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Abstract
With the advance in genome sequencing technology, the
lengths of deoxyribonucleic acid (DNA) sequencing results
are rapidly increasing at lower prices than ever. However,
the longer lengths come at the cost of a heavy computational
burden on aligning them. For example, aligning sequences to
a human reference genome can take tens or even hundreds
of hours. The current de facto standard approach for align-
ment is based on the guided dynamic programming method.
Although this takes a long time and could potentially bene-
fit from high-throughput graphic processing units (GPUs),
the existing GPU-accelerated approaches often compromise
the algorithm’s structure, due to the GPU-unfriendly nature
of the computational pattern. Unfortunately, such compro-
mise in the algorithm is not tolerable in the field, because
sequence alignment is a part of complicated bioinformat-
ics analysis pipelines. In such circumstances, we propose
AGAThA, an exact and efficient GPU-based acceleration of
guided sequence alignment. We diagnose and address the
problems of the algorithm being unfriendly to GPUs, which
comprises strided/redundant memory accesses and work-
load imbalances that are difficult to predict. According to
the experiments on modern GPUs, AGAThA achieves 18.8×
speedup against the CPU-based baseline, 9.6× against the
best GPU-based baseline, and 3.6× against GPU-based algo-
rithms with different heuristics.
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1 Introduction
Genome sequence analysis has largely impacted our lives,
from aidingmedical fields to others such as epidemiology [43],
agriculture [7], and even basic science [51]. Such analysis
is made possible by sequencing, which generates sequences
called reads from strands of deoxyribonucleic acid (DNA)
extracted from specimens. Although there has been a wide
variety of sequencing techniques, the recently introduced
third-generation sequencing (TGS) technique produces very
long reads compared to its predecessors. While previous gen-
eration sequencing generated short reads of around 150∼300
bps (base pairs), TGS can produce reads longer than an aver-
age of 10 kbps and higher [15, 34]. By generating longer and
high-quality reads, TGS sheds light on new attributes and
genomic mutations that were difficult to spot before.

However, this drastic increase in size comes at the cost of
sharply increased time spent on the sequence analysis. The
major essential step of the sequence analysis is read align-
ment, which aligns reads (i.e., queries) to reference genomes
to find the location of each read within the whole DNA [3].
Due to the larger data size, prior read alignment algorithms
struggle to process reads with acceptable low latency.
There are two de facto standard methods for aligning

reads: Minimap2 [23] for longer reads from TGS, and BWA-
MEM [22] for shorter reads from the previous generation.
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At their cores, they form a very similar structure, based
on a guided dynamic programming approach. Despite being
highly optimized, they exhibit very long execution time even
with modern multi-core CPUs. For example, [2] shows that
mapping TGS reads to the entire human genome (3.2 GB)
using Minimap2 can take 49 hours. To amend this, there have
been several attempts to accelerate it on powerful GPUs.
However, to the extent of our knowledge, existing at-

tempts compromise the structure [12] or target different
alignment algorithms [1, 42, 57]. This is problematic because
read alignment is not a stand-alone application, but an early
part of complicated bioinformatics pipelines. Any change
in this step would require an immense amount of verifica-
tion on the entire pipeline. Therefore, the exactness of the
algorithm cannot be traded off for speedup. This indicates
that there is an urgent need for accelerating guided dynamic
programming on modern GPU architectures.
We reveal that the difficulty in implementing the guided

programming algorithm lies in the large number of ran-
dom memory accesses and the severe dynamic workload
imbalance caused by the guided alignment algorithm. Based
on this diagnosis, we propose AGAThA1, a GPU accelera-
tion method for an exact and fast implementation of the
guided alignment algorithm. To the best of our knowledge,
our method is the first to accelerate the exact reference algo-
rithm, achieving both exactness and speed. First, we propose
an efficient scheme to calculate the termination condition of
the guided alignment. The proposed scheme transforms the
memory access patterns to be more sequential and coalesce
better on the GPU memory hierarchy. Second, we propose a
tiling scheme for the solution space to reduce the number of
redundant memory accesses and unnecessary computations,
which both depend on the execution order. Third, we design
a method for mitigating the workload imbalance that is dif-
ficult to predict at both intra- and inter-warp levels. At the
intra-warp level, we utilize a form of work stealing that is
tightly coupled with the sequence alignment algorithm. At
the inter-warp level, we observe a long-tail-like distribution
of the workloads and devise a way to group them such that
each group contains a similar amount of workload.

Our contributions can be summarized as follows:

• We propose AGAThA, the first exact GPU acceleration
of the reference guided alignment. AGAThA not only
exactly accelerates said algorithm but also significantly
outperforms existing methods.

• We devise two schemes, rolling window and sliced diag-
onal, to efficiently calculate termination conditions.

• We devise subwarp rejoining and uneven bucketing to
address the intra-warp and inter-warp load imbalance.

1AGAThA stands for “A GPU Acceleration for Third-generation sequence
Alignment”. The four types of DNA bases (A, G, C, and T) are capitalized.
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Figure 1. Guided sequence alignment.

• We evaluate AGAThA against numerous baselines to
show 9.6× speedup against the best GPU baseline im-
plementations that target guided dynamic programming,
and 3.6× against other GPU-based heuristics.

