—1

Hewlett Packard
Enterprise

Libfabric Tagged RMA

lan Ziemba, Software Engineer

Storage Libfabric Use Case: Overview

e RCP style of communication

e Client operations

« Prepare payload buffer
— Libfabric operation: memory

registration
o Send RPC request

— Libfabric operation: messaging
o Wait for RPC response
— Libfabric operation: messaging

e Server operations

o Wait for RPC request

— Libfabric operation: messaging
o Transfer client payload

— Libfabric operation: RMA

e Execute RPC
o Send RPC response

— Libfabric operation: messaging

E—

Application

/0 Network
Client

Wirite

Prepare Buffer

| Libfabric |

fi_mr_reg———»

fi_mr_bind ——

fi_mr_enable ———»

<<—-— \Write Complete ——-

= ———

e ———

fi_send

Request RPC >

fi_cq_read
FI_SEND event

fi_cq_read
FI_RECV event

fi_close(mr) ——»

RPC Request Message

______ Message Ack
PR

Read RPC Data

Read Response Paylacd

RPC Response Message

Libfabric

B

/0 Network Server | |

1/O Backend

fi_cq read _
FI_RECV event

-

fi_read
k= Pull payload across —
network

R fi_cq_read _
FI_READ event

fi_send

fi_cq_read

~~~"'FI_SEND event” ~|

Respond RPC |

< Transfer Data

___Transfer Data__

Complete

Client Write
~7" Complete

Client Write ———=

-=




Storage Libfabric Use Case: Issues/Areas of Optimizations

¢ Issue 1: Expensive per RPC memory
registration
» Need MR caching of remote MRs to
avoid memory registration cost

- May force libfabric users to run with
remote MRs cached

 Canresultin a client leaving memory
exposed in multi-client, single server
environment

— Different authorization keys between
clients can help

- Requires server to operate on multiple
authorization keys

e |[ssue 2: MR cache and RDM
endpoints

 RDM endpoints do not require
connection establishment

e Cannot restricted MR to specific RDM
endpoint

e [ssue 3: Synchronous teardown of MR
resources
» Can be expensive (provider dependent)

» Need MR cache to avoid memory
deregistration overhead

E—

Application

1/Q Network
Client

Write

Prepare Buffer
Issue 1 and 2

Libfabric

fi_mr_reg——»

fi_mr_bind ———

fi_mr_enable ———»

1
i-E—— Write Complete--——
1

= ———

ket —

fi_send
Request RPC

fi_cq_read

FI_SEND event

fi_cq_read
FI_RECV event

uffer Teardown
Issue 3

—

fi_close(mr) ——

Ié— ______

/0 Network Server | |

1O Backend

Libfabric
RPC Request Message
= ficqread __ .
— FI_RECV event =
______ Message Ack——~"""~
fi_read
k== Pull payload across —
network
Read RPC Data
Read Response Paylaod
™ ficgread
FI_READ event
fi_send |
Respond RPC
RPC Response Message
""""" Message Ack._____
hhhhh > fi_cq_read
~ T FI_SEND event |

< Transfer Data

___Transfer Data_
Complete

Client Write

=777 Complete =~

Client Write ———=

-—>




Storage Libfabric Use Case: Proposal

e Requirements
o Interface which enables read operations to use-once provider resource(s)
« For RDM endpoints, enable matching on source address for read operation
e For non-FI_MR_LOCAL providers, do not require explicit memory registration

e Proposal: Extend tagged AMO API to RMA (tagged RMA)

« FI_TAGGED AMO: Specifies that the target of the atomic operation is a tagged receive buffer instead of an RMA
buffer. When a tagged buffer is the target memory region, the addr parameter is used as a O-based byte offset
into the tagged buffer, with the key parameter specifying the tag.

e Initiator adds in the FI_TAGGED to AMO operation
« Target posts normal tagged buffers



Storage Libfabric Use Case: Tagged RMA Overview

 Definition: FI_TAGGED specifies that the target of the RMA operation is a tagged receive buffer instead of an RMA
buffer. When a tagged buffer is the target memory region, the addr parameter is used as a 0-based byte offset into
the tagged buffer, with the key parameter specifying the tag.
o New capability FI_TAGGED_RMA
o FI_TAGGED is passed into the fi_writemsg/readmsg
e Open Question: Should FI_RMA be passed into fi_trecvmsg?
— Does this diverge from FI_TAGGED AMO API?
e Open Question: Should tagged RMA write be supports?
— Seems to match to normal tagged send
e Benefits compared to “use-once” MRs + traditional RMA
e Provider automatically tears down target resources
— Potentially avoids some overhead in explicit fi_close(mr) calls
o Improved security
