—1

Hewlett Packard
Enterprise

Libfabric Authorization Key Ring Proposal

lan Ziemba
August 8, 2023

Agenda

e Authorization Key Overview

e Problem Statement

e Solutions

e New Capabilities to Support Authorization Key Ring
e Libfabric Authorization Key Ring Object

e Server Workflows

» Retrieving Authorization Key from CQ Event

e Using Authorization Key for Local RDMA Operations
o Key Takeaways

Authorization Key Overview

e Authorization keys are used to limit communication between endpoints
e Only peer endpoints that are programmed to use the same authorization key may communicate
 fid_domain, fid_mr, and fid_ep may be associated with a single authorization key

e In practice, each independent libfabric application is associated with at least one authorization key

« Using unique authorization keys per application prevents applications from erroneously or maliciously issuing
RDMA operations to each other

Problem Statement

e In client/server environments with RDM
endpoints, expectation is persistent server
instances need to communicate with multiple
independent clients in a secure manner

e |ssue: While client/server software may implement
encryption, authentication, and authorization,
none of these isolate RDMA traffic from
independent clients

 Solution: Use unique authorization keys for each
independent client

App A
Auth Key: Ox1

App B
Auth Key: Ox2

Server
Auth Key:
Ox1, Ox2

App A and App B can communication with server since
same auth keys are used (and vice versa). App A
cannot communicate with App B since different auth
keys are used (and vice versa).

Problem Statement

* Issue: Servers need to support multiple client authorization keys in a scalable and performant

manner

o Requirement 1: Servers must scale to many client authorization keys
—Need at least 16-bits worth of authorization keys
— 32-bits worth of authorization keys would be ideal

e Requirement 2: Servers must map incoming RDMA operation fi_addr_t to authorization key
—Need handles to represent authorization keys instead of operating on opaque blobs

o Requirement 3: Servers must respond to clients using the client specific authorization key
—Need ability to assign an authorization key per RDMA operation

Solution 1: Endpoint per Authorization Key

e Servers allocating an endpoint per client
authorization key would satisfy all requirements
EP EP EP

e Pros

« Supported by libfabric today Key: Ox0 Key: Ox1 Key: N
e Cons

« Servers must manage multiple endpoints

« Providers may not be able to support required
number of endpoints EP EP EP

Key: Ox0 Key: Ox1 Key: N

Server

Each client has its own auth key to communicate with
the server. This requires the server to have N
endpoints where N equals number of client auth keys.

Solution 2: Add Authorization Key Extension to Address Vector (AV) APIs

e AV API would be extended to support inserting
authorization key with endpoint address
e Example: fi av insert auth key (
EP EP

struct fid av *av, void *addr,
size t count, fi addr t *fi addr,
void *auth key, size T auth key len,

uint64 t fTags, void *conteXxt) Node: Ox1 Node: Ox2
e Pros Service: Ox0 Service: 0x0
 Single endpoint can support multiple authorization Key: Ox0 Kev: Ox1
keys
e Cons t
o Complicates endpoint’s view of valid authorization keys ep
e Example: After endpoint enablement, the server inserts AV (<node, service, key)
a new client AV entry with a new authorization key Node: Ox0 <> Index O: OxL OxO. OxO
« Should the endpoint support this new authorization Service: Ox0 T
Index 1: 0x2, 0x0, Ox1
key? Key: Ox0, Ox1 naex X&, UXE, UX

— If yes, this requires dynamically updating endpoint state
—If no, how can servers support new clients with new
authorization keys? Server
« Dynamic modification of endpoint state may lead to . ,
uXexpeci‘ed runtime failures P y Server AV defines the supported auth keys. Adding new
auth keys against already enabled endpoint may lead to

runtime failures.

