
Knowledge Artefact Identification

Keywords: EHR, health records, repository, governance

Issuer: openEHR Specification Program

Revision: 0.7.4 Pages: 41 Date of issue: 29 Sep 2014

Status: DEVELOPMENT
© 2009- The openEHR Foundation

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Affiliates Australia, Brazil, Japan, New Zealand, Portugal, Sweden

Licence Creative Commons Attribution-NoDerivs 3.0 Unported.
creativecommons.org/licenses/by-nd/3.0/

Support Issue tracker: www.openehr.org/issues/browse/SPECPR
Web: www.openEHR.org

http://creativecommons.org/licenses/by-nd/3.0/
http://www.openehr.org/issues/browse/SPECPR
http://www.openEHR.org

Knowledge Artefact Identification
Rev 0.7.4
Amendment Record

Issue Details Who Completed

0.7.4 Replace ‘+uNNN’ with ‘-unstable’; simplify the number
after ‘rc’ to an integer build count.

S Garde,
I McNicoll,

H Leslie

29 Sep 2014

0.7.3 Remove build_count, replace with instance_uid. I McNicoll
T Beale

28 May 2014

0.7.2 Change ARCHEYTPE_HRID.commit_number to
build_count. Build_count reset to 1 on each version change.
Adjust diagrams and explanations.

S Garde
I McNicoll

T Beale

21 May 2014

0.7.1 Simplify development state in lifecycle; merge ‘initial’ and
rename ‘draft’.

S Garde
I McNicoll

09 May 2014

0.7.0 Rewrite referencing section; update ‘problem description;
further grammar improvements.

T Beale 20 Jun 2013

0.6.5 Remove errors and ambiguities to do with explanation of
human readable identifier; improve nomenclature; rewrite
grammar.

T Beale 15 Jun 2013

0.6.0 Major update based on CKM clinical group analysis, and
feedback from the CIMI and openEHR communities.

S Garde
H Leslie

I McNicoll
T Beale

21 Apr 2013

0.2.0 Refinements to do with template identification.
Review from Medical Centrum Alkmaar (Netherlands).

T Beale
M van der Meer

01 Feb 2010

0.1.0 Initial Writing. T Beale 09 Jul 2009
Date of Issue: 29 Sep 2014 Page 2 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification
Rev 0.7.4
Trademarks

“Microsoft” and “.Net” are registered trademarks of the Microsoft Corporation.

“Java” is a registered trademark of Sun Microsystems.

“Linux” is a registered trademark of Linus Torvalds.

Acknowledgements

The work reported in this document was funded by:

• University College London, Centre for Health Informatics and Multi-professional Education
(CHIME);

• Ocean Informatics.
Issuer:openEHR Specification Program Page 3 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification
Rev 0.7.4
1 Introduction.. 6
1.1 Purpose .. 6
1.2 Related Documents.. 6
1.3 Status ... 6

2 Introduction.. 7
2.1 The Environment ... 7
2.2 The Problem .. 8
2.3 Human-readable and Machine Identifiers ... 9
2.4 Meta-data... 10

3 Source Artefact Identification ...11
3.1 Overview ... 11
3.2 Formal Model .. 12
3.2.1 Human-readable Identifier (HRID)... 12
3.2.2 Archetype Identifier .. 12
3.2.2.1 Concept Identifier ...13
3.2.2.2 Need for RM Class Name in Identifier ...15
3.2.3 Template Identifier .. 15
3.2.4 Terminology Subset Identifier... 15
3.2.5 Query Set Identifier ... 16
3.3 Versioning.. 16
3.3.1 General Model... 16
3.3.2 Version Numbering ... 16
3.3.3 Change Semantics ... 18

4 Lifecycle Model .. 19
4.1 Conceptual Model ... 19
4.2 Lifecycle-based Versioning ... 20
4.3 Change Scenarios .. 21
4.3.1 Change to Definition ... 21
4.3.2 Change to Terminology Definition ... 22
4.3.3 Addition of Terminology Translation.. 22

