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Objectives

• Grasp the problem of out-of-distribution generalization in time series and its

specific characteristics

• Understand the current landscape of methods

• Recognize the open challenges and opportunities for further exploration
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Real-world scenarios and motivation
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Real-world examples of time series predictive tasks facing out-of-distribution data

challenges.
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Stock market forecasting

Stock market exhibits instability due to changing external conditions, e.g., di↵erent

economic conditions, regulations, and trading behaviors.

Movement of the Dow Jones Industrial Average (DJIA) between 01/2017 and 12/2020,

showing the pre-crash high on 12/02/2020, and the subsequent crash during the COVID-19

pandemic and recovery to new highs to close 2020.
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Physiological data analysis

Patient sensor data (e.g., heart rate, ambulatory blood pressure (ABP)) show di↵erent

distributions due to varying physical conditions and events.

(a) Patient A (b) Patient B

Multivariate time series data of patients. Patient A had experienced Arterial Hypotensive

Episode (AHE) events, whereas Patient B did not.
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Product demand forecasting

In retail, product demand and sales patterns sometimes shift over time, resulting in

distribution changes due to unexpected buying behaviors or economic fluctuations.

Incorporating new products or opening new stores in a retail chain also introduces new

data distributions.
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Vehicle intention prediction

Autonomous vehicles need to navigate in dynamically changing environments, e.g.,

unexpected road scenarios such as obstacles, emergency vehicles, and other vehicles

breaking down.
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Systematic failure

A model trained on time series data fails when faced with new, unseen data, as

• the model’s predictive accuracy can be compromised by data shifts, and

• the lack of abundant data on various real-world conditions for machine learning

training.
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To address this ...

Out-of-distribution generalization in time series

• Models are expected to generalize to unseen scenarios/domains in time series

predictive tasks.
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Background
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Preliminaries of time series
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Time series data

Time series is a sequence of data points indexed in time order.

Plot of daily average max and min temperature in Boulder CO.
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Characteristics of time series data

Many time series exhibit one or more of the following characteristics:

• Trends, seasonal, cycle, irregular
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Time series predictive tasks

Some popular predictive tasks that model time series data.

(a) Time series classification

(e.g., human activity

recognition)

(b) Time series forecasting (e.g.,

stock price forecasting)
(c) Anomaly detection

(e.g., fraud detection)
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Traditional time series models

• Autoregressive (AR)

Xt =
pX

i=1

'iXt�i + "t ,

where p is the order, '1, . . . ,'p are model parameters, and "t is white noise.

• Moving Average (MA)

Simple moving average (SMA)k =
1

k

nX

i=n�k+1

pi ,

where k is the window size, and n is the total number of observed values.

• Autoregressive Integrated Moving Average (ARIMA)

AR + MA + I (preliminary di↵erencing procedure)
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Advanced time series methods

• Multilayer Perceptron (MLP)

• Long Short-Term Memory Networks

(LSTMs) [Hochreiter and

Schmidhuber, 1997]

• Transformer [Vaswani et al., 2017]
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/?source=post_page-----b3996e6a0296--------------------------------


Preliminaries of out-of-distribution (OOD) generalization
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Distribution shifts in OOD generalization

Distribution shifts denote the training distribution di↵ers from the test distribution.
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Two types of distribution shifts

Domain generalization (our focus)

• Train and test on disjoint sets

of domains.

Subpopulation shift

• Training and test domains

overlap, but their relative

proportions di↵er.

22 / 106



Formal definition of domain generalization

Domain: A domain is composed of data samples that are sampled from a distribution,

denoted as Dd = {(X d ,Y d)}nd ⇠ Pd(X ,Y ). Data samples (X ,Y ) consists of the

input observation X and the corresponding label Y .

Domain generalization (DG): Given M training (source) domains

Dtrain = {Di |i = 1, . . . ,M}. The goal of DG is to learn a generalizable predictive

function h : X ! Y from the M training domains to achieve a minimum prediction

error on unseen test domains Dtest (i.e., Pi (X ,Y ) 6= Ptest(X ,Y )):

min
h

E(X ,Y )2Dtest
[`(h(X ),Y )],

where E is the expectation and `(·, ·) is the loss function.
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Overview of DG methodology

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.
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Data manipulation

Manipulating the inputs to assist in learning general representations, by increasing data

quality and quantity.

min
h

E(X ,Y )[`(h(X ,Y )] + E(X 0,Y )[`(h(X
0,Y )]

• Domain randomization (DR) [Yue et al., 2019]: Randomly draw K real-life

categories from ImageNet for stylizing the source images.
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Representation learning

Learning domain-invariant representations or disentangling the features into

domain-shared or domain-specific parts.

