other roles 42% I 58%
Not Architect 62% 38%

the other way round ? 4
- All | 51% ‘ 49%

The architecture is designed up-front

Only Architect | 26% | 74%
Architect +other roles 36% I 64%
Not Architect 46% | 54%

All 40% 60%

The design follows what the architecture description stipulates

Only Architect 19% 81%
Architect +other roles ; 29% 71%
Not Architect 46% 549
All 37% 63%
100 50 0 50 100
Percentage
3 5
Response

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Update description from feedback

A stronger connection between the architecture
description(s) and design/implementation

More tailored towards the intended
readers/consumers

Documenting assumptions
Better guidelines

Removing unnecessary details

Should provide an upfront specification of the
HOW COUId the k system to be developed
architectu re Containing only important aspects

Should document the system under development in

descri ption be its current state
- ? Contain more models and less text
improved™

More rules and constraints

Limiting the size of the architecture description
Decreasing the level of abstraction

Increasing the level of abstraction

Less rules and constraints

Contain more text and less models

10%
16%
19%
20%
22%

24%

36%

48%

49%

T4%

T79%

100

90%

84%

81%

80%

78%

76%

72%

T70%

68%

66%

50 0 50 100

Percentage

Response

UNIVERSITY OF GOTHENBURG

Main findings of the study

Finding
« Typically, more than one architecture description (often at different levels
of abstraction) exists for describing the architecture of a system

Implication
« Several reasons for representing architectures in architecture descriptions

* Need of investigating
* how to ameliorate the creation and maintenance of architecture descriptions
* languages and notations to describe architectures

* how to maintain more than one architecture description for representing the
architecture of complex systems

HALMERS | (&%)

Main findings of the study

Finding
* Architecture descriptions serve various purposes and should be conceived
for different types of stakeholders

Implication

* Need of multiple views and viewpoints

« Languages and notations to represent architecture descriptions should be
conceived with the flexibility to satisfy various concerns of different
stakeholders

- The different purposes might also be conflicting each other, and suitable
tradeoff analysis should be put in place

HALMERS | (&%)

Main findings of the study

Finding

« While it is important to have an upfront architecture and architecture
description, the architecture description should evolve during the system
development from input and feedback coming from stakeholders that are
even different from architects

Implication

« How much information should be put in the upfront architecture description?

* Need to support “just in time” architecting, thus enabling stakeholders (even
different from architects) to refine, add information, or provide feedback to the
architecture description.

HALMERS | (&%)

Main findings of the study

Finding
- Exist inconsistencies both among different architecture descriptions and
between architecture descriptions and design/ implementation

« Some of the inconsistencies might have high impact

Implication
« This finding triggers the need of investigating causes and mechanisms to
discover, avoid, and mitigate inconsistencies

Main findings of the study

Finding
- We identified some discrepancy between the architect team and other
stakeholders

Implication
* There is the risk that within the same company will grow and will become
established different cultures and beliefs.

 Innovative and more effective communication means are needed to enable
communication among different stakeholders.

NIVERSITY OF GOTHENBURG

Different points of view

What the design groups think of the high-level What the architecture group thinks of the

architecture group working architecture group

« High-level architects lack an « The design groups are very focused on
understanding of the current situation and everyday problems and then they miss
the system under implementation an overall picture

* High-level architect group focuses too much « The design groups are too focused on

on what might be good for the future, while short-term solutions: choosing the best
neglecting a concrete vision of what is the solution in the short run might cause
best solution for the current situation problems in the next future

“‘But sometimes you feel that the architecture-group thinks that we should change everything. While we
[design group] are more focused on that we have to solve something to the project, and yes, what we
have is maybe not the optimal solution but it is what we have.”