2 Preliminary
2.1 Sequence Alignment
Problem Definition. The sequence alignment problem is
a variant of approximate string matching. Given a pair of
reference and query strings composed of five literals ‘A’, ‘G’,
‘C’, ‘T’, and ‘N’, it has to score how similar the two inputs are.
Unlike exact string matching problems where the difference
of a single character means that the pairs do not match, ap-
proximate string matching has to track more possibilities of
insertion (query string has an extra character compared to
the reference), deletion (query string has one less character),
or a simple mismatch as depicted in the top left of Figure 1.
Additionally, a gap can be defined as one or more continu-
ous insertions/deletions. A gap has to be first initiated at a
certain cell with an insertion/deletion (‘gap open’) and can
be extended by adjacent insertions/deletions (‘gap extend’).
As a result, it outputs the alignment score, which represents
the magnitude of similarity between the two sequences.
Dynamic Programming Approach. The sequence align-
ment problem is often handledwith dynamic programming [36,
48]. As shown in Figure 1, it involves filling a two-dimensional
score table (right) from the reference (R) and query (Q),
whose computational and space complexity is 𝑂 (𝑁 2). Each
cell in position (𝑖, 𝑗) represents 𝐻 (𝑖, 𝑗), the best score that
can be obtained by evaluating all possibilities until the 𝑖-th
character of the reference string and the 𝑗-th character of
the query string. 𝐻 (𝑖, 𝑗) is recursively defined as:
𝐻 (𝑖, 𝑗) =𝑚𝑎𝑥{𝐸 (𝑖, 𝑗), 𝐹 (𝑖, 𝑗), 𝐻 (𝑖 − 1, 𝑗 − 1) + 𝑆 (𝑅 [𝑖], 𝑄 [ 𝑗])}, (1)
𝐸 (𝑖, 𝑗) =𝑚𝑎𝑥{𝐻 (𝑖 − 1, 𝑗) − 𝛼, 𝐸 (𝑖 − 1, 𝑗) − 𝛽}, (2)
𝐹 (𝑖, 𝑗) =𝑚𝑎𝑥{𝐻 (𝑖, 𝑗 − 1) − 𝛼, 𝐹 (𝑖, 𝑗 − 1) − 𝛽}. (3)

𝑆 (𝑅 [𝑖], 𝑄 [ 𝑗]) compares the 𝑖-th reference character and
the 𝑗-th query character and returns positive on a match
(e.g., +2) and negative on a mismatch (e.g., −4). 𝐸 and 𝐹

are additional scores kept for tracking gaps, each storing
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Figure 2. Existing GPU-accelerated sequence alignments.

deletions and insertions. 𝛼 (e.g., 4) and 𝛽 (e.g., 2) are gap
opening and gap extending penalties, respectively.
From the above equations, we can find that calculating

a score in the cell has dependencies on the cells from the
top ((𝑖 − 1, 𝑗), Equation (2)), left ((𝑖, 𝑗 − 1) Equation (3)), and
top-left ((𝑖 − 1, 𝑗 − 1), Equation (1)) values in the table, as
shown in Figure 1 (bottom-left). These necessary values are
referred to as intermediate values, and lead to the popular anti-
diagonal parallelism. By defining anti-diagonal cell group
(pink cells) as a group of cells that have the same index sum
(e.g.,𝐻 (𝑖−1, 𝑗) and𝐻 (𝑖, 𝑗−1) are on anti-diagonal (𝑖+ 𝑗−1)),
there is no dependency between calculating the score of cells
in the same anti-diagonal. Finally, the black arrows between
cells represent the locations of mis/matches and gaps to
reach the maximum score in the last anti-diagonal, which is
equivalent to the alignment result on the top-left of Figure 1.
Guiding Strategy. For long input reads, the aforementioned
alignment algorithm is known to return many false-positive
matches. It might find a streak of matches with large offsets
(e.g., the beginning of reference against the end of the query),
or after too many mismatches. Those are often reported to be
false positives even when they output high scores [23]. Be-
cause of this, the guiding strategy aims to filter false positive
matches based on heuristics as shown in Figure 1.

Banding (yellow) is based on the idea that if there are too
many insertions or deletions, it would be a false positive. For
𝑘-banding [13, 22, 23, 54], only a diagonal band with band
width2 𝑘 (3 in this example) is calculated and the rest are
disregarded. In addition, termination condition (red) limits
too many mismatches. If the difference between the global
maximum score (dark green) and the current score (light
green) becomes larger than a threshold, the termination
condition is met. With some variants, a widely adopted form
of termination condition [18, 23, 45] is:

∃𝑐 < len(query) + len(ref ), which satisfies (4)
i′ < i, j′ < j,H (i′, j′) − H (i, j)> Z + 𝛽 · | (i − i′) − (j − j′) |, (5)

2We use the term “band width” to represent the width of the diagonal band
in the score table, which is different from “memory bandwidth”.

where (𝑖, 𝑗) = argmax
𝑖+𝑗=𝑐

𝐻 (𝑖, 𝑗), (Local max.) (6)

(𝑖′, 𝑗 ′) = argmax
𝑖′+𝑗 ′<𝑐

𝐻 (𝑖′, 𝑗 ′) . (Global max.) (7)

In Equation (5),𝑍 is an algorithm-specific and user-defined
threshold, and 𝛽 is the gap extension score from Equation (1).
For CPUs, this technique not only reduces false positives but
also increases throughput despite the overhead of checking
conditions, as it can stop calculation accordingly. However,
this causes a huge performance overhead on GPUs (see § 3.1),
likely explaining the absence of an exact implementation.

2.2 State-of-the-art GPU Acceleration
In this section, we explain the techniques used in the state-
of-the-art methods [1, 5, 42] for accelerating sequence align-
ment on GPUs with CUDA support.
Input Packing. Input packing [1] can help deal with mem-
ory bandwidth bottlenecks in GPU kernels. Because there
are only five literals in genome sequences, four bits suffice
for encoding each literal. Since GPUs typically use 32-bit
words, sequences are packed with 8 literals per word. To
efficiently process this, the score table is configured in units
of blocks comprising 8×8 cells, which forms the smallest
unit for workload distribution as depicted in Figure 2 (a).
Intra-query Parallelism. Intra-query parallelism [5, 42]
is an essential technique to exploit massive parallelism on
the GPU. It assigns multiple threads to an alignment task as
shown in Figure 2 (b). The four threads (purple) compute
four blocks concurrently, utilizing anti-diagonal parallelism
(§ 2.1). Upon completing each block, the threads move one
block horizontally in sync until it reaches the end of the band
(rows 0 to 3). This set of blocks processed in one horizontal
pass is called a chunk. Then, the threads move on to the next
chunk (rows 4 to 7) and compute horizontally until they fill
the necessary score table cells.
Subwarp. In GPU kernels, it is common to exploit paral-
lelism in units of a warp (i.e., 32 GPU threads). However, this
yields a large external fragmentation at the start and end
of a chunk. Since threads calculate each block on the same
anti-diagonal in sync, high-numbered threads start late and
low-numbered threads end early. This can be mitigated by
splitting a warp into smaller subwarps [17, 42] and assigning
a task to each subwarp as in Figure 2 (c). This reduces exter-
nal fragmentation at the cost of warp divergence (internal
fragmentation), but the benefits surpass the penalties.