• Domain adversarial neural network (DANN) [Ganin and Lempitsky, 2015]: Adopt

a gradient reversal layer and update the feature extractor to fool the domain

classifier by generating domain-invariant representations.
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Learning strategy

Exploiting learning strategies, such as meta-learning, ensemble learning, and gradient

operation, to promote the generalization capability.

• Meta-learning Domain Generalization (MLDG) [Li et al., 2018]: Simulate

train/test domain shift during training by synthesizing virtual testing domains

within each mini-batch.
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Applications for DG

Wide applications across CV, NLP, RL, and others.
Image classification

Sim-to-real 
Robot control

Semantic 
parsing

Sensor-based human 
activity recognition
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Problems and challenges
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Recap: Formal definition of domain generalization

Domain: A domain is composed of data samples that are sampled from a distribution,

denoted as Dd = {(X d ,Y d)}nd ⇠ Pd(X ,Y ). Data samples (X ,Y ) consists of the

input observation X and the corresponding label Y .

Domain generalization (DG): Given M training (source) domains

Dtrain = {Di |i = 1, . . . ,M}. The goal of DG is to learn a generalizable predictive

function h : X ! Y from the M training domains to achieve a minimum prediction

error on unseen test domains Dtest (i.e., Pi (X ,Y ) 6= Ptest(X ,Y )):

min
h

E(X ,Y )2Dtest
[`(h(X ),Y )],

where E is the expectation and `(·, ·) is the loss function.
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DG in time series predictive tasks

A few distinctions from the standard setting:

Data samples: (X ,Y ) consist of the time series input X = [xt ]t2St , where St is the

set of time steps, and the set of labels Y = [yt ]t2Sp , where Sp ✓ St is the set of

labeled time steps.

Two types of domains:

• Source-domain: distribution shifts across data sources.

• Time-domain: distribution shifts over time.
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DG challenges in time series predictive tasks

Defining domains

• Invariant characteristics should exist across domains for e↵ective generalization.

• Distribution within a time series may shift over time; subdomains may exist.
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DG challenges in time series predictive tasks

Temporal dependencies

• Modeling temporal dependencies while capturing domains’ invariant

characteristics.

An illustration of daily dependencies of tra�c flow time series.
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DG challenges in time series predictive tasks

Continuous output space

• Dealing with unbounded and potentially infinite output values in forecasting tasks.

Real and predicted TESLA stock price.
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Methodology
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Overview of OOD generalization methodology in time series
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Data augmentation
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Data augmentation for time series classification

Paper: Data Augmentation for Time Series Classification using Convolutional Neural

Networks [Le Guennec et al., 2016]

Two data augmentations are used:

• Window slicing (WS): Divide the time series into slices, each of which is assigned

to the same class.
• Window warping (WW): Warp a randomly selected slice of a time series by

speeding it up or down.
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Impact of data augmentation on time series classification

Both WS and WW methods help improve classification performance on UCR

Archive [Chen et al., 2015].

Both axes correspond to error rates. “W(Win)” means that the y-axis method has lower error

rates. T for Tie and L for Lose.
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Domain-wise time series augmentation

Paper: Domain Generalization via Selective Consistency Regularization for Time Series

Classification [Zhang et al., 2022]

• For each source domain, sample an

augmentation function from a pre-defined

distribution at each iteration. The domain-wise

augmentation simulates potential test-time

domain shifts.
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Time series augmentation methods

Three time series augmentation methods are considered in this work.

Applying data augmentations improves model performance on the Bearings (Detect

bearings faults in rotating machines) dataset.
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The choice of augmentations methods

The choice of augmentations depends on the dataset to avoid perturbing

characteristics known to be important for classification.

On HHAR (Heterogeneity human activity recognition) dataset, limited augmentation,

i.e., scaling with µ = 0,� = 1 and �new ⇠ Unif (0.8, 1.2), is applied since mean and

standard deviation are key classification features.

Accelerometer time series plots (for each axis) of a static activity “Sit” and a dynamic activity

“Walk”.
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Summary of data augmentation

Limited data augmentation research in DG for time series tasks.

Advantages

• Increase data quantity

• Easy to understand and simple to implement

Disadvantages

• Lack of theoretical guarantee
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Representation Learning
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Regularization
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Regularization

These methods introduce regularization terms into the model’s objective function to

enhance domain generalization by learning better representations, e.g.,

domain-invariant representations.