5 Distributed Governance .. 23
5.1 Overview ... 23
5.2 Management .. 23
5.3 Virtual Referencing across MOs ... 23
5.4 Transfer and Forking ... 23

6 Referencing... 26
6.1 Source Artefact References ... 26
6.1.1 Archetype External References (ADL/AOM 1.5)......................... 26
6.1.2 Template References to Archetypes and Templates...................... 27
6.1.3 Between Specialised Archetypes .. 28
6.2 Source Artefact Relationship Constraints ... 28
6.2.1 ADL 1.4 Archetype Slots .. 28
6.2.2 ADL 1.5 Archetype Slots .. 29
6.3 AQL Query Sets .. 29
6.4 AQL Queries ... 29
6.5 Operational Artefacts... 30
Date of Issue: 29 Sep 2014 Page 4 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification
Rev 0.7.4
6.6 References from Data ..31
6.6.1 Requirements ...31
6.6.2 Reconstitutability...32
6.6.3 Supporting Archetype-based Querying ...32
6.6.4 Formal Model ..33
6.6.5 Optimisations...33
6.6.5.1 Identifier Aliasing ...34
6.6.5.2 Reference Compression ..34

7 A Reliable URI for Knowledge Resources........................... 36

8 Scenarios ... 37
8.1 Minor Version Upgrade ...37
8.2 Major Version Upgrade..37
8.3 Templates using Archteypes and Subsets ..37
8.4 Artefact Transfer / Fork ...37

9 Artefact Authentication... 38
9.1 Integrity Check ..38
9.2 Authentication..38
9.3 Canonical Form – Archetype 'semantic view'39
Issuer:openEHR Specification Program Page 5 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Introduction Knowledge Artefact Identification
Rev 0.7.4
1 Introduction

1.1 Purpose
The purpose of this document is to describe an identification system for health informatics knowledge
artefacts, including archetype, template and terminology subsets. This includes such artefacts created
by organisations such as the openEHR Foundation, standards bodies and clinical modelling initia-
tives.

The semantics covered include:

• formal human-readable and machine identifiers;

• versioning;

• lifecycle management and states;

• referencing artefacts from elsewhere;

• deal with transfer and forking;

• supporting integrity and non-repudiation.

Unless otherwise stated, in this document, the term 'artefact' refers specifically to these artefact types.

1.2 Related Documents
This document is part of a framework of documents for which the core document is the following:

• Distributed Development and Governance Model.

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

The latest version of this document can be found in PDF format at
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system.pdf.
New versions are announced on openehr-announce@openehr.org.
Date of Issue: 29 Sep 2014 Page 6 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system.pdf
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org

Knowledge Artefact Identification Introduction
Rev 0.7.4
2 Introduction

2.1 The Environment
This specification is designed to address the need for reliable identification and referencing of com-
plex knowledge artefacts within a distributed authoring and consumption environment. The figure
below establishes the key concepts and nomenclature assumed by this specification. The focus of
interest is ‘artefacts’, including archetypes, templates (of the archetype variety), terminology sub-
sets/ref-sets, query sets, and potentially things such as computable guidelines.

FIGURE 1 Distributed Development Environment

Custodian Organisation 2

MO2::Artefact A

Library MO2::yyyy

Modelling

managed
development

Repository

MO2::Artefact D
App

check-in
check-out

Modelling
App

check-in
check-out

Modelling

unmanaged
development

App

artefact
transfer

Artefact A
Artefact B

Artefact A
Artefact B

Artefact A
Artefact B

Registry

Classific

User
Enterprise

artefact
consumption

-ation

Managing
Organisation

Custodian Organisation 1 (upstream)

Library MO1::xxxx

Repository

(downstream)