3 Motivation
3.1 Diagnosis of the Baseline Design
In this section, we reveal four issues when orthogonally
implementing the exact algorithm for guided alignment on
the existing GPU-accelerated baseline design (§ 2.2).
First, there is a direct problem of storing local maximum

values (Equation (6)) in the memory. This causes pressure
on the memory system and adds extra computation.
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Figure 3. A motivational study. (a) represents the execution times of the existing CPU-based algorithm and two naive GPU-
based alignments, and (b) represents the distribution of the accumulated workloads and alignment count for alignment tasks.

Second, there is a problem of run-ahead processing as de-
picted in Figure 2(b). The termination condition requires
computing the maximum value among the cells along each
anti-diagonal. However, during the horizontal progress of
the threads, many anti-diagonals are not fully calculated,
prohibiting the evaluation of termination conditions. For
example, the termination condition at the red anti-diagonal
line cannot be evaluated even after the entire chunk 1 is
completed. Therefore, when the termination is performed, a
huge region is unnecessarily executed.

Third, while using subwarps reduces external fragmenta-
tion, it is instead taxed with a heavy intra-warp workload
imbalance. This imbalance becomes larger and harder to
predict, especially with the termination condition.

Last but not least, prior work does not consider inter-warp
workload imbalances. Existing approaches assign tasks to
warps in the order in which the input is given. This becomes
a huge issue according to our study (§ 3.2), which reveals
several outliers that can cause a small portion of warps to
handle all the heavy computation with long sequences.

3.2 Experimental Observation
In this section, we support our diagnosis with experimen-
tal observations. Figure 3(a) plots the execution time of a
CPU-based alignment [23] (‘CPU’). We compared the per-
formance with the baseline GPU acceleration described in
§ 2.2 ([42]) (‘Baseline (Diff-Target)’). Because this targets a
different aligner from the baseline [23], we also extended it
to support guiding techniques (‘Baseline (MM2-Target)’). As
shown in Figure 3(a), the former version of baseline enjoys
5.3× geometric mean speedup from the CPU implementation.
However, when extended to the latter, it becomes 2.0×.
One cause of the slowdown is the additional overhead

from tracking the local maximum values, but another cause
comes from the workload imbalance stemmed by the guiding
techniques, as shown in Figure 3(b). The Y-axis represents
the accumulated size of all workloads of tasks that fall into
the range depicted in the X-axis. Unlike most alignment
tasks, certain tasks require significantly larger computations
on the far right. This unique distribution works poorly with

the baseline’s design of assigning tasks to subwarps in the in-
coming order. As revealed in § 3.1, if one subwarp is assigned
a huge workload, this will cause both intra- and inter-warp
imbalances that become the performance bottleneck.

4 AGAThA Design
4.1 Tracking Local Maximums with Rolling Window
To test the termination condition, calculating each cell’s
score also updates the local maximum of the corresponding
anti-diagonal (Equation (6)). The local maximum values are
to be preserved until the entire anti-diagonal is processed
and tested against the termination condition (Equation (5)).
As the threads progress horizontally, processing a chunk
leaves many incomplete local maximums, requiring further
processing. Thus, we must store the partial maximum values
in the memory, which becomes a huge performance burden.

We devise a rolling window approach to temporarily store
partial maximums of calculated anti-diagonals in the shared
memory and periodically spill them to the global memory,
as in Figure 4. To do this, we allocate a local maximum
buffer (LMB) in shared memory, organized in a 2-D table
of 3 · 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 × 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 . In this example, we use a
subwarp with 4 threads (𝑡0 to 𝑡3) and blocks with 4x4 cells
(requires 12 × 4 table). The grid represents cells within the
score table, and the purple boxes represent the anti-diagonal
blocks being processed. Notice that each block spans over an
equal set of seven anti-diagonals, and all threads are always
on the same anti-diagonal depicted with pink. The rolling
window comprises seven rows of the LMB (depicted red),
representing the anti-diagonals in the current blocks’ scope.
Rolling window organizes each thread to keep its partial
maximum values in its designated column of the window in
LMB. When the window rolls down, the values for complete
local max values are reduced and spilled to the global max
buffer (GMB) in the device memory as the following:

1. (Step 1) Each thread is processing the top-left cell of a
block, being on the same anti-diagonal. They calculate
the cell scores into registers. The values are then written
to the rolling window’s first row in LMB, representing
the first anti-diagonal’s thread-local maximum values.
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Figure 4. Tracking the anti-diagonal maximums with rolling window. Cells on the same anti-diagonal are colored with the
same hue.

2. (Step 4) The threads proceed vertically inside a block.
The first four processed cells belong to four different
anti-diagonals, storing the values on each corresponding
row within the rolling window.

3. (Step 5) Next, the threads are back to processing the
second anti-diagonal. The threads compare and update
the second thread-local max values in the rolling window.

4. (Step 16) All 4x4 cells of the block have been processed,
which correspond to anti-diagonals 0 ∼ 6. Note that
anti-diagonals 0 ∼ 3 are complete, while 4 ∼ 6 are not.