UIf Eliasson, Rogardt Heldal, Patrizio Pelliccione, Jonn Lantz, “Architecting in the Automotive Domain: Descriptive vs Prescriptive
Architecture”, WICSA 2015, 12th Working IEEE/IFIP Conf. on Software Architecture”, Montreal, Canada

HALMERS | (&%)

Identified antipatterns

- GoldPlating — the architecture that has been created is a perfect architecture
but it is describing the wrong system

- lvory tower — the architect team is isolated from the other groups with few
communication. They might experience rejection from developers

« Architecture watch — the group of architects is limited to a watching group.
They provide recommendations without making any architectural decision.

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 — 2416, 2008.

UNIVERSITY OF GOTHENBURG

What do architect really do?

. Getting input:
Arch'ltectlng: -user, requirement
-design -other architecture

-validation -technology
-prototyping

-documenting

-etc....

External Focus

Internal Focus

Providing Information
-communicating architecture
-assisting other stakeholders ¢

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 — 2416, 2008.

The [60:30:10] antipattern — goldplating

GoldPlating — the architecture that
has been created is a perfect
architecture but it is describing the
wrong system

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 — 2416, 2008.

CHALMERS) UNIVERSITY OF GOTHENBURG

What do architect really do?

The [70:15:15] antipattern — ivory tower

Ivory tower — the architect team is
isolated from the other groups with
few communication. They might
experience rejection from developers

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 — 2416, 2008.

(®%)) UNIVERSITY OF GOTHENBURG

NGEA

Next Generation Electrical Architecture

 How to reduce the time to market?
 How can a system respond quicker to changes in the market?

 How can we introduce CI&D practices in the automotive
domain?

NIVERSITY OF GOTHENBURG

>

£ High-level Vehicle
2 Requirements Test
@

Software, 5

Hardware, and =

0

Mechanics 3
5
S
-
(@)
© >

El E2 E3 P

CHALMERS |

UNIVERSITY OF TECHNOLOGY

LIN7 0x166x
oo HBCP
M INAD 41
EDCP px1661 opional
0x165A] optional
VDDM optional optional
Vehicle Dynamics
Domain Master LING6 0x165x IEM TDMR
I LIN4 0x164x 0x1637 Px1639)
optional optional
VDDM BCM
Vehicle Brake SCL SAS ECM r-r-
oynamics| | oy X161, 1615| px1616 X1630 : EGSM
Master [~| Module | Priess ;
0x1601 0x1631 Chassis CAN HS optional optional
. ; Ox161x [Ep——

1 1
LIN/Cooling

1 stopper wotors

1

1

& Sensors

SRS
Supplementary
Restraint System|
0x1C01

IDD
x1A23

optional

IDDR IDP
x1A24] INAD 2:

optional optional optional

LIN5 Ox1A2x

DDS RDDM
—_— - e Px1A2 x1A21

LIN9 0x1A8x

LINT0 0x1C4x|

How many
Electronic Control
Units (ECUs) in a S o)

ccm DDM PDM
x1A11 x1A12) x1A13

Body CAN HS

OXTAT

Active Safety SCMP PSRL
Domain Maste| AD 54 0x1A56)
J optional optional optional
H 0x1401 LIN2 i
LINO (K-line) LIN22 0x1A4x
Backbone 0x1B5x
0x1B3x
FlexRay
GEY LIN8 0x1BAx Spare Ox1A54 bx1A5d]
DIM Central Electronic Module |——— LIN15 0x1B4x Spare P, oo
Driver Ox1A01 LIN21 0x1A5x
Imformation CAN 0x1BBx Spare
Module
0x1801
MOST150
IHU Ox121x LIN
\nio\alnme_nt k 30, Battery feed
Head Unit — CAN

0x1201 LIN19 0x126x

OHCR H
x1B23] T optionar | " :

optional

USB

—
MOST 150
FlexRa
HIRL HIRR OHTR — v
optional optional Dx1B61] optional optional Ethernet
Vehicle
! LNz LIN13 LINT6 LING
CTAZZ?;;W 0x1B7x Ox1B8x Ox1B6x Ox1B2x Y WLAN
Body CAN HS
A 0xi0o1 AT

Diagnostics

Propulsion CAN HS Ethernet
: : J1962 K /
Diagnostic Connector

Kent Niesel

| CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Volvo: 1998 — 2013 - ECU Growth