MO1::Artefact A

MO1::Artefact B

Library MO1::xxxx

MO1::Artefact A

MO1::Artefact B

library re-use

references

Registry

Classific
-ation

(readonly)
Issuer:openEHR Specification Program Page 7 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Introduction Knowledge Artefact Identification
Rev 0.7.4
Artefacts are assumed to be produced by tools, either in an unmanaged way, or in a situation in which
users are connected to an artefact Custodian Organisation (CO). Such an organisation is assumed to
have a Repository (which stores and manages artefacts), and potentially a Registry (in which meta-
data about artefacts is stored) and Classification (a semantic index on Artefacts, typically achieved
via the use of one or more ontologies). A Custodian Organisation could be international, country
level, or be owned by a company or other organisation.

Most MOs will tend to develop artefacts based on those published by ‘higher-level’ (i.e. national,
international) MOs. To enable this, a logical ability to re-use specified releases of artefacts from
‘upstream’ MOs by ‘downstream’ MOs is assumed. This usually implies some kind of virtual inclu-
sion (e.g. from one web-visible repository to another), or it may be implemented by copying and
marking as read-only the received artefacts. Regardless of the particular implementation, the ‘logical
contents’ of a repository is the totality of localy managed artefacts, plus all virtually referenced arte-
fact libraries. This is necessary to enable most compiler-like tools to function normally.

It is assumed that Artefacts can also move between MOs for purposes of transfer, or due to ‘forking’
(i.e. splitting of a line of development, as with software). Artefacts are published in some form and
consumer by User Enterprises which deploy the artefacts in some technical infrastructure.

Artefacts are ultimately consumed by User Enterprises, normally in a validated and compiled form.

2.2 The Problem
The problem specifically addressed by this specification is that of identification and referencing of
knowledge artefacts. The notion of ‘identification’ for such artefacts incorporates a number of key
requirements. The kinds of models in scope include archetypes1, templates2, terminology subsets3,
clinical guidelines, query sets and other non-atomic domain level definitions of content, rules, work-
flows and other semantics. The common aspects of artefacts within this scope is that they are ‘outside
the software’, and that they are independent of specific implementation technologies. Examples
include:

• an archetype for ‘blood gases’;

• a template for ‘discharge summary’;

• a SNOMED CT subset for ‘parasitic infection’.

Out of scope are the atomic ‘concepts’ and ‘categories’ commonly found in terminologies (e.g.:
ICD10, SNOMED CT, LOINC) and ontologies (e.g. the BFO ontologies such as OGMS, FMA, IAO
etc).

Extensive experience with such artefacts in the health domain has shown that while there are many
similarities to software artefact identification, there are sufficient differences to warrant an explicit
scheme. The health domain is the primary domain of experience assumed here, but the principles are
applicable to any domain.

The key requirements addressed here are as follows:

• identify and distinguish versions, variants and releases of ‘source’ artefacts within and from
authoring environments;

1. http://www.openehr.org/releases/trunk/architecture/am/aom1.5.pdf

2. http://www.openehr.org/releases/trunk/architecture/am/tom1.5.pdf

3. various descriptions at http://ihtsdo.org
Date of Issue: 29 Sep 2014 Page 8 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Introduction
Rev 0.7.4
• define rules for expressing and resolving references between source artefacts, including ver-
sion variants;

• define rules for identification of compiled / operational artefacts;

• define rules for evolving identifiers (including version) of artefacts over time, based on a
‘standard’ lifecycle for artefacts;

• define rules for identification when artefacts are retired, moved or ‘forked’.

2.3 Human-readable and Machine Identifiers
There are two general approaches to identification. The first is the one used in software and ontology
development: human-readable identifiers, denoted in this specification as HRIDs. Under this
approach, identifiers name an artefact (e.g. a class in object-oriented software, category in an ontol-
ogy) and can be used as references to connect similar artefacts in a hierarchy (e.g. according to the
inheritance relationship). The second is the use of meaningless machine identifiers (more properly
denoted ‘machine-readable’ or ‘machine-resolvable’ identifiers) such as GUIDs and ISO OIDs with
accompanying de-referencing mechanisms. The two approaches are not mutually exclusive, nor are
they equivalent.

