
Patrizio Pelliccione
Associate Professor (Docent), Chalmers|GU
 www.patriziopelliccione.com

Architecture and Agility for
complex systems

The case of automotive domain

About myself…
 Autonomous and smart systems

•  Adaptation
•  Evolution

https://www.chalmers.se/sv/styrkeomraden/ikt/forskning/automatiserat-samhalle/wasp/Sidor/default.aspx

http://www.co4robots.eu/

Achieving complex Collaborative Missions
via Decentralized Control and Coordination
of Interacting Robots

Next Generation Electrical Architecture –
Volvo Cars and many suppliers

https://www.researchgate.net/project/Next-Generation-Electrical-Architecture-NGEA

Software architecture –
building metaphor
•  No comparable intuition for software

•  We must be more methodological and analytical
in our approach

•  Software is intrinsically intangible
•  More difficult to measure, analyze, and evaluate

qualities
•  Software more malleable than physical

building materials
•  Types of changes unthinkable in a physical

domain

Museum of Contemporary Art (Niteroi, Brazil)
Source: http://www.flickr.com/photos/howvin/7457617764/

The Crooked House (Sopot, Poland)
Source: http://www.flickr.com/photos/brocha/2240736671

Kansas City Public Library (Missouri, USA)
Source: http://www.flickr.com/photos/jonathan_moreau/418008212

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and
Practice. Wiley Publishing.

Architecture Standard

•  ISO/IEC/IEEE 42010:2011, Systems and
software engineering — Architecture
description – December 2011

•  Joint ISO and IEEE revision of IEEE Std 1471,

first published in 2000
•  The standard is method-neutral: it is intended

for use by architects employing various
architecting1 methods.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50508

Architecture: (system)
fundamental concepts or
properties of a system in
its environment embodied
in its elements,
relationships, and in the
principles of its design and
evolution

Some facts about architecture
•  Every application has an architecture

Russian Embassy (Havana, Cuba)
http://upload.wikimedia.org/wikipedia/commons/d/d2/Russian_embassy_in_Havana.jpg

Some facts about architecture
•  Every application has an architecture

•  The architecture of a system can be characterized by the
principal design decisions made during its development

 Architecture underlying command-line shell programs

 ls invoices | grep –e August | sort

Architectural style pipe-and-filter

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and Practice. Wiley Publishing.

Some facts about architecture
•  Every application has an architecture

•  The architecture of a system can be characterized by the
principal design decisions made during its development

•  Every application has at least one architect
•  Perhaps not known by that title or recognized for what is done

•  Architecture is not a phase of development

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009 Software Architecture: Foundations, Theory, and Practice. Wiley Publishing.

General workflow
stakeholders

concerns

 Architectural constraints
and requirements

Ideas

Constraints

Req1:..
Req2:..
Req3:..
………

Architectural
requirements

C2

C3C1

C4Software
Architecture

Software
Architecture

synthesis

Evaluation and
Decisions making

Patrizio Pelliccione, Paola Inverardi and Henry Muccini, CHARMY: A Framework for Designing and Verifying Architectural Specifications (2009),
in: IEEE Transactions on Software Engineering (TSE), 35:3(325 - 346)

Software architecture characteristics
•  Multitude of stakeholders

•  Dealing with a broad variety of concerns and stakeholders, and has a multidisciplinary nature.
•  Separation of concerns

•  Stakeholder concerns are addressed by modeling and describing the architecture from
separate points of view associated with the various stakeholder concerns.

•  Quality-driven
•  Architecture of a system is closely related to its quality attributes, such as fault-tolerance,

backward compatibility, extensibility, reliability, maintainability, availability, security, usability,
and other such –ilities.

•  Recurring styles
•  Common terms for recurring solutions are architectural style, strategy or tactic, reference

architecture and architectural patterns.
•  Conceptual integrity

•  The architect assumes the role of “keeper of the vision”, making sure that changes to the
systems are in line with the architecture, hence preserving conceptual integrity.

Software architecture benefits
•  Basis for analysis of software systems' behavior before the system has been

built.
•  Substantial cost-saving and risk-mitigation.