5. (Window Spilling) After step 16, a spilling step follows.
a. Threads select one of the completed four rows in

the LBM and read it to perform max-reduction using
__reduce_max_sync warp intrinsic. Afterward, the
four rows are cleared.

b. The reduced values are updated to the GMB.
6. (Step 17) Each thread progresses horizontally onto the

next block. The cells of this new block correspond to anti-
diagonals 4 ∼ 10. The rolling window also ‘rolls down’
to target the next anti-diagonals.

7. (Step 32∼33) The procedure repeats for the next blocks.
This consumes a reasonable amount of shared memory while
removing redundant memory accesses and utilizing coalesc-
ing. Note that the values from rows remaining in the window
(e.g., (4 ∼ 6) in step 17) are re-accessed in the later steps. Ad-
ditionally, in a special case where LMB is large enough to
keep all the anti-diagonals, the spilling can be skipped (see
§ 4.2 for details).

4.2 Sliced Diagonal Strategy
As exemplified in § 3.1 and § 4.1, the horizontal-only progress
strategy has several drawbacks on max tracking and run-
ahead processing. To address these, we propose a novel tiling
scheme named sliced diagonal, depicted in Figure 5. In this
strategy, we partition the band into multiple slices (red) along
the anti-diagonal direction as shown in Figure 5(a) with
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Figure 5. Sliced diagonal strategy.

the width of 𝑠 (in the figure, 3 blocks). Each slice is further
horizontally partitioned into chunks whose number of rows
is equal to the number of threads in a subwarp (in the figure,
4 blocks). Within a slice (Figure 5(b)), each thread within a
subwarp computes blocks on the same row ( 1○∼ 3○). Since the
threads access the same row, they can keep the intermediate
values using the registers. Then all threads in a subwarp
move on to the next block to the next chunk to the bottom left
( 4○), and continue until the slice is completed ( 5○∼ 6○). When
the entire slice is finished ( 6○), we check the termination
condition for the completed anti-diagonals in the slice.
The proposed kernel enjoys the benefits of reduced run-

ahead execution and the sharedmemory requirement of local
max tracking. First, the amount of run-ahead execution size
is greatly reduced. Unlike the baseline kernel, the run-ahead
execution does not exceed 𝑠 ×𝐵𝑎𝑛𝑑_𝑤𝑖𝑑𝑡ℎ as again depicted
with brown color in Figure 5. Second, it reduces the shared
memory requirement for the rolling window. As mentioned
in § 4.1, if the number of entire anti-diagonals in a slice is
small enough to fit in the LMB, this can eliminate the need
for global memory accesses from rolling window.
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Figure 6. Subwarp rejoining.

However, there is an interesting trade-off with these over-
head reductions in memory access. When a chunk in a slice
starts/ends, it must read/write horizontal intermediate val-
ues (scores from (𝑖, 𝑗 − 1) in Equation (3)) for the following
slices as in Figure 5(b). Thus as 𝑠 decreases, the number of
total slices within the score table increases, leading to more
memory access. After some tuning effort (details in § 5.5),
we settled at 𝑠 = 3. Note that when 𝑠 is larger than the band
width, the sliced diagonal kernel reduces to the baseline ker-
nel, making sliced diagonal a generalization of the baseline.

4.3 Reducing Warp Divergence with Subwarp
Rejoining

Subwarp rejoining is a scheme designed to address the warp
divergence from subwarps’ workload imbalance. Figure 6
shows an example warp with four subwarps of eight threads
each, where only the first subwarp is assigned a large align-
ment task. Because those subwarps belong to a single warp,
this might cause significant underutilization.
To amend this issue, we design a novel scheme called

subwarp rejoining. Subwarp rejoining is a form of work
stealing, but the novelty lies in that it is tightly coupled
to the application such that it operates in a low overhead
and fine-grained manner. In short, subwarp rejoining waits
until a working subwarp finishes a slice, and rejoins idling
subwarps to form a larger subwarp. The detailed steps of
subwarp rejoining are as the following:

1. (Slice 0) Each subwarp starts with the first slice of its
alignment task. Each subwarp maintains a flag in the
shared memory for being active or not (Active Subwarp,
AS) and the ID of said task (Target Alignment, TA).

2. (Slice 2) After slice 2 is completed, tasks B, C, and D are
finished. The respective subwarps update AS to 0, which
triggers subwarp rejoining.

3. (Subwarp Rejoining) works as the following:

a. The deactivated subwarps search AS to find an active
subwarp (subwarp 0).

b. The deactivated subwarps copy information from the
active subwarp’s task in TA.

c. The subwarps set their AS flags back to active.
d. Subwarps are merged by adjusting local thread IDs

using __match_any_sync warp intrinsic.
4. (Slice 3) Subwarp 0 (now the entire warp) computes the

remainder of slice 3 with all 32 threads.
5. After task A is completed, AS is updated.
6. (Reset Subwarps) As no active subwarp remains accord-

ing to AS, the subwarps are re-split to the original sizes
and each fetches a new task.
The key of subwarp rejoining is synchronizing the sub-

warps at slice boundaries. This indicates another trade-off
with the slice width 𝑠 , where a wide slice would cause longer
subwarp idle time, and the contrary would cause too frequent
overhead of checking for subwarp rejoining feasibility.

4.4 Workload Balancing with Uneven Bucketing
Uneven bucketing is the last piece of AGAThA designed to
reduce the inter-warp workload imbalance. In the baseline
method, the alignment tasks are assigned to warps in an
arbitrary order (i.e., sequential). However, in the existence
of extra-long workloads, as depicted in Figure 3(b), some
warpswill receivemuch longerworkloads than others, which
causes the performance to be dominated by the slowest warp.