A human-readable identification scheme supports the notion of a specialsiation / subsumption hierar-
chy of artefacts (‘inheritance’ in object programming), multi-dimensional concept spaces, flexible
versioning, and formally reflects the artefact authors' and users' understanding of the concept space
being modelled. Human-readable identification supports many types of computational processing. A
typical software HRID is the class name FastSortedList. Within the software world, HRIDs are
used for both source artefacts and built components such as libraries and executables, although the
details of the respective types of identifier may differ.

One crucial feature of most human-readable identifiers is that they may change after initial assign-
ment, for reasons of change of purpose, improved understanding of need, or external requirements
change. These kinds of changes are normally limited to the early development (typically pre v1.0
phase) period in order to enable stability later on.

Machine identifiers on the other hand are not human-readable, typically do not directly support ver-
sioning (unless specifically designed to do so, usually via the use of tuples of atomic identifiers), but
do enable various useful kinds of computation. They require mapping to convert to human-readable
identifiers. Unlike human-readable identifiers, machine identifiers do not normally change once
assigned.

One key question when using machine identifiers is: what do the identify? A logical artefact, which
may exist in several minor and major versions? Each minor version? Each textually different variant
that is committed to a repository? For each of these, a scheme has to be devised that correctly identi-
fies the thing to be tracked.

It is possible to define an identification scheme in which either or both human-readable and machine
identifiers are used. In schemes where machine identification alone is used, all human artefact 'iden-
tification' is relegated to meta-data description, such as names, purpose, and so on. One problem with
such schemes is that meta-data characteristics are informal, and therefore can clash – preventing any
formalisation of the ontological space occupied by the artefacts. Discovery of overlaps and in fact
any comparative feature of artefacts cannot be easily formalised, and therefore cannot be made prop-
erly computable.

The approach assumed here is to use both types of identifier in the following way:
Issuer:openEHR Specification Program Page 9 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Introduction Knowledge Artefact Identification
Rev 0.7.4
• a Guid is assigned to a knowledge artefact when it is created. It does not change, no matter
what changes are made to the definition of the artefact. This enables authoring and model
repository tools to track artefacts as they are modified over time.

• one or more namespaced HRIDs for an artefact can be computed from various properties of
the artefact. Which properties will depend on the type of artefact.

• the last committed ‘build’ of an artefact (i.e. most recent version containing a change, no
matter how small) can be identified in two ways:

- using a ‘build’ number that is part of the version identification of the artefact;
- via a hash on a canonical serialisation of the artefact.

This is a departure from the common situation where no machine identifier is assigned, and the arte-
fact HRID is a static string, rather like a source file filename.

2.4 Meta-data
A solution for identification that includes human readable (formal) identifiers unavoidably implicates
the ‘meta-data’ of the identified artefacts, since such identifiers are normally created from smaller
items such as ‘reference model class’, ‘version’, ‘namespace’ and so on. However, some items of
meta-data are not appropriate for inclusion in an artefact, and would be created in the Registry
instead. A general rule is that this applies to any item of information that may change without affect-
ing the semantics of the artefact, and whose change should not require revision of the artefact itself.
Examples of such information: ontological classification(s); ‘ownership’ status.

This specification assumes that an artefact management environment includes such a registry, and
that some items of meta-data can be stored outside the artefacts themselves.
Date of Issue: 29 Sep 2014 Page 10 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Source Artefact Identification
Rev 0.7.4
3 Source Artefact Identification

3.1 Overview
The basis for identifying source (i.e. authored) artefacts is to define a number of separate logically
identifying properties, as well as a machine identifier. One or more human-readable identifier(s) can
be generated from the non-uid identifying properties. For archetypes and templates, the relevant prop-
erties are defined on the ARCHETYPE_HRID class from the openEHR Archetype Object Model. Related
properties are inherited from the AUTHORED_RESOURCE classe into ARCHETYPE are shown, including
the lifecycle_state property, as well as all other descriptive meta-data.