•  Basis for re-use of elements and decisions.
•  Saving design costs and mitigating the risk of design mistakes.

•  Support for early design decisions which have high impact on a system's
development, deployment and maintenance life.

•  Prevent schedule and budget overruns.

•  Facilitate communication among stakeholders, contributing to a system that
better fulfills their needs.

•  Substantial cost-saving and risk-mitigation: communicate about design decisions before the
system is implemented, when they are still relatively easy to adapt.

Agile architecture
1.  A system or software architecture that is versatile, easy to evolve, to modify, flexible

in a way, while still resilient to changes
2.  An agile way to define an architecture, using an iterative lifecycle, allowing the

architectural design to tactically evolve gradually, as the problem and the constraints
are better understood

  The two are not the same
§  you can have a non-agile development process leading to a flexible, adaptable architecture,

and vice versa,
§  an agile process may lead to a rather rigid and inflexible architecture.
§  One does not imply the other.

  In the best of worlds, we’d like to have an agile process, leading to a flexible
architecture.

Taken from the Philippe Kruchten: http://philippe.kruchten.com/2013/12/11/agile-architecture/

Naïve thinking
  By being agile, an architecture will gradually emerge, out of bi-weekly refactorings.

  This belief was amplified by a rather poorly worded principle #11 in the agile manifesto[1],
which states that:
§  “The best architectures, requirements, and designs emerge from self-organizing teams.”

  and cemented by profuse amount of repeated mantras like:
§  YAGNI (You Ain’t Gonna Need It) or
§  No BUFD (No Big Up-Front Design), or
§  “Defer decision to the last responsible moment”. (This principle is neither prescriptive, nor testable,

as Séguin et al. showed in [2], so it is probably not a principle, but merely an observation or a
wish.)

[1] Agile Alliance, Manifesto for Agile Software Development, June 2001 http://agilemanifesto.org/.
[2] N. Séguin, G. Tremblay, and H. Bagane, Agile Principles as Software Engineering Principles: An Analysis, vol. 111, Lecture Notes in Business
Information Processing, C. Wohlin, Ed. Berlin Heidelberg: Springer, 2012, pp. 1-15.

Taken from the Philippe Kruchten: http://philippe.kruchten.com/2013/12/11/agile-architecture/

However…
•  Key architectural choices cannot be

easily retrofitted on an existing
system by means of simple
refactoring

•  Much of the architectural
decisions have to be taken early,
although not all at once up front

Inspired by: http://philippe.kruchten.com/2013/12/11/agile-architecture/

Architecting in practice…

A
rchitecture

 description
Im

plem
entation

Development	 Verifica1on	

Feature	

Func1on	

Electrical	Architecture	

System	

Component	Parallel	development:	
suppliers	+	In-house	

development	

“Big-bang”	
integra1on!	

Collabora1on	based	on	
contracts	

A
rchitecture

 description
Im

plem
entation

Architecting in practice…

Discrepancy between as-intended
and as-implemented architectures !

Architecture degradation

•  Architectural drift – discrepancies

that do not violate any decision that
is documented in the as-intended
architecture

•  Architectural erosion – some
decisions violate the as-intended
architecture

Risk of architectural erosion

•  The actual architecture of the car is not
exactly the one conceived by the architects
•  The architecture is also emerging during

development (bottom-up)
•  Some architectural decisions are made

unconsciously
•  Which decisions have an impact on the

architecture? – not easy
•  Some “actual” architects do not have the title

of architect

Architecture

 Ideas/vision
of the system to be

realized

Design

 Actual blueprint for
the implementation

teams, being used in
their daily work, and
evolving over time

GAP

Limitations of the actual architecture description
•  Importance varies over time
•  Easily becomes out of date
•  Too many details
•  Variability management
•  Should better document the design decisions
•  Should better document / make explicit the assumptions made
•  Should be a living document connected with the other development

phases
•  Should handle different views and viewpoints of different stakeholders’

concerns
•  Present and Future mixed in the same document

S
ta

te
 o

f P
ra

ct
ic

e

U. Eliasson, R. Heldal, P. Pelliccione, J.Lantz (2015) Architecting in the Automotive Domain: Descriptive vs Prescriptive Architecture In: In Proceedings
of 12th Working IEEE / IFIP Conference on Software Architecture (WICSA 2015), IEEE, Montreal, Canada.
R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag, J. Whittle, Descriptive vs Prescriptive Models in Industry, Models 2016, St-Malo, France, 2016