The overall objective can be expressed as:

Lobj = Lmodel + �Lreg

Note that Lreg does not mean L1/L2 norm that prevent overfitting in general.
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Selective cross-domain consistency regularization

Paper: Domain Generalization via Selective Consistency Regularization for Time Series

Classification [Zhang et al., 2022]

Learn model parameters such that the class conditional distribution is invariant for

closely related domains according to latent inter-domain relationships.
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Selective cross-domain consistency regularization

Impose greater regularization on more similar domains:

Lsel =
MX

i ,j

w(D i ,D j)| {z }
Domain similarity

LX

l=1

||ḡDi ,l � ḡD
j ,l ||22| {z }

Di↵erence of mean logit vectors of domains for class l

where ḡD
i ,l is the mean logit vector for domain D

i class l , referred to as the

class-conditional domain centroid.
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Defining domain similarity – metadata based similarity

Domain metadata (i.e., descriptions of source domain data) is available:

• Use metadata to infer relationships by grouping the domains into clusters.

• Only domains within a cluster are assumed to share class relationships and are

subject to regularization.

L
meta
sel =

KX

c=1

X

Di2Sc

LX

l

||ḡDi ,l � �̄c,l ||22

where Sc is the set of domains in cluster c . �c,l is the mean logit vector for domain

cluster c class l , denoted class-conditional cluster centroid.
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Defining domain similarity – learned similarity

Domain metadata is not available:

• Measure domain distance using the squared L2 distance of their class-conditional

domain centroids.

• Regularization applies to each domain and its nearest neighbor domain.

RBF kernel is applied on the inter-domain distance with hyperparameter ⇠.

wlearned(D
i ,D j) =

8
<

:
1
L

PL
l=1 exp

⇣
�||ḡD

i ,l
�ḡD

j ,l
||
2
2

2⇠2

⌘
, d

j is nearest to d
i for most classes

0, Otherwise
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Cross-domain regularizations with di�culty awareness

Paper: Domain Generalization in Time Series Forecasting [Deng et al., 2024]

This work focuses on the scenario where time series domains share certain common

attributes (e.g., same seasonality and trend) and exhibit no abrupt distribution shifts

within a single domain.

Propose the domain discrepancy regularization, and an extended version by

incorporating a notion of domain di�culty awareness (named CEDAR).
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Domain discrepancy regularization

Dissimilar training domains should not exhibit significant variations in forecasting

performance:

LDD =
MX

i ,j

dH

�
D

i ,D j
�

| {z }
Distribution divergence

· dLfcst

�
D

i ,D j
�

| {z }
Di↵erence in mean forecasting performance

where dH(, ) calculates the discrepancy of high-level representation of two domains

(e.g., RNN hidden states). dLfcst(, ) computes the Euclidean distance between two

domain-averaged losses.

The regularization term aims to prevent severe overfitting in all source domains.
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Domain discrepancy regularization with domain di�culty awareness

A scaling factor is introduced to adjust the penalty to account for the di�culty of the

domains:

LDDD =
MX

i ,j

dH

�
D

i ,D j
�
· dLfcst

�
D

i ,D j
�
· !(D i ,D j

| {z })
A scaling factor that modulates the penalty

The scaling factor is based on standard deviations of losses:

!(D i ,D j) =
1

Std
�
Lfcst(D i )

�
+ Std

�
Lfcst(D j)

�
+ "

Higher loss variance implies greater challenges in training. A smaller penalty is applied

to that domain, allowing the model more flexibility to learn from its data.
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Domain performance analysis

CEDAR achieves more even loss distributions for some training domains (e.g., 6–9),

which denotes less underfitting and overfitting. CEDAR also shows notable

performance improvements across all test domains.

Forecasting performance by domains of the base model and CEDAR on Stock-volume.
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Such DG methods might not be useful for non-stationary time series, because:

• Complex distributions exist within a time series, i.e., it contains many unknown

sub-distributions.
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Adaptive learning and forecasting for time series

Paper: AdaRNN: Adaptive Learning and Forecasting for Time Series [Du et al., 2021]

A two-stage approach AdaRNN is proposed to generalize non-stationary time series.

1. Temporal distribution characterization segments time series into multiple domains.

2. Temporal distribution matching matches distribution gaps of domains.
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Temporal distribution characterization (TDC)

Identify the most distinct periods/domains within a time

series, which represents the worst case of temporal

covariate shift since the cross-domain distributions are the

most diverse.