E— |

Solution 3: Authorization Key Ring

e Support an endpoint fo be bound and enabled
against N authorization keys

« Authorization key ring is container of authorization
keys which are bound to endpoints

« Receive based RDMA operation will report the
authorization key used

« Authorization key can be specified per local RDMA
operation

e Pros

 Single endpoint can support multiple authorization
keys

o All needed authorization keys can be bound to
endpoint before enablement

— Avoids runtime failures
e Cons
e None?

E—

EP EP

Node: Ox1 Node: 0x2
Service: Ox0 Service: Ox0
Key: Ox0 Key: Ox1

EP Auth Key Ring
Node: Ox0) Index O: Ox0
Service: 0x0 Index 1: Ox1

Server

Authorization key ring defines the auth keys the endpoint
should be enabled against. AV management is separate
from authorization key ring management.

New Capabilities to Support Authorization Key Ring

e FI_AUTH_KEY_RING
e A provider supports binding an authorization key ring to an endpoint
o If capability is set during endpoint creation, the authorization key in the endpoint fi_info will be ignored
e Requires providers to support changing authorization key per transmit-based RDMA operation
« Requires providers to support an endpoint receiving on one or more authorization keys
— Authorization key ring would define the exact number an endpoint would need to support

e FI_SOURCE_AUTH_KEY

o Paired with FI_AUTH_KEY_RING

o Requests that the endpoint return the source authorization key (fi_auth_key_t) data as part of its completion data
e FI_NO_SOURCE_AUTH_KEY

 Paired with FI_SOURCE_AUTH_KEY

e Flag used per MR and recv/trecv to signal to provider that corresponding completion events do not need to return
source authorization key data

« Optimization to avoid potential reverse lookup to retrieve fi_auth_key_t
e FI_RECV_AUTH_KEY

» Paired with FI_AUTH_KEY_RING

« Provider supports restricting a recv/trecv to a specific fi_auth_key_t

E—

Libfabric Authorization Key Ring Object

e A fid_auth_key_ring is a vector of authorization keys
which can be optionally bound to an endpoint

e Two operations supported
 Insert: Insert a new authorization key
— On success, a fi_auth_key_t handle will be returned

o Lookup: Retrieve the authorization key for a given
fi_auth_key_t
e FI_.AUTH_KEY_RING_MATCH_ALL flag signals to
providers that all authorization keys will be used

e Providers should set up authorization key ring to
support all authorization keys

« No requirement to insert authorization keys into key
ring
- Inserts can still be done and a fi_auth_key_t will be returned

e FI_.AUTH_KEY_RING_SYMMETRIC flag signals to
providers that authorization keys must map to the
same fi_auth_key_t

e Enables multiple endpoints belonging to different
domains to have the same authorization key ring view

E—

#define FI AUTH KEY RING MATCH ALL (1lU << 0)
#define FI_AUTH KEY RING SYMMETRIC (1U << 1)

struct fid auth key ring attr ({
uinto4 t flags;
I

static inline int fid auth key ring open/(
struct fid domain *domain,

struct fid auth key ring attr *attr,
struct fid auth key ring **auth key ring,
void *context);

static inline int fid auth key ring insert(
struct fid auth key ring *auth key ring,
void *auth key, size t auth key len,

fi auth key t *fi auth key);

static inline int fid auth key ring lookup(
struct fid auth key ring *auth key ring,

fi auth key t fi auth key, void *auth key,
size t *auth key len);

Server Workflow: Endpoint Initialization with Authorization Key Ring

fi_auth_key_ring_open
« If server endpoint should operate on all authorization keys, FI_AUTH_KEY_RING_MATCH_ALL should be set

fi_auth_key_ring_insert

« Insert all authorization keys the endpoint may operate on
 Returned fi_auth_key_t can be used in local RDMA operations

fi_endpoint
e Assuming FI_AUTH_KEY_RING capability is set, authorization key field in fi_info will be ignored

fi_ep_bind
 Bind CQ, AV, and authorization key ring to endpoint

fi_enable

» On success, endpoint supports all authorization keys associated with authorization key ring

Server Workflow: Using Authorization Keys

Vs

fi_recv

e Server posts untagged receive buffers to sync incoming client requests

.