Recent work: Architecture Gap Survey
•  Involved Volvo Cars (VCG), Volvo Group Truck Technology (VGTT),

Ericsson, Jeppesen AB, plus many other companies around the
world

•  Research questions that we are investigating:
•  Is the architecture driving the development?
•  Is the architecture “emerging” from the development?
•  Is there any gap between what specified in the architecture and what is

developed?
•  If so, what are the reasons for that and what are the consequences?
•  How could the architecture description be improved to be more useful

during the development and maintenance phases?

What is the purpose of an architecture
description

 Architecture driving
the implementation or
the other way round ?

How could the
architecture

description be
improved?

Main findings of the study

Finding
•  Typically, more than one architecture description (often at different levels

of abstraction) exists for describing the architecture of a system

Implication
•  Several reasons for representing architectures in architecture descriptions
•  Need of investigating

•  how to ameliorate the creation and maintenance of architecture descriptions
•  languages and notations to describe architectures
•  how to maintain more than one architecture description for representing the

architecture of complex systems

Main findings of the study

Finding
•  Architecture descriptions serve various purposes and should be conceived

for different types of stakeholders

Implication
•  Need of multiple views and viewpoints
•  Languages and notations to represent architecture descriptions should be

conceived with the flexibility to satisfy various concerns of different
stakeholders

•  The different purposes might also be conflicting each other, and suitable
tradeoff analysis should be put in place

Main findings of the study

Finding
•  While it is important to have an upfront architecture and architecture

description, the architecture description should evolve during the system
development from input and feedback coming from stakeholders that are
even different from architects

Implication
•  How much information should be put in the upfront architecture description?
•  Need to support “just in time” architecting, thus enabling stakeholders (even

different from architects) to refine, add information, or provide feedback to the
architecture description.

Main findings of the study

Finding
•  Exist inconsistencies both among different architecture descriptions and

between architecture descriptions and design/ implementation
•  Some of the inconsistencies might have high impact

Implication
•  This finding triggers the need of investigating causes and mechanisms to

discover, avoid, and mitigate inconsistencies

Main findings of the study

Finding
•  We identified some discrepancy between the architect team and other

stakeholders

Implication
•  There is the risk that within the same company will grow and will become

established different cultures and beliefs.
•  Innovative and more effective communication means are needed to enable

communication among different stakeholders.

Different points of view
What the design groups think of the high-level
architecture group

•  High-level architects lack an

understanding of the current situation and
the system under implementation

•  High-level architect group focuses too much

on what might be good for the future, while
neglecting a concrete vision of what is the
best solution for the current situation

“But sometimes you feel that the architecture-group thinks that we should change everything. While we
[design group] are more focused on that we have to solve something to the project, and yes, what we

have is maybe not the optimal solution but it is what we have.”

What the architecture group thinks of the
working architecture group

•  The design groups are very focused on

everyday problems and then they miss
an overall picture

•  The design groups are too focused on
short-term solutions: choosing the best
solution in the short run might cause
problems in the next future

Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, Jonn Lantz, “Architecting in the Automotive Domain: Descriptive vs Prescriptive
Architecture”, WICSA 2015, 12th Working IEEE/IFIP Conf. on Software Architecture”, Montreal, Canada

Identified antipatterns

•  GoldPlating – the architecture that has been created is a perfect architecture
but it is describing the wrong system

•  Ivory tower – the architect team is isolated from the other groups with few
communication. They might experience rejection from developers

•  Architecture watch – the group of architects is limited to a watching group.
They provide recommendations without making any architectural decision.

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 – 2416, 2008.