S80 1998 (19) SIV 40 2002 (38) V40 2003 (49)
][] =
TEEE
Q%! % ajs Qg%i@@i ---
= aff = E - -[f %
== é = ~ 2 geee] [

S80 2006 (68)

-

o] —

’ * - [- - -
:

= e

RS S

i ©

Taken from:

UNIVERSITY OF GOTHENBURG

Functional
Safety architecture
Security Logical

architecture

Qualities

Technical
architecture

Acaris a f
complex system "¢y — AT

/ " ‘-\{ CI&D
Cost

Carin a SoS
NHV - Noise,

Vibration,

Harshness Weight Ecosystem & Transparency

Variabitity Autonomous vehicle

{8%) UNIVERSITY OF GOTHENBURG

In 10 years, about 10,000,000 cars have
been recalled due to software-related
problems

NIVERSITY OF GOTHENBURG

Prof. Philip Koopman has served as a Plaintiff expert withess on numerous cases in Toyota Unintended
Acceleration litigation, and testified in the 2013 Bookout trial. Dr. Koopman is a member of the ECE
faculty at Carnegie Mellon University, where he has worked in the broad areas of wearable computers,
software robustness, embedded networking, dependable embedded computer systems, and

autonomous vehicle safety. ...

CHALMERS ?ﬁ, UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Infamous case: Toyota unintended acceleration

Carnegie Mellon

Aug. 28, 2009, San Dlego CA, USA

ke Sew York Time

« Toyota Lexus ES 350 sedan
* UA Reached 100 mph+

* 911 Emergency Phone Call
from passenger during event
* All 4 occupants killed in crash

* Driver: I —
Mark Saylor, 45 year old male.
Off-duty California Highway Patrol Officer; vehicle inspector.
» Crash was blamed on wrong floor mats causing pedal entrapment
» Brake rotor damage indicated “endured braking”

« This event triggered escalation of investigations dating back
to 2002 MY

http:/Awww.nytimes.. wml2010’02!01lbusmessﬂ1wyota htmi?pagewanted=all&_r=0
hitp:/Awww.autoblog.com/2008/10/26/nh new-info-about- h-that-ps P! toyota-fk

lectrical & om| er !
€ ENGINERRING 3

© Copyright 2014, Phiip Koopman. CC Attribution 4.0 Intemational icense.

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Infamous case: Toyota unintended acceleration

Redundant Accelerator Position Signals (VPA1/VPA2)

* Safe architectures do not have single points of failure

Both copies of Monitor ASIC |
. Throttle
Fail i
VPA (and Other AR Sub CPU lenLijt:' = hl:;:at:)\/re& —ﬁ Engine
signals) go VTA1 > 7y
c
through same . B
_ g L5 a2 > % y Main CPU
input block g -
> 3 VTA1
on the =
hi L 3 VTA2 > Electroni
ectronic
same chip H VPA1 »| Compute Fuel
K £ Throttie Injection
Cruise Control E VPA2 Command And
= Ignition
Transmission o O Other . Timing
Shift Selector Sensors '
Vehicle Speed
o i i . VTA: Throttle Position B
This is a Single Point of Failure VPA: Accelerator Pedal Position
«) Electrical & Computer [Bookout 2013-10-11AM 63:21-64:14]
ENGINEERING 34 <

© Copyright 2014, Philp Koopman. CC Attribution 4.0 Intemational fcense.

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Infamous case: Toyota unintended acceleration

Code Complexity

“Spaghetti code”:
Incomprehensible code due to unnecessary
coupling, jumps, gotos, or high complexity

» McCabe Cyclomatic Complexity metric
— Number of “eyes” in flow control graph
— Unit tests harder with complex graph
— Over 50 is considered “untestable”

» Toyota ETCS code: .

