Homework - Datathinking

Shurakov Nikolai
Nikolai.Shurakov@ut.ee
student
University of Tartu

Abstract

In this homework, we cleaned and analyzed a
dataset of a Zulip chat using different machine-
learning tools, such as linear regression, logistic
regression, and embeddings. We visualized the
results of these analyses using plots and tried to
interpret each visualization. Finally, we learned
how to create a report in Overleaf and how to in-
clude PDF figures with descriptions of each anal-
ysis and relevant equations.

1 Introduction

I tried to start doing this homework several times. I tried
to use different IDEs: Thonny, VScode on my computer
and Github Codespace. Both had its advantages and dis-
advantages, but I ended up with Github Codespace and
copied the datathinking.org codespace project. The
first two tasks were solved in the lecture on 30/03/2023,
so [just repeated the steps from the part of the record-
ing that I missed. I will title each section with what I was
supposed to do and then add the outcome I got with some
comments.

2 (Clean Data Thinking Zulip chat data
and compute summary statistics of the
dataset

The genarated code imports the polars package and json
module. It opens a JSON file "messages-000001.json” in
read mode using the with statement. It then loads the
contents of the file into a Python dictionary called data.
Two empty lists are created, all_messages and all_senders.

Next, a for loop is used to iterate over each message in

Coauthor ChatGPT
https://chat.openai.com/
LLM
Microsoft

the zerver_message column in data dictionary. The con-
tent of each message is extracted and appended to the
all_messages list, while the sender is appended to the
all_senders list.

A new dictionary data is created with two keys, con-
tent and sender_id, corresponding to the all_messages and
all_senders lists, respectively.

Finally, a polars DataFrame is created from the data dic-
tionary and summary statistics are computed using the
describe() method.

describe content sender id
str str 64

"count” 240" 240.0
"null_count” "0 0.0
“mean” null 570311.083333
“std"” null 57198.243882

"min" "{Windows subsy... 100007.0
"max” “yay!! amazing,... 596357.0
"median’ null 589761.0

Figure 1: Summary statistics of the dataset

3 Linear and logistic regressions

The next part of my code also uses a Polars DataFrame
from the data dictionary. The text data is then prepro-
cessed, and the Word2Vec model is used to convert the
text data into numerical format. The model is used to
make a list of embeddings for the first word in each mes-
sage. The data is split into training and test sets, and logis-
tic regression and linear regression models are trained on

Nikolai.Shurakov@ut.ee
https://chat.openai.com/
datathinking.org

Homework - Datathinking

the training data. The logistic regression model is used to
predict the sender of the messages in the test set and ac-
curacy is computed. Similarly, linear regression model is
used to predict the sender of the messages in the test set,
and mean squared error is computed.

Logistic Regression Accuracy: 0.3125 Linear Regression Mean
Squared Error: 46015520188.596924

Finally, the embeddings are visualized using t-SNE and
scatter plot is used to represent embeddings in two dimen-
sions.

300
200 4 %
100 1
0
~100 .
—200 |
-300 1, : : : : : : :
—-400 -300 -200 -100 0 100 200 300

Figure 2: Comparison of Logistic and Linear Regression
Models for Message Classification

4 Model for Message Senders

The code processes a JSON file containing chat messages
and their corresponding sender IDs. The primary goal of
this pipeline is to train a model that can predict the sender
ID based on the content of the chat message using word
embeddings.

To accomplish this, the text data is first preprocessed and
tokenized, and then converted into numerical format us-
ing the Word2Vec algorithm. After obtaining the embed-
dings for the chat messages, a linear regression model is
trained on a subset of the data and evaluated on a sepa-
rate test set.

Once the model is trained and evaluated, the predicted
sender IDs are compared against the actual sender IDs us-
ing a scatter plot. This plot helps visualize how well the
linear regression model performs at predicting the sender
IDs for the test set (not so well). The plot also includes a
line for perfect correlation and a legend with appropriate
labels, making it easier to interpret and analyze the results.

1e6 Linear Regression Model for Message Senders

1.2 4 S44719
L0 05428
90p11
0.8
2 @47 134729
= 544798794
5] Y iad
- ©89f61
=
]
o 044
®
& S44719
0.2 | [oCLEIEES
89761
47?9
0.0 &4
@ Perfect correlation
— Predicted values Jp11
—0.2 1

T T T T T
200000 300000 400000 500000 600000

Actual Sender ID

T
0 100000

Figure 3: Linear Regression Model for Message Senders

5 Linear and Logical regressions
compared

I was not satisfied with any of the previously generated
plots. The data look noisy. Although, this is expected
(there is no real correlation between one’s Zulip chat ID
and messages first words), I updated the code to get an-
other plot. Tis time the logistic regression model is eval-
uated for accuracy on the test data and the linear regres-
sion model is evaluated for mean squared error. The per-
formance of the two models is compared, and the embed-
dings are visualized using t-SNE. Finally, a scatter plot is
generated with the logistic regression results using t-SNE.

Logistic Regression Accuracy: 0.3125

Linear Regression Mean Squared Error:
46407887333.514915
Scatter Plot with Logistic Regression
200 -
A 500000
100 4
400000
~ 04 %
= 5
[=
pot G
_1004 300000 ¥
~200 4
co 200000
-300 -

T T T T T T T
—300 -200 -100 o 100 200 300
SNE1

Figure 4: Scatter Plot with Logistic Regression

Shurakov

6 Plot with Embeddings

The embeddings are then used to visualize the messages in
two dimensions using t-SNE, which is a technique for re-
ducing high-dimensional data to a lower dimension while
preserving the structure of the data. The resulting scatter
plot shows the distribution of the messages in the two-
dimensional space, with each point representing a mes-
sage and the color indicating the sender of the message.
The plot provides insight into the relationships between
the messages and how they are distributed in the embed-
ding space.

t-SNE visualization of message embeddings

300 4

51°]

200 4

100

Dimension 2
o
"

—100 A

—200

T T T T T T T T
—400 —300 —200 —100 0 100 200 300
Dimension 1

Figure 5: t-SNE visualization of message embeddings

7 Equations

Linear Regression:

The equation for simple linear regression is:

y:ﬂo+61$+€

where y is the dependent variable, x is the independent
variable, 3, is the intercept, (3, is the slope, and ¢ is the
error term.

In the code provided, the Linear Regression model is
implemented using scikit-learn’s LinearRegression class,
which uses Ordinary Least Squares (OLS) method to fit a
linear regression model.

Logistic Regression:

The equation for logistic regression is:

ply =1]z) = 1/(1 + exp(=2))

where p(y=1|x) is the probability of the dependent vari-
able (y) being 1 given the independent variable (x), exp is

the exponential function, and z is the weighted sum of the
inputs.

In the code provided, the Logistic Regression model is
implemented using scikit-learn’s LogisticRegression class,
which uses maximum likelihood estimation to fit a logistic
regression model.

Embedding:

Word2Vec is a neural network-based algorithm that learns
vector representations of words called word embeddings.
The algorithm is based on the distributional hypothesis,
which states that words that appear in similar contexts are
likely to have similar meanings.

The equation for Word2Vec is based on the skip-gram
model:

T

J(0) = ~5logL(®) =~).

t=1-msj<m
Jj*0

lOgP(WHj | wt;B)

where J(¥) is the objective function, T is the total number
of words in the corpus, m is the size of the context window,
wt is the center word, and wt+j is the context word.

In the code provided, the Word2Vec model is implemented
using Gensim’s Word2Vec class, which trains the word em-
beddings by maximizing the likelihood of the skip-gram
model.

8 Conclusion

In conclusion, this homework involved cleaning and an-
alyzing a dataset of a Zulip chat using different machine-
learning tools such as linear regression, logistic regression,
and embeddings. We visualized the results of these anal-
yses using plots and tried to interpret each visualization.
The data was processed using Polars and Word2Vec, and
summary statistics were computed. The accuracy of the
logistic regression model for predicting the sender of the
messages was 0.3125, and the mean squared error of the
linear regression model was 46015520188.596924. We
also trained a linear regression model to predict the sender
of the messages based on the content of the message, but
the performance was not very good. Finally, we compared
the performance of the logistic regression model and the
linear regression model and observed that the logistic re-
gression model performed better. Overall, this homework
helped us to learn how to use different machine-learning
tools and how to visualize the results of these analyses.
Unfortunately, I didn’t manage to follow Ismael’s advice
and didn’t use vega or vega light, but I may try it later for
some simpler tasks.

Homework - Datathinking

References

json package: https://docs.python.org/3/
library/json.html

numpy package: https://numpy.org/doc/

pandas package: https://pandas.pydata.org/
docs/

polars package: https://pola-rs.github.io/
polars-book/

scikit-learn package: https://scikit-learn.
org/stable/

LogisticRegression class: https://scikit-learn.
org/stable/modules/generated/sklearn.
linear_model.LogisticRegression.html

LinearRegression class: https://scikit-learn.
org/stable/modules/generated/sklearn.
linear_model.LinearRegression.html

accuracy_score function: https://scikit-learn.
org/stable/modules/generated/sklearn.
metrics.accuracy.html

mean_squared_error function: https:
//scikit-learn.org/stable/modules/
generated/sklearn.metrics.mean_squared_
error.html

Word2Vec class: https://radimrehurek.com/
gensim/models/word2vec.html

TSNE class: https://scikit-learn.org/
stable/modules/generated/sklearn.
manifold.TSNE.html

matplotlib.pyplot package: https://matplotlib.
org/stable/api/pyplot_summary.html

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pola-rs.github.io/polars-book/
https://pola-rs.github.io/polars-book/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/stable/api/pyplot_summary.html