Vs

fi_cq_read/readfrom

e FI_RECV completion event is generated
e fi_auth_key_t (authorization key handle) is returned with CQ event

.

Vs

Server acts on client request

» Server needs to cache the fi_addr_t and fi_auth_key_t with the request

-

Vs

fi_send/fi_tsend

-

e Server uses the cached fi_addr_t and fi_auth_key_t to send the response to the client

12

Retrieving Authorization Key from CQ Event
Option 1: Encode fi_auth_key_t in fi_addr_t

« Based on proposed libfabric-2.0: Tagged message /* Used if CQ event returns FI_SOURCE_AUTH _KEY */
enhancements, fi_auth_key_t will be encoded in the static inline fi auth key t
fi_addr_t returned from fi_cq_readfrom fi addr decode auth key(fi addr t fi addr);
» A reserved number of bits in the fi_addr_t will encode the
fi_auth_key_t A .
- Bits [0,31] of the fi_addr_t will be for fi_addr_t SJ.Cath inline fl_addrft .
- Bits [32,47] of the fi_addr_t will encode fi_auth_key_t fi_addr_decode_addr (fi_addr_t fi_addr);
e FI_SOURCE_AUTH_KEY flag in CQ event will denote if
fi_addr_t encodes a fi_auth_key_t /* Used when fi cq readerr() returns
e If fi_cg_readerQ returns FI_EADDRNOTAVAIL, CQ error * FI_EADDRNOTAVATIL
olen field is treated as fi_auth_key_t x /
o Geftters and setters will be defined to extract fi_auth_key_t static inline fi auth key t
and fi_addr_t from encoded fi_addr_t £i cq err get auth key(
e Pros struct fi cqg err entry *err);
 Aligns with libfabric-2.0: Tagged message enhancements
proposal
e Cons

» Forces AV to be always be FI_AV_TABLE
e May limit number of authorization keys to ~65,536

E— |

https://github.com/ofiwg/libfabric/issues/9020
https://github.com/ofiwg/libfabric/issues/9020
https://github.com/ofiwg/libfabric/issues/9020

Retrieving Authorization Key from CQ Event

Option 2: New fi_cq_readfrom APls

e Define fi_cg_readfrom2 APIs which would return a
fi_auth_key_t
« Precedence already set for defining version 2 of APIs
—Example: Domain and Endpoint allocation
e Pros
o ~b64-bits worth of authorization keys could be
supported
e Cons

« Noft all providers may support new
fi_cq_readfrom2/sreadfrom?2 calls

—May be able to stub a core implementation for providers
which do not support these calls directly

static inline ssize t fi cg readfrom2 (

struct fid cg *cqg, void *buf, size t count,
fi addr t *src addr, fi auth key t *src key);

static inline ssize t fi cg sreadfrom2 (

struct fid cg *cqg, void *buf, size t count,
fi addr t *src addr, fi auth key t *src key,

const void *cond, int timeout):;

14

Using Authorization Key for Local RDMA Operations

Option 1: Encode fi_auth_key_t in fi_addr_t

 Infended to be paired with Retrieving Authorization
Key from CQ Event: Encode fi_auth_key tin fi addr t

o fi_auth_key_t will be encoded in the fi_addr_t
Endpoint configured with FI_AUTH_KEY_RING

o A valid fi_auth_key_t must be provided with FI_SEND,
FI_RMA, and FI_AMO operations

Endpoint configured with FI_RECV_AUTH_KEY

o A valid fi_auth_key_t must be provided with FI_RECV
operations

e FI_AUTH_KEY_UNSPEC (i.e. match any) will be
supported

Pros

« Aligns with libfabric-2.0: Tagged message
enhancements proposal

e Cons
« Forces AV to be always be FI_AV_TABLE
e May limit number of authorization keys to ~65,536

E—

/* Return fi addr t can be passed into local RDMA
* operations.