What do architect really do?

Internal Focus

External Focus

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 – 2416, 2008.

What do architect really do?

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 – 2416, 2008.

The [60:30:10] antipattern – goldplating

GoldPlating – the architecture that
has been created is a perfect

architecture but it is describing the
wrong system

What do architect really do?

P. Kruchten. What do software architects really do? Journal of Systems and Software, 81(12):2413 – 2416, 2008.

The [70:15:15] antipattern – ivory tower

Ivory tower – the architect team is
isolated from the other groups with

few communication. They might
experience rejection from developers

•  How to reduce the time to market?

•  How can a system respond quicker to changes in the market?

•  How can we introduce CI&D practices in the automotive
domain?

Just some of the research questions of the project…

Software,
Hardware, and

Mechanics

How many
Electronic Control
Units (ECUs) in a

car?

TVM
0x1301

optional

SRS 
Supplementary  

Restraint System
0x1C01

CEM 
Central Electronic Module

0x1A01

VCM
Vehicle 

Connectivity 
Module
0x1001

Chassis CAN HS
0x161x

Propulsion CAN HS 0x163x

ASDM
Active Safety

 Domain Master
0x1401

ECM
0x1630

PSCM
0x1612

PSCR
0x1613

optional

SUM
0x1614

optional OBC
0x1634

optional

BECM
0x1635

optional

DEM
0x1638

optional

IGM
0x1636

optional

IEM
0x1637

optional

SODL
0x1432

optional

SODR
0x1433

optional

RML
0x1416

RMR
0x1417

DMM
0x1415

optional

CCM
0x1A11

DDM
0x1A12

POT
0x1A15

optional

PDM
0x1A13

PSMD
0x1A14

optional

TRM
0x1A17

optional

Body CAN HS
0x1A1x

DIM
Driver 

Imformation  
Module
0x1801

IHU
Infotainment
Head Unit

0x1201

OWS
0x1C42

optional

LIN10 0x1C4x

DDS
0x1A22

RDDM
0x1A21

LIN5 0x1A2x

RPDM
NAD 21

LIN9 0x1A8x

ACM
0x1655

optional

ASWM

OHRL
optional

LIN14 0x1B9x

BBS
0x1B51

optional

IMS
0x1B52

optional LIN2
0x1B5x

WMM

IRMM

AHML
optional

FFML
optional

MAM

WAM
0x1431

optional

AUD
0x1212

optional
MOST150
0x121x LIN

CAN

MOST 150

FlexRay

J1962  
Diagnostic Connector

Diagnostics 
Ethernet

Backbone
FlexRay

Ethernet

SCL
0x1615

SAS
0x1616 EGSM

0x1633
optional

TCM
0x1632

optional

PreSideNT_L
0x1413

optional

PreSideNT_R
0x1414

optional

HUD
0x1841

optional

TEM
0x1011
optional

USB 0x101x

Propulsion CAN HS

HIRL
optional

AHMR
optional

FFMR
optional

HIRR
optional

BMS
0x1B61

OHC
0x1B22

LIN0 (K-line)
0x1B3x

LIN17 0x1A6x