— 67 functions with complexity over 50

— Throttle angle function complexity = 146;

1300 lines long, no unit test plan
[Bookout 2013-10-14 31:10-32:23; 32:15-23]

As the number of branches in the module Complexity=7
or program rises, the cyclomatic complexity metric rises too. Empirically, numbers less than ten| | [NIST 500-235, 1996,
imply reasonable structure, numbers higher than 30 are of questionable structure. Very high cyclo-| | pp. 28-29]
matic numbers of more than 50 imply the application cannot be tested, while even higher numbers
of more than 75 imply that every change may trigger a ‘l‘_\.l?d fg(ge Th‘is Jrelric is widely used for
Quality Assurance and test planning purposes. [RAC 1996, p.12
®©

[
+

38

2014, Prisp Koopman. CC Attriouton 4.0 Intematonal koense. . «

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Infamous case: Toyota unintended acceleration

Carnegie Mellon

Global Variables Are Evil

» Global variables can be read/written from any system module
— In contrast, local variables only seen from a particular software module
» Excessive use of globals tends to compromise modularity
— Changes to code in one place affect other parts of code via the globals
— Think of it as data flow spaghetti

1973 February
GLOBAL VARIABLE CONSIDERED HARMFUL
W, Wulf, Meary Shaw
Carnegie-Mellon University

L J
The problems of indiscriminant access and vulnerability are complementary: the
former reflects the fact that the declaror, has no control over who uses his variables;
the latter reflects the fact that the program ifself has no control over which variables
it operates on. Both problems force upon the programmer the need for a detailed
global knowledge of the program which is not consistent with his human limitations.

Electrical & Computer [Wulf 1973, pp. 28,32]
) EGINEERING 39

© Copyright 2014, Philip Koopman. CC Attribution 4.0 Intemational icense.

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Infamous case: Toyota unintended acceleration

Carnegie Mellon

Toyota Global Variable Use

» |deal number of writeable globals is ZERO
+ OK to have moderate “const” values and configuration data:
* Toyota code has: [NASA App. A p. 33

* 4,720 read-only & text variables
« 11,253 read/write variables

« ETCS globals command throttle angle, report engine speed
[Bookout 2013-10-14 PM 29:4-15]

» Toyota: 9.273 — 11.528 global variables

[NASA App. A pp. 34, 37]
* “In the Camry software a majority of all data objects (82%) is

declared with unlimited scope and accessible to all executing tasks.”
[NASA App. A, pg. 33]

* NASA analysis revealed: [NASA App. A, pg. 30]
< 6,971 instances in which scope could be “local static”
« 1,086 instances in which scope could be “file static”

* Various counts differ due to use of different analysis tools with
) Electrical & Computer slightly different counting rules 4
) ENGINEERING 0
© Copyright 2014, Phiip Koopman. CC 40 cense.

How to provide evidence that all system safety objectives
are satisfied?

Drive Towards Zero
Vision : To develop cars that don’t crash.
Zero killed or badly injured in a Volvo car 2020

HALMERS | (&%)

Focus on product or on the development
process?

CHALMERS | (&)

Question: What is a quality process?

Is it a process which ...

* ... leads to quality software?

» ... is planned and controlled?

e ... Is predictable?

« ... contains all activities necessary to deliver a quality product?

» ... leads to the minimal effort possible for producing the product?

« ... will ensure and maintain quality during the system life-time
and evolution?

