NNParamsPrinter.jl is a simple package for printing neural network parameters in a readable format.
Currently only supported for Lux.
using Pkg
Pkg.add("NNParamsPrinter")using Lux
using NNParamsPrinter
using StableRNGs
U = Chain(
Dense(1, 3, rbf),
Dense(3, 3, rbf),
Dense(3, 3, rbf),
Dense(3, 1)
)
nn_init_params, snn = Lux.setup(rng, U);
printWeightsBiases(U, nn_init_params, print_values = true)
Layer 1 : Dense(1 => 3, rbf) :
weights (shape: (3, 1)):
Float32[0.70705664; -1.2754807; 1.0824884;;]
bias (shape: (3,)):
Float32[0.18551421, 0.4326675, 0.024800062]
Layer 2 : Dense(3 => 3, rbf) :
weights (shape: (3, 3)):
Float32[-0.7039337 0.65329766 0.73901486; -0.8899543 0.31681418 -0.7408178; -0.4000666 0.48276234 -0.5379133]
bias (shape: (3,)):
Float32[0.42945153, 0.3800699, -0.18156144]
Layer 3 : Dense(3 => 3, rbf) :
weights (shape: (3, 3)):
Float32[-0.022448301 -0.13235784 -0.32542706; 0.59363365 -0.1478889 0.9222369; -0.6551368 0.78240037 -0.21426916]
bias (shape: (3,)):
Float32[-0.18754774, 0.27221495, 0.07845076]
Layer 4 : Dense(3 => 1) :
weights (shape: (1, 3)):
Float32[-0.8237293 -0.6526296 0.12768888]
bias (shape: (1,)):
Float32[0.1146311]- Conv
- BatchNorm
- MaxPool
- Dropout
- FlattenLayer
- Dense
- LSTMCell
- RNNCell
- GRUCell
- AdaptiveMaxPool
- AdaptiveMeanPool
- AlphaDropout
- Bilinear
- BranchLayer
- Chain
- ConvTranspose
- CrossCor
- Embedding
- GlobalMaxPool
- GlobalMeanPool
- GroupNorm
- InstanceNorm
- LayerNorm
- Maxout
- MeanPool
- NoOpLayer
- PairwiseFusion
- Parallel
- Recurrence
- ReshapeLayer
- Scale
- SelectDim
- SkipConnection
- StatefulRecurrentCell
- Upsample
- VariationalHiddenDropout
- WeightNorm
- WrappedFunction