— Tagged receive buffers are only network accessible for a single operation
- MR cache can leave remote MRs exposed to the network indefinitely
— Enables matching on source address (initiator)
- With RDM endpoints, remote MRs are exposed fo all initiators
- MR cache leaves remote MRs exposed to all initiators

E— s



Storage Libfabric Use Case: Tagged RMA Event Generation

e Tagged messages have initiator and target events

e Open Question: Since tagged RMA operations target a tagged receive buffer, should target event
generation be support?

« Tagged RMA target events could enable higher-level application progression without additional operation round
trip
—Example: FI_TAGGED | FI_READ | FI_RECV (tagged read target event) event with user provided context

e Open Question: When would the tagged RMA read target event get generated? Is it when the tagged
buffer will not be reused? Something else?

« Are different levels of completion needed for tagged RMA read target events?
e Open Question: Should remote CQ data be supported for tagged RMA read?
e Open Question: Can counters be supported with tagged RMA read?
e Note: These questions could extend to normal RMA API as well.



Storage Libfabric Use Case: Unexpected Tagged RMA

e Using tagged buffers for RMA opens the door for unexpected tagged RMA
o fi_trecv asynchronously posts buffers to the provider

e Open Question: Are new message ordering flags needed for tagged RMA (i.e.
FI_ORDER_TAGGED_RMA_{RAR|IWARIRAW|WAWD

e Enables provider to treat messaging, RMA, and tagged RMA separately
« Enables libfabric users to select desired behavior
e Resource management
o Enabled: Provider/hardware internally retry within some time window (i.e. RNR timeout)
 Disabled: Provider/hardware returns undefined error



Storage Libfabric Use Case: Updated Issues

Ilngieg;ut’Drk Libfabric /0 Network Server | [ /0 Backend
e Issue 1: Expensive per RPC e e ianas |
memory registration el
« Resolve by async tagged buffer | rd :
pOSTing i Reqlﬁggtnﬂpc >
! H RPC Request Message
. . | ! N
 Cache can still be implemented ; ; oo R
for |Oca| MRS i Lé ____________ Message Ack——"—"""""" Clent wite——=
. R e T
e [ssue 2: MR cache and RDM | ] T rewen
. ! ey m ! Read RPC Data
endpoints ; fcqread |
o ! -CEFI_TAGGED|FI_READ|——:r“_'L
 Tagged buffers can be limited to | T s Response Payiaos
a single source address | ; TS ncqrean )
i i FI_READ event ___ _Transfer Data__ _ =
i H Complete
e |ssue 3: Synchronous teardown | 5 i
| E =77 Complete =~
of MR resources ; ; < respons RPc ™1
» Tagged buffers are use-once (e Responseesszes
| < Rety event ™
|<=—— \Write Complete ——-— i ————
i H “MessageAck.___
B

fi_cq_read
FI_SEND event

-——>




Storage Libfabric Use Case: Loopback Tagged RMA Example

struct fi_info *hints = fi_allocinfo(); /* Issue RMA write with FI_TAGGED to the posted tagged buffer. */
struct iovec iov = {
/* Client defines whatever hints they want. Assume these are set. Only .iov_base = source,
* FI_TAGGED_RMA is onlycalled out in this example. .iov_len = 4096,
oy }s5
hints->caps |= FI_TAGGED RMA; struct fi_rma_iov rma_iov = {
.len = 4096,
/* Assume endpoint is allocated with this capable and a loopback address -key = tag,
* to this endpoint has been allocated. s
*/ struct fi_msg_rma rma_msg = {
struct fid_ep *ep; .msg_iov = &iov,
fi_addr_t loopback; .iov_count = 1,
.addr = loopback,
/* Assume completion queue is allocated and bound to the endpoint. */ .rma_iov = &rma_iov,
struct fid_cq *cq; .rma_iov_count = 1,
¥
/* Buffers used for RMA with FI_TAGGED. */ fi_readmsg(ep, &rma_msg, FI_TAGGED | FI_COMPLETION);
char source[4096];
char target [4096]; /* Poll for source and target completion events. */
unsigned int event_count = 0;
/* Post the tagged buffer to be the target of the RMA with FI_TAGGED. */ struct fi_cq_tagged_entry event;
uint64_t tag = 0x12345; while (event_count < 2) {
fi trecv(ep, target, 4096, NULL, loopback, tag, 0, NULL); if (fi_cq_read(cq, &event, 1) == 1) {

/* Got initiator event. */

if (event.flags == (FI_TAGGED | FI_READ | FI_SEND))
event_count++;

/* Got target event. */

else if (event.flags == (FI_TAGGED | FI_READ | FI_RECV))
event_count++;

else
abort();



Thank you

lan.ziemba@hpe.com

: © 2022 Hewlett Packard Enterprise Development LP