For other types of artefacts the detailed model will differ, but the principles are the same.

Three distinct groups of properties shown in the ARCHETYPE_HRID class that underpin the identifica-
tion scheme described here, as follows:

• namespace provides a way of distinguishing logical identifiers created by different organi-
sations that would otherwise compete in a single semantic identifier space;

• rm_publisher, rm_closure, rm_class, concept_id form the basis of the main part of a
human-readable identifier, e.g. openEHR-EHR-OBSERVATION.bp_measurement;

• properties supporting versioning:

- release_version, expressing a 3-part version identifier, e.g. ‘1.3.0’;
- build_count, incremented at every commit, supporting non-release version ids, such as

‘1.3.0-rc.28’ and ‘1.3.0-unstable’, where the build count is 28;
- description.lifecycle_state, expressing the development state of the artefact, and

used to derive the ‘rc’ (release candidate) and ‘unstable’ (development) parts of non-
release version ids.

Functions such as interface_id, physical_id and version_id are defined to return respectively
the ‘interface’ and ‘physical’ archetype HRIDs (described below) as strings, and the full version
string (computed from release_version, build_count and description.lifecycle_state). The
functions major_version, minor_version and patch_version extract the various parts of the 3-
part release_version property.

The uid property provides the machine identifier, and is assumed to be a Guid.

Both the uid and namespace properties are optional for legacy reasons, since most existing arche-
types have neither. The interpretation of an artefact without these identifiers in this specification is
that it is unmanaged, i.e. it has no recognised owner organisation. During a period of changeover to
the identifiers specified here, there will clearly be artefacts that are in fact managed, and which need
to have the uid and namespace properties assigned. This will obviously take some time, as it requires
support from the tooling ecosystem.

Different types of human-readable identifiers are used for archetypes, templates and terminology
subsets. The following sections describe the formal details of this identification scheme, and how it
supports referencing between artefacts.
Issuer:openEHR Specification Program Page 11 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Source Artefact Identification Knowledge Artefact Identification
Rev 0.7.4
3.2 Formal Model
This section defines a formal grammar for human-readable indentifiers of knowledge artefacts. As
described above, more than one human-readable identifier can be constructed from the identifying
properties of the ARCHETYPE_HRID class. The grammar is shown in green below.

The highest level distinction is between managed and unmanaged artefacts, with managed status
being indicated by the prepending of a namespace to what can be termed a ‘local’ HRID (i.e. local to
a given namespace context).

artefact_hrid: namespaced_hrid | local_hrid
namespaced_hrid: namespace '::' local_hrid
local_hrid: hrid_root ‘.v’ version_id
namespace: V_REVERSE_DOMAIN_NAME
V_REVERSE_DOMAIN_NAME: See IETF RFCs 1035, 123, and 2181.

The namespace is the publisher organisation reverse domain name. Reverse domain names are used
in order to aid lexical sorting of identifiers and also tools that build directory structures based on
reverse domain name segments. All managed artefacts, including archetypes and templates should
include a namespace. Any archetype or template carriying an identifier without a namespace is
assumed to be an unmanaged artefact.

Examples:

org.openehr EHR archetypes library at openEHR.org
uk.nhs UK National Health Service
edu.nci US National Cancer Institute

3.2.1 Human-readable Identifier (HRID)
The following sections describe the hrid_root component, i.e. the hrid minus the version identifier.

hrid_root: archetype_hrid_root
| template_hrid_root
| subset_hrid_root
| query_hrid_root

3.2.2 Archetype Identifier
The archetype human-readable identifier consists of two logical parts: an identifier of the reference
model (i.e. logical information model) class on which it is based, and an ontological identifier.

