Discussion Session 7: The Romer Model

Carlos Góes

September 1, 2023

In this section, we will present a groundbreaking model by Nobel Laureate Paul Romer [?]. The model's main insight is that innovation through the introduction of new ideas and products have spillovers. That is, society as a whole benefits from innovation, even if they did not innovate individually. This happens because ideas are not rival goods and ideas are only partially excludable. For instance, my use of the Pythagorean theorem does not prevent others from making use of it and I cannot exclude others from using it if they want to.

The implication for macroeconomics is that if a technology (production function) includes a nonrival input, it cannot be constant returns to scale in all its inputs. In fact, nonrivalry of ideas give rise to increasing returns to scale in a context of monopolistic competition.

The model has three sectors: a research and development sector, an intermediate goods sector, and a final goods sector. Households rent their human capital and buy goods from the final goods firms.

1 Characterizing the competitive equilibrium

There is measure one of households who solve the following problem:

$$
\max _{a_{t+1}, c_{t}} \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \quad \text { s.t. } \quad c_{t}+a_{t+1} \leq\left(1+r_{t+1}\right) a_{t}+w_{t} n
$$

where c_{t} are units of the final good. Households supply inelastically n units of labor to the market. Households can accumulate assets a_{t} to smooth consumption over time. The intertemporal euler equation of this simple household problem is:

$$
\frac{c_{t+1}}{c_{t}}=\beta\left(1+r_{t+1}\right)
$$

There are many perfectly competitive final goods producers (FGP), all endowed with the same technology:

$$
Y_{t}=n^{1-\alpha} \int_{0}^{M_{t}} x_{t}(\omega)^{\alpha} d \omega
$$

Each period, a final goods producer sources labor n_{t} and infinitely many intermediate inputs $x_{t}(\omega)$ of each variety $\omega \in\left[0, M_{t}\right]$. Note that there is a timedependent measure of varieties M_{t}. As we will see below, this measure increases as the research and development sector produces new ideas. They maximize their profits through the following problem:

$$
\begin{equation*}
\max _{n_{t}^{d},\left\{x_{t}^{d}(\omega)\right\}_{\omega \in\left[0, M_{t}\right]}}\left(n_{t}^{d}\right)^{1-\alpha} \int_{0}^{M_{t}}\left(x_{t}^{d}(\omega)\right)^{\alpha} d \omega-w_{t} n_{t}^{d}-\int_{0}^{M_{t}} p_{t}(\omega) x_{t}^{d}(\omega) d \omega \tag{2}
\end{equation*}
$$

Differentiating under the integral sign in gives the demand functions:

$$
\begin{align*}
(1-\alpha)\left(n_{t}^{d}\right)^{-\alpha} \int_{0}^{M_{t}}\left(x_{t}^{d}(\omega)\right)^{\alpha} d \omega & =w_{t} \tag{3}\\
\alpha\left(n_{t}^{d}\right)^{1-\alpha}\left(x_{t}^{d}(\omega)\right)^{\alpha-1} & =p_{t}(\omega) \text { for each } \omega \in\left(0, M_{t}\right) \tag{4}
\end{align*}
$$

Rearranging, optimal demand functions for variety ω are decreasing in prices $p_{t}(\omega)$ and increasing in total use of labor n_{t}^{d} :

$$
x_{t}^{d}(\omega)=p(\omega)^{-\frac{1}{1-\alpha}} \cdot n_{t}^{d} \cdot \alpha^{\frac{1}{1-\alpha}} \text { for each } \omega \in\left[0, M_{t}\right]
$$

There is an intermediate goods producer that has perpetual rights over the production of each variety $\omega \in\left[0, M_{t}\right]$. Each of them is endowed with a linear technology that transforms one unit of the final good into one unit of the intermediate good: $x(\omega)=F(y)=y$. They take marginal costs κ and demand curves $x_{t}^{d}(\omega)$ and choose optimal prices to maximize profits:

$$
\begin{aligned}
\max _{p_{t}(\omega)} \pi_{t}(\omega) & =p_{t}(\omega) x_{t}^{d}(\omega)-\kappa x_{t}^{d}(\omega) \\
& =p_{t}(\omega) p(\omega)^{-\frac{1}{1-\alpha}} \cdot n_{t}^{d} \cdot \alpha^{\frac{1}{1-\alpha}}-\kappa p(\omega)^{-\frac{1}{1-\alpha}} \cdot n_{t}^{d} \cdot \alpha^{\frac{1}{1-\alpha}} \\
& =\left(p(\omega)^{-\frac{\alpha}{1-\alpha}}-\kappa p(\omega)^{-\frac{1}{1-\alpha}}\right) \cdot n_{t}^{d} \cdot \alpha^{\frac{1}{1-\alpha}}
\end{aligned}
$$

whose optimality condition satisfy:

$$
-\frac{\alpha}{1-\alpha} p_{t}(\omega)^{-\frac{1}{1-\alpha}}+\frac{\kappa}{1-\alpha} p_{t}(\omega)^{-\frac{2-\alpha}{1-\alpha}}=0 \Longrightarrow p_{t}(\omega)=\frac{1}{\alpha} \kappa \quad \forall \omega \in\left[0, M_{t}\right]
$$

