Skip to content

onorabil/frameSegmentation

Repository files navigation

FrameSeg

Fast, responsive semantic segmentation tool for image sequences.

This tool is part of the code release for the paper Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation, ACCV 2020 oral.

Paper: https://arxiv.org/abs/2010.01910

Project page: https://sites.google.com/site/aerialimageunderstanding/semantics-through-time-semi-supervised-segmentation-of-aerial-videos

Features

  • send to back
  • hybrid click/drag segmentation
  • can iterate ovverlapping polygon
  • responsive for high resolutions
  • numpy map ouptut with one channel per class
  • customizable classes [ classConfig.yaml - mandatory ] / language [ languageConfig.yaml - optional ]
  • python / cross platform / executables available for Linux/Windows (tested on Ubuntu 20.04 and Windows 10)

Getting started

  • the fastest way is to grab an executable + the classConfig.yaml file from the release folder
  • test on the sampleData image
  • manual way:

Ubuntu 20.04

conda create -n frameSeg python=3.8
conda activate frameSeg
pip install https://extras.wxpython.org/wxPython4/extras/linux/gtk3/ubuntu-20.04/wxPython-4.1.1-cp38-cp38-linux_x86_64.whl
pip install opencv-python==4.4.0.46
python frameSeg.py

To pack/generate executables:

conda install -c conda-forge pyinstaller 
pyinstaller -F --noconsole frameSeg.py

Video tutorial

https://youtu.be/N_xnHNkRd_c

Known Issues

Ubuntu

Q: wx._core.PyNoAppError: The wx.App object must be created first!

A: Lauch from Visual Studio Code (Ctrl+F5)

About

Fast manual semantic segmentation tool. Tweaks for image sequences from video/ high resolution images.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages