Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update default net to nn-1ceb1a57d117.nnue #4545

Closed

Conversation

linrock
Copy link
Contributor

@linrock linrock commented Apr 24, 2023

Created by retraining the master net with these changes to the dataset:

  • Extending v6 filtering to data from T77 dec2021, T79 may2022, and T80 nov2022
  • Reducing the number of duplicate positions, prioritizing position scores seen later in time
  • Using a binpack minimizer to reduce the overall data size

Trained the same way as the previous master net, aside from the dataset changes:

python3 easy_train.py \
  --experiment-name leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd \
  --training-dataset /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack \
  --nnue-pytorch-branch linrock/nnue-pytorch/misc-fixes \
  --start-from-engine-test-net True \
  --early-fen-skipping 30 \
  --start-lambda 1.0 \
  --end-lambda 0.7 \
  --max_epoch 900 \
  --lr 4.375e-4 \
  --gamma 0.995 \
  --tui False \
  --gpus "0," \
  --seed $RANDOM

The new v6-dd filtering reduces duplicate positions by iterating over hourly data files within leela test runs, starting with the most recent, then keeping positions the first time they're seen and ignoring positions that are seen again. This ordering was done with the assumption that position scores seen later in time are generally more accurate than scores seen earlier in the test run. Positions are de-duplicated based on piece orientations, the first token in fen strings.

The binpack minimizer was run with default settings after first merging monthly data into single binpacks.

python3 interleave_binpacks.py \
  leela96-filt-v2.binpack \
  dfrc99-filt-v2.binpack \
  T60-nov2021-12tb7p-eval-filt-v2.binpack \
  T60-dec2021-12tb7p-eval-filt-v2.binpack \
  filt-v6/test80-aug2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6/test80-sep2022-16tb7p-filter-v6.min-mar2023.binpack \
  filt-v6-dd/test80-jun2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test80-jul2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-oct2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test80-nov2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-apr2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test79-may2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test78-jantomay2022-16tb7p-filter-v6-dd.min-mar2023.binpack \
  filt-v6-dd/test78-juntosep2022-16tb7p-filter-v6-dd.binpack \
  filt-v6-dd/test77-dec2021-16tb7p-filter-v6-dd.binpack \
  /data/leela96-dfrc99-T60novdec-v2-T80augsep-v6-T80junjuloctnovT79aprmayT78jantosepT77dec-v6dd.binpack

The code for v6-dd filtering is available along with training data preparation scripts at:
https://github.com/linrock/nnue-data

Links for downloading the training data components:
https://robotmoon.com/nnue-training-data/

The binpack minimizer is from:
#4447

Local elo at 25k nodes per move:
nn-epoch859.nnue : 1.2 +/- 2.6

Passed STC:
https://tests.stockfishchess.org/tests/view/643aad7db08900ff1bc5a832
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 565040 W: 150225 L: 149162 D: 265653
Ptnml(0-2): 1875, 62137, 153229, 63608, 1671

Passed LTC:
https://tests.stockfishchess.org/tests/view/643ecf2fa43cf30e719d2042
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 1014840 W: 274645 L: 272456 D: 467739
Ptnml(0-2): 515, 98565, 306970, 100956, 414

bench 3476305

bench 3476305
@vondele vondele added the to be merged Will be merged shortly label Apr 25, 2023
@vondele vondele closed this in c3ce220 Apr 25, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
to be merged Will be merged shortly
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants