Verkle Trees
John Kuszmaul

Abstract

We present Verkle Trees, a bandwidth-e cient alternative to Merkle Trees. Merkle Trees
are currently employed in a variety of applications in which membership proofs are sent
across a network, including consensus protocols, public-key directories, cryptocurrencies such
as Bitcoin, and Secure File Systems. A Merkle Tree with n leaves has O(log, n)-sized proofs.
In large trees, sending the proofs can dominate bandwidth consumption. Vector Com-
mitments (VCs) pose a potential alternative to Merkle Trees, with constant-sized proofs.
Unfortunately, VC construction time is O(n?), which is too large for many applications.
We present Verkle Trees, which are constructed similarly to Merkle Trees, but using Vector
Commitments rather than cryptographic hash functions. In a Merkle Tree, a parent node
is the hash of its children. In a Verkle Tree, a parent node is the Vector Commitment of
its children. A Verkle Tree with branching factor & achieves O(kn) construction time and
O(logy n) membership proof-size. This means that the branching factor, &, o ers a tradeo
between computational power and bandwidth. The bandwidth reduction is independent of
the depth of the tree; it depends only on the branching factor. We nd experimentally that
with a branching factor of £ = 1024, which provides a factor of 10 reduction in bandwidth,
it takes 110.1 milliseconds on average per leaf to construct a Verkle Tree with 214 leaves.
A branching factor of £ = 32, which provides a bandwidth reduction factor of 5, yields a
construction time of 8.4 milliseconds on average per leaf for a tree with 2!# leaves. (The
performance on a tree with 24 leaves is representative of larger trees because the asymp-
totics already dominate the computation costs.) My role in this research project has been
proving the time complexities of Verkle Trees, implementing Verkle Trees, and testing and
benchmarking the implementation.




































