Econ 110A: Lecture 4

Carlos Góes ${ }^{1}$
${ }^{1}$ UC San Diego
UCSD

Why do countries have persistent differences in GDP per capita?

Reproduced from Ch. 1 of Daron Acemoglu, "Introduction to Modern Economic Growth," 2014

Why do countries have persistent differences in GDP per capita?

- growth theories of the aggregate supply (production)
- investigate explanations of
- differences in levels of GDP per capita (facts 3 and 6)
- differences in growth experiences (fact 3)
- sustained growth at the frontier (fact 2)

The Production Function

- Example: Ice Cream Factory
- Inputs:
- Milk, Sugar, Salt
- Chocolate/Strawberry
- Cones/cups/containers
- Capital:
- Freezer, Machines
- Refrigerated trucks
- Factory/building
- Intangibles:
- License
- Recipe
- Business environment, Property rights

The Production Function

- we are interested in modeling the production of value added
- from the income approach to GDP, we know what factors are ultimately responsible for creation of value e.g.: labor, management, capital, government
- this suggests a "factor-based" representation of the production function

$$
\underbrace{Y}_{\begin{array}{c}
\text { output } \\
\text { value added }
\end{array}}=F(\underbrace{A}_{\begin{array}{c}
\text { technology } \\
\text { institutions } \\
\text { ideas }
\end{array}}, \underbrace{K}, \underbrace{L}_{\text {labor }})
$$

- $F(A, K, L)$ is your production function. If $F(\cdot, \cdot, \cdot)$ is Cobb-Douglas, then:

$$
Y=A \cdot K^{\alpha} L^{1-\alpha}, \quad 0 \leq \alpha \leq 1
$$

Marginal Product: extra output produced by increasing one factor while keeping all the other factors fixed.

recall: economic agents make decision by "reasoning at the margin"

Production Function

Diminishing Marginal Product: Extra output produced by increasing one factor while keeping all the other fixed is decreasing in the one increasing factor.

With Cobb-Douglas Technology, the Marginal Product of Labor and Capital are:

$$
M P L \equiv \frac{\partial Y}{\partial L}=\underbrace{(1-\alpha) \bar{A}\left(\frac{K}{L}\right)^{\alpha}}_{\text {decreasing in } L}
$$

$$
M P K \equiv \frac{\partial Y}{\partial K}=\underbrace{\alpha \bar{A}\left(\frac{L}{K}\right)^{1-\alpha}}_{\text {decreasing in } K}
$$

Example: Labor

Example: Capital

$$
Y=\bar{A} K^{1 / 3} L^{2 / 3}
$$

$$
L \text { and } Y \text { when } L=1 \text { and } \bar{A}=1
$$

K	Y
1	1
2	1.26
3	1.44
4	1.59

Intuition

- Suppose you own a company with 50 employees and 10 computers
- An employee does not always need a computer...
- ...but there are too few computers at this moment, so sometimes some employees stay idle.
- If you start buying computers, the first ones will be very productive because they will be matched with idle employees.
- But at a certain point, new computers will start going idle for some time...
- And if you buy too many computers (say if your company has more computers than employees) any additional computers will be useless as they will be idle the whole time.
- The production function of your firm exhibits diminishing returns in computers!

Returns to Scale

Returns to Scale (RS): change in output when all factors are changed by the same proportion.

a function $F(\lambda K, \lambda L)=\lambda^{s} F(K, L)$ is

- constant returns to scale if $s=1 \Longrightarrow F(\lambda K, \lambda L)=\lambda F(K, L)$
- increasing returns to scale if $s>1 \Longrightarrow F(\lambda K, \lambda L)>\lambda F(K, L)$
- decreasing returns to scale if $s<1 \Longrightarrow F(\lambda K, \lambda L)<\lambda F(K, L)$ for some $\lambda>0$.

Returns to Scale

Claim: Cobb-Douglas is Constant Returns to Scale in (K,L)

Proof.

$$
\begin{aligned}
F(A, \lambda K, \lambda L) & =\bar{A}(\lambda K)^{\alpha}(\lambda L)^{1-\alpha} \\
& =\lambda \bar{A}(K)^{\alpha}(L)^{1-\alpha} \\
& =\lambda F(A, K, L)
\end{aligned}
$$

Example: Capital and Labor jointly

$$
\begin{aligned}
& Y=\bar{A} K^{1 / 3} L^{2 / 3} \\
& \bar{A}=1
\end{aligned}
$$

Cobb-Douglas is Constant Returns to Scale in Capital and Labor jointly... but diminishing marginal returns while holding the other factor fixed...