Solve an optimization problem:

max
1

K

KX

i ,j

d(D i ,D j)

where d(, ) can be any distance function.

A greedy algorithm is used.
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Temporal distribution matching (TDM)

Once the time domains are obtained, learn

common knowledge shared by di↵erent domains

via matching their distributions.

Given a domain-pair (D i ,D j), the loss of TDM

is formulated as:

Ltdm(D
i ,D j ; ✓,↵) =

TX

t=1

↵t
i ,jd(h

t
i ,h

t
j ; ✓)

where ↵t
i ,j denotes the distribution importance

between D
i and D

j at t.
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Temporal distribution matching (TDM)

The final objective (one RNN layer) is:

L(✓,↵) = Lpred(✓) + �
2

K (K � 1)

KX

i ,j

Ltdm(D
i ,D j ; ✓,↵)

where ↵ is leaned through a boosting-based importance evaluation algorithm.
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Adversarial learning
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Adversarial learning

Adversarial learning is a technique used in machine learning to fool a model with

malicious input.

In DG, adversarial learning is designed to learn representations that are invariant to

domain variations.

• E.g., a discriminator is trained to identify di↵erent domains, while a generator is

simultaneously trained to fool the discriminator, leading to domain-agnostic

features [Ganin and Lempitsky, 2015].

Mostly studied in classification tasks.
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Out-of-distribution representation learning for time series classification

Paper: Out-of-Distribution Representation Learning for Time Series Classification [Lu

et al., 2022]

Propose an end-to-end approach, DIVERSIFY incorporating adversarial learning for

out-of-distribution representation learning on non-stationary times series.
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The framework of DIVERSIFY
Im

ag
e
cr
ed

it
s:

[L
u
et

al
.,
20

22
]

63 / 106



Fine-grained feature update

Propose pseudo domain-class label to supervise a

feature extractor. Features are more fine-grained

w.r.t. domains and labels.

The supervised loss is:

Lsuper = E(x,y)⇠Ptr (hc(hbf (x)), s)

Treat per category per domain as a new class with

label s 2 {1, 2, . . . , S = K ⇥ C}. K is the number

of latent distributions/domains and C is the

number of labels. s = d
0 ⇥ C + y where d

0 is the

domain label initialized to 0.
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Latent distribution characterization

Employ a self-supervised pseudo-labeling strategy to obtain domain labels.

1. Obtain the initial centroid for each (latent) domain:

µ̃k =

P
xi2Xtr �k(hc(hbf (xi ))) · hbf (xi )P

xi2Xtr �k(hc(hbf (xi )))

where �k is the k
th element of the logit softmax output.

2. Obtain the pseudo domain labels according to the

nearest centroid:

d̃ 0
i = argminkDis(hbf (xi ), µ̃k)
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Latent distribution characterization

3. Compute the centroids again and obtain the updated

pseudo domain labels.

µk =

P
xi2Xtr (d̃ 0

i = k) · hbf (xi )
P

xi2Xtr (d̃ 0
i = k)

d
0

i = argminkDis(hbf (xi ), µk)

4. Compute the self-supervised pseudo domain loss Lself
and the classification loss Lcls.

Use adversarial training, i.e., gradient reversal layer

(GRL) [Ganin and Lempitsky, 2015] to learn features for

classifying domains that disregard class information.
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Domain-invariant representation learning

Given the learned domain labels, update the

classification loss Lcls and domain classifier loss

Ldom using adversarial training.

The gradient reversal layers help learn key features

for classification while eliminating domain-specific

information.

Repeat these steps until convergence or max epochs.
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Graph model

68 / 106



Temporal domain generalization with drift-aware dynamic neural network

Paper: Temporal Domain Generalization with Drift-Aware Dynamic Neural

Networks [Bai et al., 2022]

Build a time-sensitive model, DRAIN, using dynamic neural networks to achieve

temporal domain generalization.

An illustrative example of temporal domain generalization.
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Problem formulation – temporal domain generalization

Given source/training domains D1,D2, . . .DT where we assume the distribution of

Dt , t = 1, 2, . . .T evolves over time and temporal drift across time is not too high.

Train Deploy

DT+1DTD2D1 …

Arrow of Time

The goal is to infer the shifting decision boundary and extrapolate it to target domain

DT+1 in the immediate future.

t = 1 2 3 T T + 1 T + 2

Decision 
boundary …
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A probabilistic view of concept drift in temporal domain generalization

Propose a Bayesian framework to characterize the temporal data distribution drift and

its influence on models, namely P(wt |Dt).

