Skip to content
This repository has been archived by the owner. It is now read-only.
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

Data Structures Library

Data Structures Library - 2018 (C# - Java)

Abstract Data Types

  • Balanced Parentheses Stack

    • BalancedParenthesesStack(int size)
    • bool Push(char parenthesis)
    • void Pop()
  • Priority Queue

    • PriorityQueue(int size)
    • bool isEmpty()
    • bool isFull()
    • int Count()
    • void Enqueue(int value)
    • void Dequeue()
    • void Print()
  • Queue

    • Queue(int size)
    • bool isEmpty()
    • bool isFull()
    • int Count()
    • void Enqueue(int value)
    • void Dequeue()
    • int Front()
  • Stack

    • Stack(int size)
    • bool isEmpty()
    • int Count()
    • void Push(int value)
    • void Pop()
    • int Top()

Algorithm Analysis

There is a program for finding prime numbers with 2 ways in here. First way is easy way to find it and its Big O notation is O(n^1/2), second way is hard way to find it and its Big O notation is O(n).

Find Prime Numbers App doesn't require installation.

Download Find Prime Numbers App

Graph

  • Graph

    • Graph(int vertexCount)
    • void addEdge(int src, int dest)
    • void DFS(int s)
    • void DFSUtil(int s,boolean visited[])
    • void BFS(int s)
    • void Print()
  • DijkstraSP

Heap

  • HeapMin

    • HeapMin(int size)
    • int getLeftChildIndex(int parentIndex)
    • int getRightChildIndex(int parentIndex)
    • int getParentIndex(int childIndex)
    • bool hasLeftChild(int index)
    • bool hasRightChild(int index)
    • bool hasParent(int index)
    • int leftChild(int index)
    • int rightChild(int index)
    • int parent(int index)
    • void Swap(int index1, int index2)
    • void EnsureMaxCapacity()
    • void EnsureMinCapacity()
    • Front()
    • Remove()
    • Add(int value)
    • HeapifyDown()
    • HeapifyUp()

Linked List

  • Circular Linked List

  • Circular Linked List

    • CircularLinkedList()
    • CircularLinkedList(int inital)
    • void Add(int value, int position)
    • void Add(int value)
    • void Remove(int position)
    • void Clear()
  • Node

    • Node(int value)
  • Doubly Linked List

  • Doubly Linked List

    • DoublyLinkedList()
    • DoublyLinkedList(int inital)
    • void Add(int value, int position)
    • void Add(int value)
    • void Remove(int position)
    • void Clear()
  • Node

    • Node(int value)
  • Singly Linked List

  • Singly Linked List

    • SinglyLinkedList()
    • SinglyLinkedList(int inital)
    • bool isEmpty()
    • int Count()
    • void Add(int value, int position)
    • void Add(int value)
    • void Remove(int position)
    • void Clear()
    • void Reverse()
    • int IndexOf(int value)
    • int Get(int position)
    • void Combine(SinglyLinkedList singlyLinkedList)
    • void Print()
  • Node

    • Node(int value)

Recursion

  • Factorial

    There is a program for calculating factorial with 2 ways in here. First way uses recursion, second way uses iteration.

    Factorial app doesn't require installation.

    Download Factorial App
  • Fibonacci

    There is a program for calculating fibonacci numbers sequence with 2 ways in here. First way uses recursion and its Big O notation is O((1.1680)^n) (Golden Ratio), second way uses iteration and its Big O notation is O(n).

    Fibonacci App doesn't require installation.

    Download Fibonacci App

Sorting Algorithm

  • Bubble Sort

    • void BubbleSort(int[] array, int length)
  • Insertion Sort

    • void InsertionSort(int[] array, int length)
  • Merge Sort

    • void MergeSort(int[] array, int length)
    • void Split(int[] array, int length)
    • void Merge(int[] left, int[] right, int[] array)
  • Quick Sort

    • void QuickSort(int[] array, int start, int end)
    • int Partition(int[] array, int start, int end)
  • Selection Sort

    • void SelectionSort(int[] array, int length)

Tree

  • Binary Search Tree

  • Binary Search Tree

    • BinarySearchTree()
    • BinarySearchTree(int inital)
    • bool isEmpty()
    • Node Search(int value)
    • Node FindMax(int startingRoot)
    • Node FindMin(int startingRoot)
    • int FindHeight(int startingRoot)
    • void Add(int value)
    • void Remove(int value)
    • void InOrder(int startingRoot)
    • void PreOrder(int startingRoot)
    • void PostOrder(int startingRoot)
    • void LevelOrder(int startingRoot)
  • Node

    • Node(int value)

About

Data Structures Library - 2018 (C# - Java)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published