Importantly, we note that the price $p_{t}(\omega)=\frac{1}{\alpha} \kappa$, which is a simple markup over marginal cost, does not depend on ω. They are the same for every variety. The implication is that demanded inputs $x_{t}(\omega)$ and profits $\pi_{t}(\omega)$ will also be equal for every variety. Since labor supply n is constant in every period and is inelastically supplied at the market, then $n_{t}^{d}=n \forall t$ and in equilibrium both profits and demanded inputs for each variety ω will be constant over time.

$$
\begin{aligned}
& x_{t}^{d}(\omega)=\bar{x}=\kappa^{-\frac{1}{1-\alpha}} \cdot n \cdot \alpha^{\frac{2}{1-\alpha}} \quad \forall \omega \in\left[0, M_{t}\right] \\
& \pi_{t}(\omega)=\bar{\pi}=\frac{1}{\alpha} \kappa \bar{x}-\kappa \bar{x}=\frac{1-\alpha}{\alpha} \cdot \kappa^{-\frac{\alpha}{1-\alpha}} \cdot n \cdot \alpha^{\frac{2}{1-\alpha}} \quad \forall \omega \in\left[0, M_{t}\right]
\end{aligned}
$$

We can also calculate total output:

$$
\begin{aligned}
Y_{t} & =n^{1-\alpha} \int_{0}^{M_{t}} x_{t}(\omega)^{\alpha} d \omega \\
& =n^{1-\alpha} \int_{0}^{M_{t}} \bar{x}^{\alpha} d \omega \\
& =n^{1-\alpha}\left[\kappa^{-\frac{1}{1-\alpha}} \cdot n \cdot \alpha^{\frac{2}{1-\alpha}}\right]^{\alpha} \cdot \int_{0}^{M_{t}} 1 d \omega \\
& =\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot n \cdot M_{t}
\end{aligned}
$$

and wages:

$$
w_{t} n=(1-\alpha) Y_{t}=(1-\alpha) \cdot\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot n \cdot M_{t}
$$

There is a research sector in this economy, which creates new varieties according to the following law of motion:

$$
M_{t+1}=M_{t}+\eta Z_{t}
$$

where Z_{t} is investment in RD in units of the final good. Once a new variety exists, its owners have a perpetual patent over its design. The economic value of a new variety net present value of producing the new varieties and selling them as intermediate inputs to final goods producers:

$$
V_{t}=\sum_{j=0}^{\infty}\left(\prod_{k=0}^{j} \frac{1}{1+r_{t+k}} \pi_{t+j}(\omega)\right)=\sum_{j=0}^{\infty}\left(\prod_{k=0}^{j} \frac{1}{1+r_{t+k}} \bar{\pi}\right)
$$

Note that entrepreneurs invest Z_{t} at period t, but the additional varieties $M_{t+1}-M_{t}$ only materialize in the following period. They fund themselves by borrowing Z_{t} at the assets markets at period t and repay $\left(1+r_{t+1}\right) Z_{t}$ at $t+1$. Therefore, entrepreneurs will only invest at t if the present discounted value of varieties at $t+1$ exceeds its marginal cost:

$$
\underbrace{\eta V_{t+1} Z_{t}}_{\text {benefit }}-\underbrace{\left(1+r_{t+1}\right) Z_{t}}_{\text {cost }} \geq 0 \Longleftrightarrow \underbrace{\frac{1}{1+r_{t+1}} V_{t+1}}_{\mathrm{PV} \text { of } V_{t+1} \text { at } t} \geq \frac{1}{\eta}
$$

2 Balanced Growth Path

Along the Balanced Growth Path, we are looking for constant growth rates of consumption g_{c} and output g_{y}. From the euler equation, it is clear that the interest rate must be constant for every period $t \geq t_{0}$, where t_{0} is the first period in which the economy is at a balanced growth path:

$$
\begin{aligned}
\frac{c_{t+1}}{c_{t}} & =\underbrace{g_{c}}_{\text {constant }}=\underbrace{\beta\left(1+r_{t+1}\right)}_{\text {constant }} \quad \forall t \geq t_{0} \\
\Longrightarrow r_{t} & =r_{t+1}=r_{t+2}=\bar{r} \quad \forall t \geq t_{0}
\end{aligned}
$$

Therefore, along the Balanced Growth Path, the value of new varieties satisfies:

$$
V_{t}=\sum_{j=0}^{\infty}\left(\prod_{k=0}^{j} \frac{1}{1+r_{t+k}} \bar{\pi}\right)=\sum_{j=0}^{\infty}\left(\frac{1}{1+\bar{r}}\right)^{j} \bar{\pi}=\frac{1+\bar{r}}{\bar{r}} \bar{\pi} \quad \forall t \geq t_{0}
$$

By free-entry, varieties will be created up to the point in which:

$$
\frac{1}{1+\bar{r}} V_{t}=\frac{1}{\eta} \Longrightarrow \bar{r}=\eta \cdot \bar{\pi}
$$

We can now go back to the Euler Equation and characterize g_{c} :

$$
\begin{aligned}
\frac{c_{t+1}}{c_{t}}=g_{c} & =\beta(1+\eta \cdot \bar{\pi}) \quad \forall t \geq t_{0} \\
& =\beta\left(1+\eta \cdot \frac{1-\alpha}{\alpha} \cdot \kappa^{\frac{\alpha}{1-\alpha}} \cdot n \cdot \alpha^{\frac{2}{1-\alpha}}\right)
\end{aligned}
$$

We can show that $g_{y}=g_{w}=g_{m}$. For g_{y}, calculate:

$$
\frac{Y_{t+1}}{Y_{t}}=g_{y}=\frac{\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot n \cdot M_{t+1}}{\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot n \cdot M_{t}}=\frac{M_{t+1}}{M_{t}}=g_{m}
$$

Likewise, for wages:

$$
\frac{w_{t+1}}{w_{t}}=g_{w}=\frac{(1-\alpha) \cdot\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot M_{t+1}}{(1-\alpha) \cdot\left(\frac{\alpha^{2}}{\kappa}\right)^{\frac{\alpha}{1-\alpha}} \cdot M_{t}}=\frac{M_{t+1}}{M_{t}}=g_{m}
$$

Now turn to the law of motion for varieties. We can write it as:

$$
\frac{M_{t+1}}{M_{t}}=g_{m}=1+\eta \frac{Z_{t}}{M_{t}} \quad \forall t \geq t_{0}
$$

which implies that the ratio $\frac{Z_{t}}{M_{t}}$ is a constant $\left(\forall t \geq t_{0}\right)$. This can only be the case if Z_{t} and M_{t} are growing at the same rate. Therefore: $g_{z}=g_{m}$.

Now turn to the resource constraint:

$$
\begin{aligned}
C_{t} & =Y_{t}-Z_{t}-\int_{0}^{M_{t}} x_{t}(\omega) d \omega \\
g_{c}^{t-t_{0}} C_{0} & =g_{y}^{t-t_{0}} Y_{0}-g_{z}^{t-t_{0}} Z_{0}-\bar{x} g_{m}^{t-t_{0}} M_{0} \\
g_{c}^{t-t_{0}} C_{0} & =g_{m}^{t-t_{0}} Y_{0}-g_{m}^{t-t_{0}} Z_{0}-\bar{x} g_{m}^{t-t_{0}} M_{0} \quad\left(\because g_{y}=g_{z}=g_{m}\right) \\
g_{c}^{t-t_{0}} C_{0} & =g_{m}^{t-t_{0}}\left(Y_{0}-Z_{0}-\bar{x} M_{0}\right) \\
g_{c}^{t-t_{0}} & =g_{m}^{t-t_{0}} \quad\left(\because C_{0}=Y_{0}-Z_{0}-\bar{x} M_{0}\right) \\
g_{c} & =g_{m}
\end{aligned}
$$

Finally, since by the asset market clearance $a_{t}=Z_{t}$, it is trivial that $g_{a}=g_{z}=$ g_{m}. Previously, we have concluded that profits per variety $\left(g_{\pi}=1\right)$ and demand per variety $\left(g_{x}=1\right)$ are constant along the balanced growth path.

Therefore, along the BGP:

$$
\begin{aligned}
g_{m} & =g_{y}=g_{c}=g_{w}=g_{z}=g_{a} \\
g_{x} & =g_{\pi}=1
\end{aligned}
$$