Profit Maximization

$$
\max _{\{K, L\}} \pi=\underbrace{P \cdot F(K, L)}_{\text {revenues }}-(\underbrace{w \cdot L+r \cdot K}_{\text {costs }})
$$

where

- P : price of the output good (if there is only one sector, we can normalize this $P=1$, numéraire)
- $F(K, L)$: production function
- w: wages
- r: rental rate on capital

Profit Maximization

$$
\max _{\{K, L\}} \pi=\underbrace{P \cdot F(K, L)}_{\text {revenues }}-(\underbrace{w \cdot L+r \cdot K}_{\text {costs }})
$$

First Order Conditions imply that, at the optimal:

$$
\begin{aligned}
& \frac{\partial \pi}{\partial L}=0 \Longrightarrow P \cdot \frac{\partial F(K, L)}{\partial L}=P \cdot M P L=w \\
& \frac{\partial \pi}{\partial K}=0 \Longrightarrow P \cdot \frac{\partial F(K, L)}{\partial K}=P \cdot M P K=r
\end{aligned}
$$

Intuition for optimality result

Optimality Conditions for Demand with Cobb-Douglas

$$
\begin{aligned}
Y & =\bar{A}\left(K^{d}\right)^{\alpha}\left(L^{d}\right)^{1-\alpha} \\
P(1-\alpha) \bar{A}\left(\frac{K^{d}}{L^{d}}\right)^{\alpha} & =w \\
P \alpha \bar{A}\left(\frac{L^{d}}{K^{d}}\right)^{1-\alpha} & =r
\end{aligned}
$$

Optimality Conditions for Demand with Cobb-Douglas

Note that we can derive a labor demand and capital demand schedule from each of those, which are decreasing in factor prices:

$$
\begin{aligned}
L^{d} & =\left(\frac{(1-\alpha) \cdot A \cdot P}{w}\right)^{\frac{1}{\alpha}} \cdot K^{d} \\
K^{d} & =\left(\frac{\alpha \cdot A \cdot P}{r}\right)^{\frac{1}{1-\alpha}} \cdot L^{d}
\end{aligned}
$$

Demand

Supply side of the economy is simple

- Households supply labor and capital inelastically.
- Prices adjust to ensure that supply equals demand (market clearing condition)

$$
\begin{array}{rlr}
L^{d} & =L^{s}=\bar{L} & \\
\text { (parameter) } \\
K^{d} & =K^{s}=\bar{K} & \\
\text { (parameter) }
\end{array}
$$

Supply

General Equilibrium

Endogeneous Variables: Y, K, L, w, r, \quad Numéraire: $P=1$

Five equations for five unknowns

$$
\begin{align*}
Y & =\bar{A}(K)^{\alpha}(L)^{1-\alpha} \tag{1}\\
P(1-\alpha) \bar{A}\left(\frac{K}{L}\right)^{\alpha} & =w \tag{2}\\
P \alpha \bar{A}\left(\frac{L}{K}\right)^{1-\alpha} & =r \tag{3}\\
L & =\bar{L}=L^{s} \tag{4}\\
K & =\bar{K}=K^{s} \tag{5}
\end{align*}
$$

Supply markets

Solution to the Production Model

Replacing the market clearing condition in and normalizing $P=1$ to be the numéraire of this economy:

$$
\begin{align*}
Y^{*} & =\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha} \tag{6}\\
w^{*} & =(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \tag{7}\\
r^{*} & =\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \tag{8}\\
L^{*} & =\bar{L} \tag{9}\\
K^{*} & =\bar{K} \tag{10}
\end{align*}
$$

Note that everything on the right-hand side of the equations is a parameter, so this is indeed an explicit solution!