Predict wT+1 given all training data D1:T :

P(wT+1|D1:T ) =

Z

⌦
P(wT+1|w1:T ,D1:T )| {z }

inference

· P(w1:T |D1:T )| {z } dw1:T

training

Decompose the training phase:

P(w1:T |D1:T ) =
TY

s=1

P(ws |ws�1,D1:T )

= P(w1|D1) · P(w2|w1,D1:2) · · · P(wT |w1:T�1,D1:T )
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Neural network with dynamic parameters

Treat the time-evolving model parameters wt as a dynamic graph to achieve a fully

time-sensitive model.

Use an edge-weighted graph G = (V ,E ,w) to represent a neural network. w

represents the entire set of parameters for the neural network.

Assume the topology of the neural network is given, i.e., V ,E are fixed and w is

changing w.r.t time.
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The framework of DRAIN

Leverage the sequential model to learn the temporal drift adaptively and to predict the

model parameters on the future domain.
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Causality-inspired method
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Causality

Causality is a relationship between two events, in which one event causes an e↵ect on

the other event.
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Causal-based time series domain generalization

Paper: Causal-based Time Series Domain Generalization for Vehicle Intention

Prediction [Hu et al., 2022]

Propose the Causal-based Time Series Domain Generalization (CTSDG) model, which

constructs a structural causal model for vehicle intention prediction (i.e., predict

interaction outcomes such as pass/yield).

Illustration of selected domains for driving scenarios. Black arrow line (!) represents a

reference path and red circles (•) are intersecting points.
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The framework of CTSDG

A causal view of data generating process under vehicle interaction settings.

Shaded/transparent nodes are

observed/latent variables. Directed

edge denotes a causal relationship.

Dashed edges denote correlation.

• Domain (D): map properties, e.g., road topology,

speed limit, and tra�c rules.

• Event (E): two-vehicle interactions, e.g., initial states

and the length of interaction

• Driver (O): driver’s driving preferences

• X : vehicle interactive trajectories; multivariate time

series

• Z : latent representations

• Y : vehicle intention label

• XC/XNC : causal/non-causal features
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Invariance condition

Shaded/transparent nodes are

observed/latent variables. Directed

edge denotes a causal relationship.

Dashed edges denote correlation.

According to the causal framework, XC causes Y ,

and by d-separation, we have Y ?? D|XC .

Learn a q(·) maps X to Z , �(·) maps Z to XC and a

classifier h(·) maps XC to Y .

Minimize the prediction loss:

Lclf = Loss(h(�(q(X ))),Y )
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Invariance condition

Shaded/transparent nodes are

observed/latent variables. Directed

edge denotes a causal relationship.

Dashed edges denote correlation.

By d-separation, XC also needs to satisfy the

invariance condition XC ?? D|{E ,O}.

However, O is unobservable and there may not be a

same E across domains.

Instead, assume that the distance over XC between

same-class inputs from di↵erent domains is bounded.

Minimize the distance:

Ldis =
X

⌦(xi ,xj )=1,i 6=j

Dis(�(q(xi )),�(q(xj)))

where ⌦ : X ⇥ X ! {0, 1} is a match function. ⌦(xi , xj) = 1

denotes same-class inputs from di↵erent domains.
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Capturing temporal latent dependencies

Remember that q(·) is a function maps X to Z . Given Z ?? D|X , by learning q(·), we
can extract a domain-invariant latent variable that represents the input space.

Since X is time series data, the learned Z should capture temporal latent information.
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Capturing temporal latent dependencies

Variational Recurrent Neural Networks (VRNN) [Chung et al., 2015] is used to model

the dependencies between latent random variables across time steps, and q(·).

The VRNN contains a Variational Autoencoder (VAE) [Kingma and Welling, 2013] at

every time step and these VAEs are conditioned on previous auto-encoders via the

hidden states of an RNN.

Green lines: generation process; blue lines: inference process; red lines: recurrence process
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Overall algorithm

The complete objective function to minimize:

Lclf + �Ldis + �Ltemp

where Ldis denotes the distance over XC between same-class inputs from di↵erent

domains. Ltemp is the the objective function for the VRNN.
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Summary of representation learning

Advantages

• General and popular

• Better performance

• Some theoretical guarantee

Disadvantages

• Still di�cult to remove spurious features

• Data-driven
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Gradient operation
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Gradient operation

Gradient operation approaches optimize machine learning models by adjusting their

parameters to minimize the loss function.
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Gradient interpolation loss to generalize along time

Paper: Training for the Future: A Simple Gradient Interpolation Loss to Generalize

Along Time [Nasery et al., 2021]

Introduce a Gradient Interpolation (GI) approach for temporal domain generalization.