To prevent this from happening, we use uneven bucketing
as illustrated in Figure 7 to distribute long sequences to
different warps, flattening out the workload per warp. The
method is straightforward to implement:
1. Sort the given sequences to pick the longest 1/𝑁 se-

quences where 𝑁 is the number of subwarps per warp.
2. Redistribute the sorted sequences such that one long

sequence is assigned per warp.
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Table 1. Performance Models

Design Model

Baseline MÃXWarps (MAXSubwarps (Cells × ( 1
Comp.TP + ARAnti +ARInter +ARTerm

Mem.TP )))

+RW MÃXWarps (MAXSubwarps (Cells × ( 1
Comp.TP + ARAnti (↓)+ARInter +ARTerm

Mem.TP )))

+RW+SD MÃXWarps (MAXSubwarps (Cells(↓) × ( 1
Comp.TP + ARAnti (↓)+ARInter (↑)+ARTerm (↓)

Mem.TP )))

+RW+SD+SR MÃXWarps (AṼG Subwarps (Cells × ( 1
Comp.TP + ARAnti +ARInter +ARTerm

Mem.TP )))

+RW+SD+SR+UB AṼGWarps (AṼG Subwarps (Cells × ( 1
Comp.TP + ARAnti +ARInter +ARTerm

Mem.TP )))
Figure uneven bucketing (Tahoma O)

① Uneven Bucketing

Work status
: Finished : Subwarp Rejoined (SR) : Remaining

0
1
2
3
4
5
6
7
8
9

10
11

Se
qu

en
ce

 ID

#Slice

W
ar

p 
0

②
Su

bw
ar

p
Re

jo
in

in
gSR

#Slice#Slice#Slice#Slice

0
3
6
7
9

11
1
2
5

10
4
8

#Slice

①
-1

 S
or

t

①
-2

 R
ed

ist
rib

ut
e 0

3
6
4
7
9

11
8
1
2
5

10

#Slice

①
-3

 A
ss

ig
n 

W
ar

ps

W
ar

p 
1

W
ar

p 
2

SR

Figure 7. Uneven bucketing used with subwarp rejoining.

Uneven bucketing owes to subwarp rejoining on handling
the uncertainty coming from the dynamic nature of the ter-
mination condition. If the long task continues without termi-
nation, the large workload can be automatically redistributed
with subwarp rejoining. If termination does occur, subwarp
rejoining can still reduce the overall execution time by re-
joining the terminated subwarp to other active subwarps.

4.5 Performance Modeling
We present a simple performance model for the latency of
each scheme of AGAThA in Table 1. Within a subwarp, the
latency is proportional to the total number of cells in the
score table, simplified as below:

Cells = Antidiags × Band_width + Runahead . (8)

Then we model its corresponding cost for computation
and memory access. All cells in the scoreboard are processed
at a certain computational throughput (𝐶𝑜𝑚𝑝.𝑇𝑃 ), and re-
quire memory access at memory throughput (𝑀𝑒𝑚.𝑇𝑃 )).
There are three parameters that model the portion of cells
that access memory: memory access ratio for storing the
anti-diagonal max values (ARAnti), managing intermediate

values (ARInter ), and checking the termination condition
(ARTerm). At the baseline, these ratios can be approximated
as 1 : (1/8) : (1/Band_width), respectively. Then, a combina-
tion of the subwarp latencies models the warp latency, and a
combination of the warp latencies models the total latency.
In the baseline, the subwarps have no interaction, so the

longest warp dominates the overall latency (MAXSubwarps ()).
Similarly, in the existence of extremely long queries, the
longest warp will dominate the execution time (MÃXWarps ())
where MÃX (·) denotes a function dominated by maximum.

By applying rolling window (RW), the kernel can use
shared memory to greatly reduce the number of memory
accesses for anti-diagonal max tracking. This is depicted by
reduced 𝐴𝑅𝐴𝑛𝑡𝑖 in the model. Next, by adding sliced diag-
onal (SD), we can mainly reduce the amount of run-ahead
processing, leading to an overall decrease in 𝐶𝑒𝑙𝑙𝑠 . We can
additionally decrease both 𝐴𝑅𝐴𝑛𝑡𝑖 and 𝐴𝑅𝑡𝑒𝑟𝑚 by using an
optimal slice length. As discussed in § 4.2, it slightly increases
𝐴𝑅𝑖𝑛𝑡𝑒𝑟 , but the benefit outweighs the penalty. Applying sub-
warp rejoining (SR) changes𝑀𝐴𝑋

𝑆𝑢𝑏𝑤𝑎𝑟𝑝𝑠
() close to the

average (𝐴𝑉𝐺𝑆𝑢𝑏𝑤𝑎𝑟𝑝𝑠 ()) by letting subwarps help others
within the warp. Finally, uneven bucketing (UB) has the
effect of reducing the straggler warps and changes the maxi-
mum dominated latency𝑀𝐴𝑋𝑊𝑎𝑟𝑝𝑠 () close to their average
𝐴𝑉𝐺𝑊𝑎𝑟𝑝𝑠 ().

5 Evaluation
5.1 Experimental Setup
We evaluated AGAThA on a server with NVIDIA RTX-A6000
GPU and AMD EPYC 7313P 16-Core Processor with 64 GB
of RAM. It runs on Ubuntu 20.04 with CUDA version 11.7
and driver version 525.60.13.
For real-world datasets, one reference and nine query

datasets were used. For reference, GRCh38 [44], an up-to-
date assembly of the human genome was used that has 3.1G
base pairs (i.e., literals). For the nine query datasets, we used
data from the ‘Genome in a Bottle’ project [37]. The datasets
can be grouped into three categories by the sequencing tech-
niques used to generate the dataset. The first category con-
sists of HiFi HG (human genome) 005∼007, which the PacBio
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HiFi [55] sequencing technique was used to obtain reads
from the ChineseTrio. The second category contains CLR
002∼004 generated by the PacBio CLR [40] sequencing tech-
nique from the AshkenazimTrio. The last category holds
reads from the same target, but the reads were extracted
with the ONT [52] sequencing technique. We picked the
first 50,000 reads from each dataset, and ran them through
the pre-computing steps [23] to obtain the final datasets
for alignment. We mainly use Minimap2 [23] as the refer-
ence algorithm, but we also test the feasibility of AGAThA
against BWA-MEM [22] (§ 5.9). We used Minimap2’s preset
parameters for each dataset category.