*/

static inline fi addr t

fi addr encode auth key(fi addr t fi addr,
fi auth key t fi auth key);

15

https://github.com/ofiwg/libfabric/issues/9020
https://github.com/ofiwg/libfabric/issues/9020

Using Authorization Key for Local RDMA Operations
Option 2: New FI_OPT_AUTH_KEY_TRANSMIT/RECV Endpoint Operation

e For non-message style local RDMA operations /* Endpoint option levels */

(eg. fi_send/fi_sendv), the fi_auTh_key_T used for FT OPT RX STZE,
these operations comes from an endpoint FI_OPT FI HMEM P2P,
properfy FI OPT XPU TRIGGER,

o fi_setopt + FI_OPT_AUTH_KEY_TRANSMIT

 Set fi_auth_key_t for non-msg style transmit based
operations (e.g. FI_SEND, FI_RMA, and FI_AMO)

e fi_setopt + FI_OPT_AUTH_KEY_RECV
 Set fi_auth_key_t for non-msg style receive based
operations (e.g. FI_RECV)
e FI_LAUTH_KEY_UNSPEC will be supported
e Users must set endpoint authorization keys
before issuing first non-msg style RDMA
operation

E—

enum {

FI_OPT AUTH KEY RECV,

~ + +

FI OPT AUTH KEY TRANSMIT,

16

Using Authorization Key for Local RDMA Operations
Option 2 Continued: Add fi_auth_key_t to all Message Structures

» All message style structs (e.g. struct fi_msg) will be struct fi _msg f{
extended with a fi_auth_key_t field fi addr t addr;
« Enables users to provide a different authorization key void rcontext;
per RDMA operation uintod t data;
+ fi auth key t auth key;

Endpoint configured with FI_AUTH_KEY_RING

o A valid fi_auth_key_t must be provided with FI_SEND,
FI_RMA, and FI_AMO operations

Endpoint configured with FI_RECV_AUTH_KEY

o A valid fi_auth_key_t must be provided with FI_RECV
operations

e« FI_LAUTH_KEY_UNSPEC will be supported
e Pros

e ~b64-bits worth of authorization keys could be
supported

Cons

 fi_msg_rma and fi_msg_tagged will exceed 64-byte
cache line

E—

Key Takeaways

e Current libfabric authorization key definition cannot meet client/server security requirements in RDM
endpoint environment

e A new libfabric object, called authorization key ring, is needed to support single RDM endpoint
transmitting/receiving RDMA operations with different authorization keys

o Completion queue (CQ) API changes are required to associate an authorization key with a CQ event
e Local RDMA API changes are required to associate an authorization key with a RDMA operation

Thank you

Email: ian.ziemba@hpe.com

: © 2023 Hewlett Packard Enterprise Development LP

	Presentation
	Slide 1: Libfabric Authorization Key Ring Proposal
	Slide 2: Agenda
	Slide 3: Authorization Key Overview
	Slide 4: Problem Statement
	Slide 5: Problem Statement
	Slide 6: Solution 1: Endpoint per Authorization Key
	Slide 7: Solution 2: Add Authorization Key Extension to Address Vector (AV) APIs
	Slide 8: Solution 3: Authorization Key Ring
	Slide 9: New Capabilities to Support Authorization Key Ring
	Slide 10: Libfabric Authorization Key Ring Object
	Slide 11: Server Workflow: Endpoint Initialization with Authorization Key Ring
	Slide 12: Server Workflow: Using Authorization Keys
	Slide 13: Retrieving Authorization Key from CQ Event
	Slide 14: Retrieving Authorization Key from CQ Event
	Slide 15: Using Authorization Key for Local RDMA Operations
	Slide 16: Using Authorization Key for Local RDMA Operations
	Slide 17: Using Authorization Key for Local RDMA Operations
	Slide 18: Key Takeaways
	Slide 19: Thank you