The identifier is defined by the following grammar rules, which are a slightly simplified version of
the grammar for the openEHR / ISO 13606 ARCHETYPE_ID type:

archetype_hrid_root: qualified_rm_class_name ‘.’ concept_id
qualified_rm_class_name: rm_publisher ‘-’ rm_closure ‘-’ rm_class
rm_publisher: V_ALPHANUMERIC_NAME
rm_closure: V_ALPHANUMERIC_NAME
rm_class: V_ALPHANUMERIC_NAME
concept_id: V_SEGMENTED_ALPHANUMERIC_NAME

V_ALPHANUMERIC_NAME: [a-zA-Z][a-zA-Z0-9_]+
V_SEGMENTED_ALPHANUMERIC_NAME: [a-zA-Z][a-zA-Z0-9_-]+ -- allows hyphens

The field meanings are as follows:

rm_publisher: id of organisation originating the reference model on which this archetype is
based;
Date of Issue: 29 Sep 2014 Page 12 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Source Artefact Identification
Rev 0.7.4
rm_closure: identifier of the reference model top-level package closure on which the archetype
is based;

rm_class: name of class or equivalent entity in the reference model on which the artefact is
based;

concept_id: an identifier from an ontology of information artefacts (see below);

The first part takes the form of a 3-part identifier, such as:

openEHR-EHR-EVALUATION
ISO-ISO13606-ENTRY

This historically has been used in openEHR and CEN/ISO 13606-2 to identify the reference model
class on which an archetype is based. It includes the publisher of the reference model (e.g. “ISO”,
“openEHR”), which top level ‘closure’ is being referred to, and finally which class.

The notion of ‘closure’ is a top level package from which the focal class can be reached. In general, a
given class can be reached from more than one top level package, but an archetype of that class will
only be suitable for one of those packages. For example, the openEHR class CLUSTER is used by
classes in both the ehr and demographic top level packages. However, an archetype of CLUSTER will
usually be designed for use with only one of those packages. The Cluster archetype
physical_examination for example will only make sense in data defined by the ehr package. Con-
sequently, it will have an archetype identifier of the form openEHR-EHR-CLUS-
TER.physical_examination.

The closure part of the identifier could be used by tools to ensure for example that an ‘EHR’ CLUSTER
archetype was never attached to a ‘demographic’ information item.

3.2.2.1 Concept Identifier
The second part of the human-readable identifier is a ‘short’ ontological identifier (known in ADL 1.4
as the ‘concept’ or ‘domain concept’). Such identifiers have historically been natural language words
or phrases, typically in a short mnemonic form, e.g. ‘bp_measurement’ in the archetype identifier
ISO-ISO13606-ENTRY.bp_measurement.v1.

Legacy ADL 1.4 Semantics
Historically in ADL 1.4 (ISO 13606-2:2008), the ‘concept’ part of the identifier encoded the speciali-
sation hierarchy of concepts as a series of hyphated segments, e.g. ‘problem’ and ‘problem-diagno-
sis’, with the latter identifiying a specialised form of the former.The requirement for the concept
name to include specialisations is removed in this specification, as well as the ADL / AOM 1.5 speci-
fications. This enables the domain concept of any artefact to be freely assigned according to the pur-
pose of the artefact.

To allow for the fact that legacy specialised archetypes do in fact include the '-' style of separated
domain concept identifier, the '-' character is still be allowed, but no longer has any semantic signifi-
cance.

One consequence is that for archetypes with identifiers conforming to this specification, the level of
specialisation can no longer be determined from the identifier. This new approach is in line with how
source artefacts are named in object-oriented languages.

Concept Identifier Semantics
The more important aspect of the concept identifier, is its origin and semantics. Historically it has
been part of the identifier for archetypes because it is human readable and facilitates debugging of
systems where the data contain such identifiers. Clearly a purely ad hoc assignment of a human-read-
Issuer:openEHR Specification Program Page 13 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Source Artefact Identification Knowledge Artefact Identification
Rev 0.7.4
able identifier is not scalable or reliable. Consequently rules and mechanisms for assignment need to
be identified.