5.2 Baselines
The GPU-based baselines chosen for the evaluation are as
follows:
• Manymap [12] is a GPU alignment based on Minimap2.
However, Manymap applies an inexact interpretation of
the termination condition. In addition, it allows aligning
only one sequence at a time, so we fixed it to accept
multiple different reads in parallel using CUDA streams.

• GASAL2 [1] is a GPU alignment with input packing
and inter-query parallelism. Out of the multiple kernels
implemented, we use the banding kernel in GASAL2.

• SALoBa [42] utilizes intra-query parallelism.We applied
banding heuristic that gives further speedup, similar to
GASAL2.

• LOGAN [57] is an algorithm that implements its own
guiding algorithm. It adjusts the band width during score
table filling after calculating each anti-diagonal as a form
of guided alignment.

For fair comparison, wemeasure the performance of the base-
lines in two versions. One is measured in the version that
they originally target (Diff-Target), and another is extended
with faithful optimization efforts to provide output equal to
the reference algorithm (MM2-Target). This represents a sce-
nario where those libraries are used to accelerate Minimap2
in the field. We fixed the provided termination condition for
Manymap and newly implemented it in GASAL2/SALoBa.
Since LOGAN targets a different guiding algorithm, we only
report the unmodified performance for LOGAN. Note that
Manymap is the only baseline intended as a direct replace-
ment of Minimap2’s algorithm. Others target different algo-
rithms, thus not implementing all of the heuristics we focus
on.

5.3 Performance Comparison
In this section, we evaluate the performance of AGAThA
using real-world sequencing datasets. Figure 8 reveals the
performance comparisons of AGAThA against the baselines,
normalized to the performance of Minimap2 on a CPU. For
the baselines, the blank bars represent the speed of the origi-
nally targeted algorithms (Diff-Target), while the solid bars
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represent the speed of implementations with the reference
guiding algorithm as their target (MM2-Target).

Against all baselines, AGAThA clearly outperforms them
significantly. Over Minimap2, AGAThA showed 18.8× geo-
metric mean speedup. While AGAThA shows more than 16×
speedup for all datasets, it was the largest on the HiFi dataset
(22.6×).

Between the Minimap2-targeted baselines, SALoBa was
the fastest butwas 9.6× slower thanAGAThA. Next,Manymap
and GASAL2 were 12.1× and 36.6× slower than AGAThA,
respectively. This version of GASAL2 was even slower than
Minimap2. Also, Manymap is the only version that benefits
(albeit slightly) from implementing the guided alignment al-
gorithm. We suspect that this is from the fact that Manymap
is already filling the score table by computing each anti-
diagonal, removing the run-ahead processing entirely.
Among baselines that do not target Minimap2, SALoBa

was also the fastest but was still 3.6× slower than AGAThA.
SALoBa’s speedup comes from albeit naive, banding reduc-
ing the computational workload, and other GPU acceleration
techniques such as subwarps were used. Additionally, LO-
GAN’s performance closely follows SALoBa. One cause could
be that LOGAN maintains a gap score that is less expensive
in both computation and memory. Manymap was the slowest
with 1.1× geometric mean speedup.

5.4 Ablation Study
To demonstrate the advantage of how AGAThA achieves its
speedup, we conduct an ablation study as in Figure 9. For
the baseline, we use the naive exact implementation of the
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guiding algorithm, without the proposed techniques. By us-
ing rolling window for max tracking (RW), AGAThA already
achieves an average of 3.1× on the HiFi datasets and 3.5× on
the rest. This speedup comes from decreasing the number of
global memory accesses and using max-reduce to parallelize
calculating the anti-diagonal maximum. Sliced diagonal (SD)
further optimizes rolling window by additional speedup of
1.4× for the HiFi datasets, and 1.3× for the other two datasets,
respectively. It optimizes rolling window by reducing the
run-ahead execution and only using an essential amount of
shared memory to reduce global memory access. In addition,
subwarp rejoining (SR) increases speedup by an additional
1.1× for the HiFi datasets, 1.2× for the rest. It removes the
warp divergence coming from subwarps receiving different-
sized workloads. Finally, uneven bucketing (UB) boosts the
alignment performance by approximately 2.2× more on the
HiFi and ONT datasets, and 1.3× more on CLR datasets. Un-
even bucketing spreads the few extremely large workloads
to multiple warps to solve the inter-warp imbalance problem
with the aid of subwarp rejoining.

5.5 Sensitivity Study on Slice Width
The slice width is an important parameter that can highly
affect the performance of the sliced diagonal kernel. In Fig-
ure 10, we change the slice width from 1 up to 128 blocks.
There is an overall decreasing trend from 1 to 4, flattening
around 5 to 16, and an increasing trend as the slice width
gets larger. The first decrease comes from reducing the num-
ber of memory accesses for intermediate values, and the
increasing trend at the end comes from the growing amount
of run-ahead processing. Among this overall trend, we can
see small jumps after slice widths 3 and 7. This is because
it is possible to use bitwise & operation with these widths
instead of modulo operation which is known to be slow on
GPUs. While there were both similar speedups at widths
3 and 7, we chose 3 as our main target. This is because it
uses less shared memory (and saves space for implementing
subwarp rejoining), and the speedup for the longer datasets
HiFi and CLR were higher for width 3. The upper hand of
width 3 on long datasets stems from the fact that the effect of
memory access for anti-diagonal max scores and run-ahead
execution is more important than short datasets.
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5.6 Subwarp Rejoining and Uneven Bucketing
In this section, we study the impact of subwarp rejoining
and uneven bucketing by observing the speedup and distri-
bution of allocated workload per thread. We compare them
with sorting, which we believe is simple and intuitive for
reducing workload imbalances. Figure 11 shows the perfor-
mance comparisons, where the ‘Original order’ represents
AGAThA only with rolling window and sliced diagonal ap-
plied. If we apply sorting to the workloads by the number of
anti-diagonals, there was approximately 1.06× speedup in
geometricmean for the entire dataset (‘Sort’). This is from the
reduced warp divergence by allocating similar-sized score ta-
bles to the subwarps within the same warp. However, apply-
ing subwarp rejoining to the baseline (‘SR + Original Order’)
shows a speedup of 1.17×. The result shows that subwarp
rejoining is more effective in reducing warp divergence than
sorting. This is because sorting cannot adapt to the dynamic
behavior of termination, while subwarp rejoining can.
If we apply subwarp rejoining to the sorted sequences