Train Deploy

DT+1DTD2D1 …

Arrow of Time

The approach includes a time sensitive network and imposes a special loss to

encourage the network to generalize to the near future.
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Time sensitive network F✓(x, t)

Use Time2Vec (t2v) [Kazemi et al., 2019] to capture complex

dependencies such as periodicity.

⌧t [i ] =

(
wi t + bi , 1  i  mp

sin(wi t + bi ), mp  i  m

Introduce a novel time dependent leaky ReLU (TReLU)

whose threshold and slop are a↵ected by time.

x t

NN Layer

NN Layer

TReLU

TReLU

t2v
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Gradient interpolation

Despite using a time-sensitive artitecture, ERM may overfit on D1, . . .DT , since there

is no relation or constraint between the prediction of the network on di↵erent

timestamps.

GI loss:

L(y ;F✓(x, t))| {z }
Pred loss

+ � max
�2(��,�)

L(y ;F✓(x, t � �) + �
@F✓(x, t � �)

@t
)

| {z }
Pred loss on interpolated logits

The second term is the loss on a regularized approximation of F✓(x, t) using the

first-order Taylor Expansion at t � �. It provides “supervision” on nearby time steps

and encourages smoother functions.

� is adversarially chosen by gradient ascent within a user-provided window �.

A negative � encourages extrapolation from the future.
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Qualitative analysis on 2-moons

 

GI learns a more accurate decision boundary, which rotates correctly along time.
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Datasets, benchmarks and evaluation
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Benchmarks for OOD generalization

Two popular benchmarks for OOD generalization:

(a) DomainBed [Gulrajani and

Lopez-Paz, 2020]
(b) WILDS [Koh et al., 2021]

They focus on image datasets.
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A benchmark for OOD generalization in time series

WOODS [Gagnon-Audet et al., 2022] is a benchmark of 3 synthetic and 8 real-world

time series datasets spanning a wide array of critical problems and data modalities,

such as videos, brain recordings, etc.

https://woods-benchmarks.github.io/auselec.html
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OOD generalization algorithms for time series

The framework includes adaptation of existing OOD generalization algorithms for time

series datasets.

• Empirical Risk Minimization (ERM)

• Invariant Risk Minimization (IRM)

• Group Distributionally Robust Optimization (GroupDRO)

• ...

• DIVERSIFY [Lu et al., 2022]

Some methods are agnostic to data and tasks, and some are only applicable for

classification tasks.
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Model selection

For DG in time series

• Train-domain validation: Choose the model that gets the

best average validation performance across training domains.

• Test-domain validation: Choose the model with the best

performance on the test domain. No early stopping.

• Oracle train-domain validation: Choose the model with

the best performance on the test domain. During training,

the validation is done on training domains.

• Leave-one-domain-out cross-validation [Gulrajani and

Lopez-Paz, 2020]: Train each model while holding one of the

training domains as validation set. Choose the model

maximizing this average accuracy, retrained on all training

domains.
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Experimental findings of WOODS

• WOODS datasets have a significant generalization gap

• Marginal improvement over ERM on WOODS real-world datasets on average

• Algorithms fail on synthetic datasets

95 / 106



More datasets

Healthcare: eICU collaborative research database [Pollard et al., 2018] is a freely

available multi-center database for critical care research.

Retail: Favorita [Mendoza Calero, 2018] comprises grocery sales data from

Corporación Favorita.

Environmental monitoring: Air-quality dataset [Zhang et al., 2017] contains hourly

air quality information collected from 12 stations in Beijing.
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Summary, future directions and discussion
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Conclusion

Motivation, background, problems and challenges of OOD generalization in time series

Methodology:

• Data manipulation: Data augmentation

• Representation learning

Regularization, adversarial learning, graph models, causality-inspired method

• Learning strategy: Gradient operation

Datasets, benchmarks and evaluation
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Future directions

Interpretable OOD generalization in time series

• Learning to interpret: why it can generalize?

Ethical and fair AI

• Ensure models are fair and unbiased, especially in critical applications like

healthcare.

• Develop fairer evaluation standards.

Sustainability and scalability

• Computational e�ciency in model training and execution for large-scale time

series data.
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Q&A

Thank You!

Questions, comments, . . .
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