LIN18 0x1A7x

CCSM
0x1265

DMSM
0x1266

optional

RCSM
0x1264

optional

AGM
NAD 01

ASSM
NAD 02

LIN7 0x166x

ECPM
NAD 09

optional

LIN4 0x164x

LIN19 0x126x
USB

SWSM
0x1843

BCSM

FMDM
0x1B62

SUS
0x1B92

PSMP
0x1A1A

optional

VDDM
Vehicle  

Dynamics 
Domain
Master

0x1601

BCM
Brake  

Control  
Module
0x1631

VDDM
Vehicle Dynamics 
Domain Master TDMR

0x1639
optional

SWM
0x1B91

Hard-Wire

PAS

GPCM
0x1658

optional

WLAN

LIN6 0x165x

Int.
WLAN

Ext. WLAN/3G/4G

RLSM
0x1B11

IDR
optional

IDD
0x1A23

optional

IDDR 
0x1A24

optional

IDP
NAD 23

optional

IDPR
NAD 24

optional

LIN/Cooling 
Stepper Motors
& Sensors

ACCM
0x1657

optional

BT

CPM
0x1A7A

optional

SCMP
NAD 53

SCMD
0x1A53

optional

PSRL
0x1A56

optional

PSRR
0x1A5C

optional

LIN21 0x1A5x

HVCH
0x1A7A

SHMR
0x1A73

SHRR
0x1A74

HUS
0x1A72

HBMR
0x1A61

SHML
NAD 73

SHRL
NAD 74CCSM

HBMF
0x1A60

AEMM
0x163B

optional

30, Battery feed

ESM
0x163A

optional

GSM
0x1661

optional

TACM
0x163C

optional

LIN22 0x1A4x

EDCP
0x165A

optional

CSD
0x1241

OHTR
optional

OHCR
0x1B23

optional

SFM3
0x1A54

optional

OHRR
optional

LIN8 0x1BAx Spare

LIN15 0x1B4x Spare

Body CAN HS
0x1A1x

LIN16
0x1B6x

LIN13
0x1B8x

LIN12
0x1B7x

LIN1
0x1B1x

LIN3
0x1B2x

CAN 0x1BBx Spare

HBCP
NAD 41

optional

LIN23

AN
D

RSHC
0x1267

optional

Can not
co-exist

http://slidegur.com/doc/173817/swc-reqs-test.v001 Kent Niesel

GSM
CEM

SWS

MS-CAN

HS-CAN

J1962
ISO14229

VL
IT
E

PHM

ECM

SASTCM

ABSETM

UEMDDM PDM

RTI PSM

DIMCCM

REM SWM AUM

SRS

S80 1998 (19)

GSM
CEM

MMS

SRM SCM

ISM

RSM

SWS
SHM

SHM

EPB

MS-CAN

HS-CAN

SENSOR-CAN

J1962
ISO14229

MOST

CPM LSM

ATM

ECM

SASTCM SUM

OWS

DEM

BCM

ICM

DDM PDM

AEM SRS PSM

DIM

AUD

CCM

UEM REM SWM PHM

MMM

MP1

SUB

MP2

PAS

S/V 40 2002 (38)

ACM

LWSR RWSR GSM
CEM

WMM

GDL

RDM LDM

SHM SHM

FAM FAM

FAM FAM

AQS

OWS

SCM

RSM

GDLSCL

LIN 5

LIN 4

LI
N

8

MS-CAN

LIN 3

LIN 9

LIN 2

HS-CAN

SENSOR-CAN

J1962
ISO14229

MOST

LI
N

7

LIN 6

LI
N

1

CAN

SCU

RRX NVM

FAM

ATM

ECM

SWM TCM DEM

BSCBCM

ICM

DDM PDM

AEM KVM PHM

DIM

AUD

CCM

PSM SRS PAS

MMM

MP1

SUB

MP2

CPM

EPS

ACM

LHCU RHCU GSM
CEM

LSMSWM

IMSBBS

RSM

LCM RPDM

SCLIAU

SWSR
SHMR SHMRR

DEF TMPR

SHML SHMRL SHRC

REC MODE TMPL

RFR

RFR

SWSL

HBS

WMM

DOR

EPB

LIN 5

LIN 5

MS-CAN

Only without
KVM

ISO 9141 / LIN
LIN 0
LIN 1

LIN 2

LIN 3

HS-CAN

SENSOR-CAN

J1962
ISO14229

MOST

Private
CAN

LI
N

7

LIN 11

LI
N

6

ISO 9141

HUS

PHM
(TEM)

ECM

SASHCM TCM

FLRFSM

SUM

BSC

EHPAS

BCM

ICM

DDM PDM

TRM CPM PSM

DIM

AUD

CCM

PAM KVM PAC

IAM

AUU

SUB

RDAR

DEM

BPM

MMMHLDF

OWS

SRS

RDDMDDS RCM

ACM

LHCU RHCU GSM
CEM

LSMSWM

IMSBBS

RSM

RDM LDM

SCLIAU

SWSR

SHM SHM

FAM FAM

SHML SHMRL SHRC

REC MODE TMPL

AQS

RFR

RFR

SWSL

HBS

WMMBMS

RATD

AGM

EPB

RCM CVM

LIN 5

LIN 5

LIN 4

LI
N

8

LIN ICM 1

MS-CAN

Only without
KVM

ISO 9141 / LIN
LIN 0
LIN 1

LIN 2

LIN 8

LIN 3

HS-CAN

SENSOR-CAN

J1962
ISO14229

MOST

Private
CAN

LI
N

7

LIN 11

LI
N

6

ISO 9141

VQM

BLIS_LCM BLIS_RCM

IEC

PHM
(TEM)

ACCM

ECM

HEV-CAN

SASHCM TCM

FLRFSM

SUM

OWS

PSCM

BCMOBC

ICM

DDM PDM

TRM CPM PSM

DIM

AUD

CCM

PAM POT KVM PAC

IAM

DABM

RSE

RDAR

BECM IGMIEM

HLDRL

HLDRR

Private
CAN

V40 2003 (49)

S80 2006 (68) V60 PHEV 2012 (78) XC90 2015 (>100)

Volvo: 1998 – 2013 - ECU Growth

Taken from: http://www.vinnova.se/PageFiles/751327324/Keynote%20Martin%20Nilsson%20presentation.pdf

Functional
architecture

Logical
architecture

Technical
architecture

Safety

Qualities

Security

Energy

Cost

NHV – Noise,
Vibration,

Harshness Weight

CI&D

Car in a SoS

Ecosystem & Transparency

Autonomous vehicle Variability

A car is a
complex system

 In 10 years, about 10,000,000 cars have
been recalled due to software-related

problems

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Prof. Philip Koopman has served as a Plaintiff expert witness on numerous cases in Toyota Unintended
Acceleration litigation, and testified in the 2013 Bookout trial. Dr. Koopman is a member of the ECE
faculty at Carnegie Mellon University, where he has worked in the broad areas of wearable computers,
software robustness, embedded networking, dependable embedded computer systems, and
autonomous vehicle safety. …

Infamous case: Toyota unintended acceleration

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Infamous case: Toyota unintended acceleration

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Infamous case: Toyota unintended acceleration

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Infamous case: Toyota unintended acceleration

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Infamous case: Toyota unintended acceleration

http://betterembsw.blogspot.hu/2014/09/a-case-study-of-toyota-unintended.html

Infamous case: Toyota unintended acceleration

How to provide evidence that all system safety objectives
are satisfied?

Drive Towards Zero
Vision : To develop cars that don’t crash.

Zero killed or badly injured in a Volvo car 2020
 Johan Konnberg - Volvo Car

Electrification Strategy

www.fkg.se/wp/wp-content/uploads/2013/05/Volvo-Cars.ppt

 Focus on product or on the development
process?

Question: What is a quality process?
Is it a process which …

•  … leads to quality software?
•  … is planned and controlled?
•  … is predictable?
•  … contains all activities necessary to deliver a quality product?
•  … leads to the minimal effort possible for producing the product?
•  … will ensure and maintain quality during the system life-time

and evolution?

International Standard – ISO 26262
Management

Development

Supporting processes

Product Development Software Level

ISO 26262: If you did it well…
You are Able to Show:

–  Completeness:

§  Everything accounted for
§  Requirements under Control
§  Everything tested – pass
§  Used the toolsets

–  Traceability:
§  Structured Process Model
§  Documents linked
§  Evidence for Everything
§  Understandable for external

–  Consistency
§  This is visible for external

auditor even when project
members have left

–  Documentation:
§  All activities planned
§  Execution documented
§  Inspected - Archived
§  For a life-time (15year?)

