
Discussion Session 2: Analytical and
Numerical Solutions for Value Function

Iteration

Carlos Góes

September 1, 2023

1 Characterizing the Solution

Recall our original dynamic problem:

v(K)
state variables

= maxC,K′
choice variables

log(C) + βV(K′)

s.t. C + K′ ≤ AKα

Recall that, by definition, the value function v(K) reflects the optimal choices
of C, K′, given state variable K. How can we find the optimal points? You already
know how to do that. We can set up a Lagrangian and take first order conditions
to solve for the optimality conditions:

L = log(C) + βv(K′) + Λ[AKα − C− K′]
FOCs:

C :
1
C

= Λ

K′ : Λ = βv′(K′)
CS : Λ[AKα − C− K′] = 0

In order to derive v′(K′) we take advantage of the an application of the Enve-
lope Theorem for macroeconomics. Remember that the envelope theorem tells us
that, as a parameter of the optimal value function changes slightly, there will be
no indirect re-optimization effect, but rather only a direct effect over the objective
function and the constraint. When applying the envelope theorem to dynamic
programming problems, we call this the Benveniste-Scheinkman Condition.

1

Theorem 1 (Envelope Theorem). Let f (x, α) : R2 → R be a continuously differ-
entiable real-valued concave function, where x is the choice variable and α is param-
eter. If, for every α ∈ R there exists an interior solution x∗(α) = argmaxx f (x, α),
then for the optimal value function v(α) ≡ f (x∗(α), α) the following holds true

v′(α) =
∂ f (x, α)

∂α

∣∣∣∣
x=x∗(α)

Proof. v′(α) = ∂ f (x∗(α),α)
∂α = ∂ f (x∗(α),α)

∂x∗(α)
∂x∗(α)

∂α + ∂ f (x,α)
∂α

∣∣∣∣
x=x∗(α)

. Since x∗(α) is an

interior solution, then, by optimality, ∂ f (x∗(α),α)
∂x∗(α) = 0. This cancels out the first

term and delivers the desired result.

Example 1. Let f (x, α) ≡ −αx2 + x, a strictly concave function. The solution to
this program satisfies: −2αx + 1 = 0 =⇒ x∗(α) = 1

2α . From this, we can define
the value function:

v(α) = −α[x∗(α)]2 + x∗(α) = −α

[
1

2α

]2
+

1
2α

=
1

4α

You can immediately see that v′(α) = − 1
4α2 = −x∗(α)2 = ∂ f (x,α)

∂α

∣∣∣∣
x=x∗(α)

.

Our value function, when evaluated at the optimal point C(K), K′(K) is:

v(K) = log[C(K)] + βv[K′(K)] = log[AKα − K′(K)] + βv[K′(K)]

By applying the envelope theorem to this particular value function, we can
state that the derivative of the value function with respect to K satisfies:

v′(K) =
αAKα−1

AKα − K′(K)
=

αAKα−1

C(K)

Therefore, in the first order condition with respect to K′

Λ = βv′(K′) = β
αA(K′)α−1

C′(K′)

By combining the envelope condition and the first-order conditions for C, K′

we arrive at our Euler Equation for this recursive problem:

1
C

= β
1
C′

αA(K′)α−1 (1)

2

Intuitively, (1) states that, at the optimal, the optimizer will adjust its con-
sumption levels such that the marginal utility of consumption today equals the
discounted marginal utility of saving one unit today, producing an extra unit to-
morrow, and consuming it tomorrow. The Euler Equation subsumes the dynamics
of the model. It shows how consumption tomorrow is related to consumption to-
day.

A solution for the planner’s recursive problem is characterized by a value
function v(K) and policy functions C(K), K′(K), such that C(K), K′(K) maximize
utility and the budget constraint is satisfied C(K) + K′(K) = AKα.

Finally, at the steady state, we will look for a solution in which we reach a
stationary state: C′(K) = C and K′(K) = K. Note that the Euler Equation still
holds at the steady state. Therefore, if a steady state exists (as it does in this
simple problem), it must be that:

1
Css

= β
1

Css
αA(Kss)

α−1

(Kss)
α−1 =

1
Aβα

Kss = (Aβα)
1

1−α

Using the budget constraint, we can find for Css:

Css = A(Aβα)
α

1−α − (Aβα)
1

1−α

2 Numerical Methods

We need to approximate the value function v(K), which is defined over a contin-
uous interval (0, ∞). However, our computers, as a general rule, cannot handle
continuous spaces, so we have to discretize our continuous space.

• Step 1: construct a grid. We do so by constructing a grid —i.e., a set of
discrete values of K ∈ [K, K̄] where K > 0, K̄ < ∞:

G = {K1, K2, · · · , Kn}

with K1 = K and Kn = K̄; and Ki − Ki−1 = c. Therefore, the grid is a
equidistant set of points over the real-line ranging from K to K̄ for all i < n.

• Step 2: Construct Matrix of Utilities. Given the grid, we can calculate
consumption values C(Ki, K′j) = Kα

i − K′j for some values of present Ki and
future K′j capital. We use our grid G in two dimensions, and construct a
utility matrix:

3

U =

u(C(K1, K′1)) u(C(K1, K′2)) · · · u(C(K1, K′n))

...
.

...
u(C(Kn, K′1)) u(C(Kn, K′2)) · · · u(C(Kn, K′n))

with a non-negativity restriction u(·) = −M if C(·, ·) < 0, where M is a
large number.

• Step 3: Have a candidate value function. We then need a starting guess
v0 = (v0(K1), v0(K2), · · · , v0(Kn)) —this can be any guess, including a vec-
tor of zeros v0 = (0, 0, · · · , 0).

For a given vector vm, we can calculate a matrix Ṽm:

Ṽm =

U1,1 + βvm(K′1) U1,2 + βvm(K′2) · · · U1,n + βvm(K′n)

...
.

...
Un,1 + βvm(K′1) Un,2 + βvm(K′2) · · · Un,n + βvm(K′n)

• Step 4: Update the value function. Given the results above, update our

value function as:

vm+1(Ki) = max
p

Ṽm
i,p

resulting in vm+1 = (vm+1(K1), vm+1(K2), · · · , vm+1(Kn)).

• Step 5: Calculate update gains: If ||vm+1− vm|| = supKi
|vm+1(Ki)− vm(Ki)| <

ε, where ε is a small error tolerance, we stop the algorithm.

Otherwise, we go back to Step 3, creating a new matrix Ṽm+1 using vm+1
on the right-hand-side.

The result of the numerical solution are:

• A value function v(K), which reflects the value of maximized lifetime utility
for any starting capital stock K;

• A savings policy function K′(K), which states the optimal choice of future
capital for each level of current capital;

• A consumption policy function, derived as C(K) = Kα−K′(K), which states
the optimal choice of consumption for each level of current capital.

Given those policy functions and a starting capital level K0, we can iteratively
calculate convergence to a steady-state.

4

	Characterizing the Solution
	Numerical Methods