(‘SR + Sort’), the speedup is still 1.17× in geometric mean,
similar to only applying subwarp rejoining. Finally, with
subwarp rejoining and uneven bucketing, the speedup is
2.22× on average for all datasets. This shows how subwarp
rejoining and uneven bucketing working in unison is the
best approach in reducing workload divergence both within
and between warps.

Figure 12 shows how the combination of subwarp rejoin-
ing and uneven bucketing redistributes the workload evenly
to the subwarps. The Y axis shows the accumulated num-
ber of blocks, representing the amount of workload. On the
‘Original Order’, much of the work is performed on sub-
warps whose number of initially assigned blocks per thread
is around 12,000.While ‘SR+Original Order’ and ‘SR+Sort’ do
reduce the work from the heavily loaded subwarps, their im-
pact is limited. Contrarily, we can see that subwarp rejoining
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and uneven bucketing together shift the entire graph to the
left, which represents how the large amounts of workloads
that were allocated to a few subwarps are spread out to many
other subwarps. This shows the underlying mechanism of
how uneven bucketing is such a powerful acceleration tool
with our data distribution.

To better understand why uneven bucketing shows sig-
nificant speedup, we compare the performance of uneven
bucketing on generated datasets in Figure 13. We generated
datasets by varying the percentage of long sequences (4096
bp) against short sequences (128 bp). To isolate the impact
of uneven bucketing, we used ‘SR+Original Order’ as the
baseline and compared ‘SR+Sort’ and ’SR+UB’. Even with
a similar speedup at 25%, uneven bucketing always outper-
formed sorting for every percentage, showing the highest
speedup of 2.39× at 10%. Notably, the speedup of sorting
peaks at 25% and continues to drop as the percentage de-
creases, even becoming slower than the original ordering
by 0.61×. The main reason for this drastic slowdown is that
a few warps with long sequences become the main bottle-
neck. Contrarily, uneven bucketing is still faster than the
original ordering because it distributes the long sequences
to different warps and can fully utilize subwarp rejoining.
Note that the percentage of alignments on the far right peak
in Figure 3(b) ranged between 5∼20% for all datasets.

5.7 Sensitivity Study on Subwarp Size
We conducted a sensitivity study on the effect of different
subwarp sizes on execution time. Figure 14 shows the ex-
ecution time for different subwarp sizes 8, 16, and 32 (full
warp) compared to the final AGAThA. Due to the nature of
subwarps, warp divergence increases as the subwarp size
decreases. One could think it would be faster to use the full
warp per alignment instead of subwarps. For the kernel with
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rolling window and sliced diagonal only, it is true that us-
ing the full warp is faster than using subwarps, on average
10%. However, this is easily outpaced by the final version
of AGAThA, which uses designs such as subwarp rejoining
and uneven bucketing that must have a subwarp to be im-
plemented. Additionally, there are slowdowns at 16 threads
per subwarp. This can be explained by the increased amount
of idling threads at the start and end of a chunk with the
remaining warp divergence from the usage of subwarps.

5.8 Hardware Flexibility of AGAThA
In the present section, we demonstrate the performance of
AGAThA on various hardware environments in Figure 15.

Comparison with a Stronger CPU Baseline. In addi-
tion to the default CPU baseline implemented with SSE4.1
support that runs on a 16-core 32-thread processor (‘16C32T
SSE4’), we also experimented with a stronger CPU base-
line with AVX512 support using optimized implementation
from [18] on a 48-core 96-thread environment (2×XeonGold
6442Y Processor, ‘48C96T AVX512’). Overall, the stronger
baseline was 2.30× faster in geometric mean compared to the
default one. Even with the stronger CPU baseline, AGAThA
still showed a significant 8.19× geometric mean speedup
with a single GPU.

Sensitivity on GPU Types. We also tested AGAThA
with RTX 2080Ti and A100 to verify the applicability on
other GPUs. As RTX 2080Ti does not support warp-reduce
functions from recent GPUs, we replaced them with shared
memory access. AGAThA provided stable 9.49× and 15.84×
speedup over the CPU baseline in geometric mean, respec-
tively. Although A100 is perceived as a higher grade than
A6000, A6000 performs better due to having a larger cuda
core count.
Scalability on Number of GPUs. Additionally, we ex-

tend AGAThA to multiple GPUs by distributing equal num-
bers of alignment tasks to each GPU and making each GPU
process them. AGAThA showed almost linear scalability and
achieved 59.38× geometric mean speedup with four GPUs
over the CPU baseline, which is close to linear compared
to 18.83× speedup from a single GPU. We expect AGAThA
to perform even better by supporting workload balancing
among different GPUs similar to uneven bucketing.
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5.9 Applying AGAThA to BWA-MEM
Finally, we evaluate AGAThA on BWA-MEM [22], an al-
gorithm for older generations that is still widely used. We
demonstrate that our schemes can be applied to guided align-
ment algorithms other than Minimap2. We compare the run-
time of BWA-MEM on CPU with SALoBa and AGAThA by
applying BWA-MEM’s guided alignment. We chose SALoBa,
the fastest baseline from § 5.3. Figure 16 shows that AGAThA
also has the speedup gap above SALoBa. The speed gap is
smaller than on Minimap2 mainly due to the default band
width and termination threshold being significantly smaller,
effectively reducing the amount and imbalance of task work-
loads. However, AGAThA still achieves a significant speedup
of 15× compared to BWA-MEM on a CPU.