Slide taken from “ISO 26262 Introduction” Singapore, 17 October
2012, Koen Leekens

ISO 26262: If you did it well…
You are Able to Show:

–  Completeness:

§  Everything accounted for
§  Requirements under Control
§  Everything tested – pass
§  Used the toolsets

–  Traceability:
§  Structured Process Model
§  Documents linked
§  Evidence for Everything
§  Understandable for external

–  Consistency
§  This is visible for external

auditor even when project
members have left

–  Documentation:
§  All activities planned
§  Execution documented
§  Inspected - Archived
§  For a life-time (15year?)

Slide taken from “ISO 26262 Introduction” Singapore, 17 October
2012, Koen Leekens

A clear,
comprehensive and defensible argument

that a system is acceptably safe to operate
in a particular context

 (Tim Kelly / Rob Weawer University of York)

A car is a
complex system

Thanks to Martin Hiller, Fuse meeting - September 23, 2016

F-22 Raptor, the current U.S. Air Force
frontline jet fighter, consists of about 1.7

million lines of software code

A premium-class automobile probably
contains close to 100 million lines of software

code

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

A car is a
complex system

Thanks to Martin Hiller, Fuse meeting - September 23, 2016

Self-driving cars are
about platforms, not

about cars

https://www.visionmobile.com/blog/2015/11/self-driving-cars-are-about-platforms-not-about-cars

CI&D and Agility,
where?

Development	 Verifica1on	

Feature	

Func1on	

Electrical	Architecture	

System	

Component	Parallel	development:	
suppliers	+	In-house	

development	

“Big-bang”	
integra1on!	

Collabora1on	based	on	
contracts	

CI&D: Agile architecture

Waterfall-ish approach:
Upfront architecture

guiding the development

Agile approach:
The architecture is
emerging from the

development

In medio stat virtus
•  Architectural design and the gradual building of the system (i.e., its user

visible functionality) must go hand-in-hand, in subsequent iterations

•  Open questions
§  Which changes will impact on the architecture?
§  How we address architectural issues, and make decisions over time in a

way that will lead to a flexible architecture, and enable developers to
proceed?

§  How do we keep everything synchronized?
§  How this affects the organization?

Short feedback loop through the use of models

Executable models – simulation
Volvo Cars example

Development	 Verifica1on	

Feature	

Func1on	

Electrical	Architecture	

System	

Component	Parallel	development:	
suppliers	+	In-house	

development	

“Big-bang”	
integra1on!	

Collabora1on	based	on	
contracts	

•  MIL = Model in the Loop (that is, test
with the model itself in a modeled
environment).

•  SIL = Software in the Loop. Replace
the Model above with its generated
code. Verify the same behavior.

•  HIL = Hardware in the loop - Integrate
the generated code in the real ECU,
but model everything outside the ECU.

Executable models – simulation

Made By Göteborg - The software inside the all new XC90, Martin Nilsson, Volvo Cars

One common virtual vehicle

Executable models – simulation

Complete vehicle
HIL – Func int. env
XC90

PT;	engine	
and	
transmission	

Chassis	&	
Infotainment	

Body	

Rendering	

Simula;on	
Control	

Cockpit	

Steering	column	
Brake	system	
Radar,	cams,	…	
Antennas,	…	
etc	

Integra;on	
management	

FlexRay
Backbone

Simulation bus

CAN

Made By Göteborg - The software inside the all new XC90, Martin
Nilsson, Volvo Cars

Executable models – simulation

Digital user
experience lab

•  User	stories	
•  Connec,vity	integra,on	
•  HMI	user	load	evalua,on	
•  Ac,ve	Safety	HMI	development	

•  Eye	tracking	
•  Distrac,on	measurements	
•  No,fica,on	responses	

Executable models – simulation

VTI simulator

Takeaways
•  Software (or system) Architecture is an important artifact for the

development complex systems
•  There is the need for some upfront (only what it is needed and will

stay stable as much as possible)
•  The architecture description should be a living artifact that should

evolve according to the feedback coming from the development
•  There is the need to shift towards “just in time” architecting

•  Defining an architecture for a complex and real system is much

more than just modeling
•  Besides technicalities we need to consider also the business,

process, and organization dimensions

•  Executable models might be exploited to have early feedback
even when (part of) the system, both hardware or software is
not yet developed