) CHALMERS |

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

International Standard — ISO 26262

1. Vocabulary

Iz.s Overall safety management

oncept phase

. Il fon of product
|3-5 1%em defniton Is‘“bpwm n\‘;m system leve

|36 InSaton of he safety ifecyde

pm of he lecmical |
nts

|3-7 Hazanrd anaysis and rsk

assessment

|4-7

design

3-8 Funcional safely

2.7 Safely management afler Lthe ilem’s rdease
for production

« Frodu n and operation

[4-11 Release for producion |

IY-G Producton I

|4-1 0 Funcional safely, ml -6 Operation, service
(mantenance and repair), and

| Kecomemissioning

}449 Satety validasof

[+8 mem inegdton andsessng |

conocepl

5. Product development at the
level

5-7 Hardware desigh

5-8 Evaluation of fhe fardware
farchiteciuml metdics

5 alua; o
olations dus
dlures

i

8. Supporting processes

6. Productdevelopment at the
el

Awarea lavel

6-7 Saftware architeciud design

%ﬁm urit design and
son
6-9 Software urit tesing

6-10 Soflware nlegmion and
lastng

6-11 Verifcation of sofware safely
requirements

85 Inlerfaces within diskibuled devebpments

8-10 Docurnentason

8.8 S and of safaty racuiremants

8-11 Confidenca in tha use of soBaam tonks

87 Configuration managemen!

8-12 Quaificaton of saflware components

8-8 Change rranagement

8-13 Quaificaton of hacdware components

88 Verificaton

[3-7 Analysis of dependent falures

| e
===y

10. Guideline on ISO 26262

CHALMERS |

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Product Development Software Level

B\

y/

4-8 ltem integration and

65 Inttiation of product development

testing

©-11 Venfication of
software safely

requirements

ltem testing
4.7 System design
Test phase
» venfication
< \
%‘P Desiyn phase
venhcation
N\ \ i\ A\
\\
6-6 Specification of Software testing
software safety S 3
requirements Test phase
> < venfication
. [
¥)
Desiyn phase o
3 verfication %%
3 @ \ %,
» N 5
o
2 o 67 Software R\ Sl tedtig 6-10 Software
-4 “g)’ architectural design Test phase integration and testing
2 > > venfication
® \
Desn%n phase
ven x\:atnon
\
.
AN
68 Software unit t 6-9 Software untt
design and testi
impleme ntation s1 phage esng
Tenfica

%5)

(%)) UNIVERSITY OF GOTHENBURG

ISO 26262: If you did it well...

You are Able to Show:

— Completeness:
= Everything accounted for
= Requirements under Control
= Everything tested — pass
= Used the toolsets

— Traceability:
= Structured Process Model
= Documents linked
= Evidence for Everything
= Understandable for external

— Consistency

= This is visible for external
auditor even when project
members have left

— Documentation:
= All activities planned
= Execution documented
» |nspected - Archived
= For a life-time (15year?)

Slide taken from “ISO 26262 Introduction” Singapore, 17 October
2012, Koen Leekens

UNIVERSITY OF GOTHENBURG

ISO 26262: If you did it well...

You are Able to Show:

— Completeness: — Consistency
= Everythina accounted for = This is visible for external
= Requ A clear, roject
= Every comprehensive and defensible argument

= Used that a system is acceptably safe to operate
in a particular context

— Traceabi (Tim Kelly / Rob Weawer University of York)
= Structured Process Model = All activities planned
= Documents linked = Execution documented
= Evidence for Everything = Inspected - Archived
» Understandable for external = For a life-time (15year?)

Slide taken from “ISO 26262 Introduction” Singapore, 17 October
2012, Koen Leekens

HALMERS ‘ NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

ON THE HORIZON &)

- o= -

Autonomy Electrification Connectivity

Acaris a Lo .
complex system & & & . -
ST = =Y=Y-

Multiple brands System of systems Crowd sourced data
multiple segments

- G 6 i =5
. . . . t . M
Product evolution after original sale Decreasing time to market Increasing OEM control
over OEM concerns
Seplember 23,2016 THOUGHTS ON THE FUTURE OF THE AUTOMOTIVE ELECTRONIC ARCHITECTURE | MARTIN HILLER, VOLVO CARS 5

Thanks to Martin Hiller, Fuse meeting - September 23, 2016

F-22 Raptor, the current U.S. Air Force
frontline jet fighter, consists of about 1.7
million lines G oﬂWare code