6 Discussion
Applying DPX to AGAThA. The new NVIDIA Hopper
architecture [9] introduces a new instruction called Dynamic
Programming extension (DPX) [39]. It can accept two or
three integers and compute ReLU or min/max comparison
and is said to accelerate sequence alignments up to 4.4× [38].
We expect DPX to be seamlessly integrated into our kernel
and help AGAThA thrive even more because DPX enhances
the computational speed, and AGAThA mainly addresses
the issues from memory bandwidth bottleneck.

Different Bucketing Parameters.While uneven bucket-
ing largely contributes to our speedup, we see more potential
in this design. For example, if we predict exactly when the
termination condition is met before execution, then the ker-
nel could remove most of the remaining workload imbalance.
We would like to explore this possibility in future work.

7 Related Work
GPU Accelerations of Sequence Alignments. There is a
line of work on accelerating sequence alignment with GPUs,
using OpenGL library [25, 26], or earlier version of CUDA [6,
27, 30, 31, 33]. In addition, some target single-pair alignment
and utilize intra-query parallelism [10, 11, 46, 47]. To be inte-
grated into the read mapping algorithm, multiple alignments
have to be performed on relatively shorter partial pieces of
sequence. SOAP [24] and CUSHAW family [28, 29, 32] are
early ones on such approach, and GASAL2 [1] introduces
on-GPU input packing. SALoBa [42] further optimizes on

GPU memory hierarchy. However, while they are compared
with existing reference algorithms [22, 23], none have im-
plemented the exact guiding algorithms.
Guided Alignment. Minimap2 and BWA-MEM are re-

garded as golden standards, but they are not the only al-
gorithms with a guided dynamic programming approach.
For example, banding is implemented on other variant al-
gorithms [18, 45]. On GPUs, [21] is a GPU-based alignment
library with banding, and F5C [14] adaptively decides the
direction of the band for every iteration. The termination
condition has been first introduced in Blast [4], called X-
Drop. However, it was found to penalize single long gaps too
much. Because of this, it has been amended to be Z-drop on
later work as in Equation (5) by Minimap2 [23]. It has been
accelerated using SIMD instructions [18], but not on GPUs.

Balancing Workload on GPUs.Workload balancing for
GPUs is a classic problem studied for decades [8, 16, 19, 49,
50, 53, 58]. [56] exploits software-level control of schedul-
ing on streaming multiprocessors. [20] suggests dynamic
task-to-thread assignment, and [59] provides a pipelined
parallel programming framework on GPU for job schedul-
ing. AGAThA also applies a type of workload balancing, but
does so in deep relation with the algorithm and the observed
real-world data distribution.

8 Conclusion
We propose AGAThA, a GPU-accelerated sequence align-
ment software. It is the first exact GPU implementation of the
guided sequence alignment algorithm. To address the chal-
lenges the guiding step imposes, we propose a new method
to track anti-diagonal maximums, a tiling strategy, a dynamic
workload balancing, and a workload distribution strategy.
The evaluation shows that AGAThA significantly outper-
forms the baselines.
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A Appendix
We provide AGAThA’s source code, additional code for setup
and execution, and a sample dataset as an example for the in-
put format. For themost recent version of AGAThA’s descrip-
tion, please refer to the up-to-date artifact link in GitHub.

A.1 Artifact Summary
• Dataset: A sample of HiFi HG005 dataset.
• Runtime environment: Ubuntu 20.04 or higher.
• Hardware: Multicore x86_64 CPU with one or more
NVIDIA GPUs.

• Metrics: Execution time.
• Code license: Apache-2.0 license.
• Archived DOI:
https://doi.org/10.5281/zenodo.10462237

• Up-to-date artifact:
https://github.com/readwrite112/AGAThA

A.2 Description
A.2.1 How to access. Please access the artifact via the
archived DOI [41] or the up-to-date artifact link.

A.2.2 Hardware dependencies. Requiresmulticore x86_64
CPU with at least a single NVIDIA GPU. The artifact was
tested on NVIDIA RTX A6000 and NVIDIA GeForce RTX
4090, both with NVIDIA compute capability 86 (sm86).

A.2.3 Artifact structure. The artifact’s structure can be
represented as the following:

|-- AGAThA
| |-- src
| | `-- kernels
| `-- test_prog
|-- dataset
|-- docker
|-- misc
`-- output

• AGAThA/src: source code for AGAThA.
• AGAThA/test_prog: test program to use AGAThA’s ker-
nels for sequence alignment.

• dataset: includes sample input dataset.
• docker: scripts and Dockerfile for launching docker.

• misc: miscellaneous code for outputting AGAThA’s ker-
nel execution time.

• output: directory for outputs such as alignment score
and kernel execution time.

A.2.4 Setup. We recommend building and launching a
docker image with the following scripts.

$ cd docker
$ bash build.sh
$ bash launch.sh

AGAThA’s source code can be built using the following com-
mand lines.

$ cd AGAThA
$ bash build.sh

A.2.5 Datasets. A sample of the HiFi HG005 dataset used
in this work is provided in dataset/. Other (custom) datasets
can be used as input, as long as there is a reference and query
file, and both are formatted as .fasta files. The input files
should both follow the format below:

>>> 1
ATGCN...
>>> 2
TCGGA...

Given the two input files, AGAThAwill output the alignment
score between a pair of sequences from each file. Note that
each input file should have an equal number of reference and
query strings. .fasta files can be download from various
sources such as GenBank [35] or projects such as ‘Genome
in a Bottle’ [37].

A.2.6 Running AGAThA. Using AGAThA.sh script, the
following options can be used for AGAThA.

-a the match score
-b the mismatch penatly
-q the gap open penalty
-r the gap extension penalty
-z the termination threshold
-w the band width in the score table

This script stores the alignment scores in output/score.log,
and the total kernel execution millisecond time is stored in
output/time.json.
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