Numerical Example

Suppose $\bar{K}=20, \bar{L}=160, \bar{A}=1, \alpha=\frac{1}{3}$. What is the solution to the Production Model? Replacing in the set of equations before:

$$
\begin{aligned}
Y^{*} & =(20)^{\frac{1}{3}}(160)^{\frac{2}{3}}=80 \\
w^{*} & =\frac{2}{3}\left(\frac{20}{160}\right)^{\frac{1}{3}}=\frac{1}{3} \\
r^{*} & =\frac{1}{3}\left(\frac{160}{20}\right)^{\frac{2}{3}}=\frac{4}{3} \\
L^{*} & =160 \\
K^{*} & =20
\end{aligned}
$$

Numerical Example

Now suppose the total available capital changes to $\bar{K}^{\prime}=10$. What happens?

$$
\begin{aligned}
Y^{* *} & =(10)^{\frac{1}{3}}(160)^{\frac{2}{3}}=63.5 \\
w^{* *} & =\frac{2}{3}\left(\frac{10}{160}\right)^{\frac{1}{3}}=0.26 \\
r^{* *} & =\frac{1}{3}\left(\frac{160}{10}\right)^{\frac{2}{3}}=2.11 \\
L^{* *} & =160 \\
K^{* *} & =100
\end{aligned}
$$

Numerical Example: Graphical Representation of Comparative Statics

Production Model: 4 Implications

- Production (value added) is equal to Income

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}=r^{*} K^{*}+w^{*} L^{*}
$$

Proof.

Production Model: 4 Implications

- Production (value added) is equal to Income

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}=r^{*} K^{*}+w^{*} L^{*}
$$

Proof.

$$
r^{*} K^{*}+w^{*} L^{*}=\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \bar{K}+(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \bar{L}
$$

Production Model: 4 Implications

- Production (value added) is equal to Income

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}=r^{*} K^{*}+w^{*} L^{*}
$$

Proof.

$$
\begin{aligned}
r^{*} K^{*}+w^{*} L^{*} & =\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \bar{K}+(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \bar{L} \\
& =\alpha \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}+(1-\alpha) \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}
\end{aligned}
$$

Production Model: 4 Implications

- Production (value added) is equal to Income

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}=r^{*} K^{*}+w^{*} L^{*}
$$

Proof.

$$
\begin{aligned}
r^{*} K^{*}+w^{*} L^{*} & =\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \bar{K}+(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \bar{L} \\
& =\alpha \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}+(1-\alpha) \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha} \\
& =(1-\alpha) Y^{*}+\alpha Y^{*}=Y^{*}
\end{aligned}
$$

Production Model: 4 Implications

- Production (value added) is equal to Income

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}=r^{*} K^{*}+w^{*} L^{*}
$$

Proof.

$$
\begin{aligned}
r^{*} K^{*}+w^{*} L^{*} & =\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \bar{K}+(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \bar{L} \\
& =\alpha \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}+(1-\alpha) \bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha} \\
& =(1-\alpha) Y^{*}+\alpha Y^{*}=Y^{*}
\end{aligned}
$$

- The profits of the representative firm are zero (follows from above)

$$
\pi^{*}=Y^{*}-\left(r^{*} K^{*}+w^{*} L^{*}\right)=0
$$

Production Model: 4 Implications

- All available factors are utilized in equilibrium, so production depends on endowments of factors

$$
Y^{*}=\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}
$$

- Total payments to factors as share of output (factor shares) are determined by the production function

$$
\begin{aligned}
\frac{w^{*} L^{*}}{Y^{*}} & =\frac{(1-\alpha) \bar{A}\left(\frac{\bar{K}}{\bar{L}}\right)^{\alpha} \bar{L}}{\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}}=(1-\alpha) \\
\frac{r^{*} K^{*}}{Y^{*}} & =\frac{\alpha \bar{A}\left(\frac{\bar{L}}{\bar{K}}\right)^{1-\alpha} \bar{K}}{\bar{A}(\bar{K})^{\alpha}(\bar{L})^{1-\alpha}}=\alpha
\end{aligned}
$$

Production Model: 4 Implications

(Corollary) Under Cobb-Douglas, factor shares are constant.
FRED \approx - share of Labour Compensation in GDP at Current National Prices for United States

Since 1950, labor share has been around $2 / 3$ of GDP in the U.S., with some decline recently.

What have we learned?

- What are returns to scale
- What are diminishing marginal returns
- How to set up and solve a simple model
- In the production model, total output is proportional to technology/ideas/institutions A, total capital K and total labor force L, so countries with better technology, more wealth/capital stock, and larger populations will have larger economies