%Iass automobile probably

-~ contains close to 100 m|II|on Ilnes of software

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Acaris a
complex system

SOFTWARE SIZE EVOLUTION AT VOLVO @

917.0
900 750 MB in IHU
Speech and Maps
800 not included Over the past 20 years,
software size has grown
700 S -y by a factor of 10 every
» ompared to V60:
@ 60 Reduced ICM, 5-7 years.
2 500 RSE not included
S
2 00 74MB in ICM+IAM
300 Maps not included
200
100
15 49 10.9
$80/1998 XC90/2002 S80/2006 V70/2007 XC60/2008 V60/2011 V40/2012 SPA/2014
September 23, 2016 THOUGHTS ON THE FUTURE OF THE AUTOMOTIVE ELECTRONIC ARCHITECTURE | MARTIN HILLER, VOLVO CARS 10

Thanks to Martin Hiller, Fuse meeting - September 23, 2016

UNIVERSITY OF GOTHENBURG

Self-driving cars are
about platforms, not
about cars

software

services and apps

transportation platform

fleet routing

navigation

autonomous driving

car hardware

Go

ge &
de ©
gle %§ _ Bai it

gleT <77

sun 7708/LEYE BOSCH uBE R

traditional car makers

) CHALMERS % UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Development Verification

Feature

CI&D and Agility, ...\ Bk A
where? System

.)
Parallel development: Component Integration:

I 1
1 1
1 [}
1 1
1 1
1 1
1 1
: suppliers + In-house :
[} 1
: development !
1 1
l !

Collaboration based on
N contracts p.

__

Cl&D: Agile architecture

Waterfall-ish approach: A Agile approach:

Upfront architecture The architecture is
emerging from the

guiding the development v development

HALMERS | (&%)

In medio stat virtus

« Architectural design and the gradual building of the system (i.e., its user
visible functionality) must go hand-in-hand, in subsequent iterations

 Open questions
= Which changes will impact on the architecture?

= How we address architectural issues, and make decisions over time in a
way that will lead to a flexible architecture, and enable developers to
proceed?

= How do we keep everything synchronized?
= How this affects the organization?

NIVERSITY OF GOTHENBURG

Short feedback loop through the use of models

Development Verification

Feature Executable models — simulation
““““““ '\“‘—“7““““““
Volvo Cars example

Function

_________________ N[—— 7T . ML = Model in the Loop (that is, test
Electrical Architecture with the model itself in a modeled

---------------------- '\“_-7-----------------““‘ enVIronment)
» SIL = Software in the Loop. Replace

] NP1 | Ry . the Model above with its generated

__

“Big-bang” \ code. Verify the same behavior.
Component/ integration! * HIL = Hardware in the loop - Integrate
the generated code in the real ECU,
but model everything outside the ECU.

i Parallel development:
: suppliers + In-house
: development

Collaboration based on
{ contracts

One common virtual vehicle

Made By Goteborg - The software inside the all new XC90, Martin Nilsson, Volvo Cars

UNIVERSITY OF GOTHENBURG

Executable models — simulation

Steering column

Integration Rendering Brake system PT; engine
management Cockpit ' ' Chassis & Radar, cams, ... and
P Simulation |nfotainment ~ Antennas, ... transmission
Body \ Control etc

Simulation bus !

— FlexRay
Backbone

Complete vehicle
HIL — Func int. env
XC9a0

TIRT -
i

Sorommll

Made By Goteborg - The software inside the all new XC90, Martin
Nilsson, Volvo Cars

* User stories

* Connectivityintegration

* HMl user load evalug# =
* Active Safety H velopment -

L ¢ Eye tracking

-

% Distraction meastiremernts

b w
—~——

-
’

” ‘l_\lptiﬁcation rP\sponses

—

Digital user
experience lab

VTI simulator

CHALMERS ‘ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Takeaways

Software (or system) Architecture is an important artifact for the
development complex systems

* There is the need for some upfront (only what it is needed and will
stay stable as much as possible)

* The architecture description should be a living artifact that should
evolve according to the feedback coming from the development

« There is the need to shift towards “just in time” architecting

Defining an architecture for a complex and real system is much
more than just modeling

* Besides technicalities we need to consider also the business,
process, and organization dimensions

Executable models might be exploited to have early feedback
even when (part of) the system, both hardware or software is
not yet developed