This specification takes the point of view that the concept part of a managed knowledge artefact iden-
tifier must come from an ontology corresponding to the namespace of the identifier, in other words,
an ontology maintained by a Custodian Organisation or some higher authority.

It is not the business of this specification to define the ontology, but we can indicate the general form
as being an ontology of information entity types for use in the domain of health. It is assumed that
there are nodes within the ontology are related to the classes from the information (i.e. ‘reference’)
model. This leads to an ontology of the form shown below.

This (putative) ontology consists of high-level health information recording entities (black), a set of
record entry types derived from the Clinical Investigator Record ontology (Beale and Heard, Med-
Info 2007)1, and domain-specific entities in blue. It is assumed that the top node(s) of the ontology
could be related to nodes in a published ontology such as the Information Artefact Ontology (IAO)2,
but this is not a pre-requisite for establishing this ontology. More ideally, its categories would be
related to categories in the Basic Formal Ontology (BFO 2)3.

The blue node measurement_of_systemic_arterial_blood_pressure (bottom left) describes an entity
corresponding to a ‘record of systemic arterial blood pressure measurement’. Long names such as
this are standard in the ontology community, and are designed to ensure that the name of a category is
sufficient to unamiguously define its meaning. Such names are typically too long and unwieldy for
the purposes of managable lexical identifiers such as for archetypes.

1. http://www.openehr.org/files/publications/health_ict/MedInfo2007-BealeHeard.pdf

2. https://code.google.com/p/information-artifact-ontology/

3. https://code.google.com/p/bfo/

FIGURE 2 Example archetype artefact ontology within a namespace

health_information_entity

document section

clinical_recording

historical_recording opinion instruction

admin_recording

record_of_observation record_of_action diagnosis_recording

measurement_of_systemic_arterial_blood_pressure
[short_id: systemic_arterial_bp_meas]

[IAO categories]

record_entry

[short_id: OBSERVATION] [short_id: ACTION]

[BFO2 categories]

medication_order
Date of Issue: 29 Sep 2014 Page 14 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://www.openehr.org/files/publications/health_ict/MedInfo2007-BealeHeard.pdf
https://code.google.com/p/information-artifact-ontology/

Knowledge Artefact Identification Source Artefact Identification
Rev 0.7.4
We therefore assume that a system of ‘short identifiers’ is possible within the ontology, where a
‘short id’ is a synonym for a full node identifier. If we further assume that the ontology is constructed
with tools (e.g. Protege1) and that ontology identifiers are checked to ensure uniqueness.

Facilities to manage such ontologies should be available either centrally (e.g. openEHR.org, OBO2),
so that every added archetype, template or subset is assigned a short ontological identifier from the
ontology.

Existing archetypes can be accommodated within such ontologies in two possible ways. If they have
been in use, and data exist containing these identifiers, then their current ontological identifiers can
be proposed as the short id for an ontology class defined for the archetype. If there is a clash, a new
archetype concept short identifier will be needed, and the archetype will need to be republished under
a different identifier.

3.2.2.2 Need for RM Class Name in Identifier
Theoretically, the Reference Model class identifier part (qualified_rm_class_name above) should
not be needed in a well constructed identifier, on the basis that there should never be a clash of con-
cept identifiers, regardless of the RM class, even though they can easily be similar. For example, a
reasonable concept_id for an ENTRY (ISO 13606) or OBSERVATION (openEHR) structure arche-
typed to represent a generic lab result result might be ‘lab_result’. For the COMPOSITION-level
archetype designed to contain any ‘lab result’ ENTRY / OBSERVATION, a reasonable name would
typically be ‘lab_report’ (or the equivalent in another language).

Unfortunately, for some informational concepts, the appropriate name for the actual core data level
can appear to be perfectly reasonable also as a name for a higher level container of the same data.
Without an efficient and essentially global ontology construction service or authority available, the
inclusion of the qualified RM class name acts as a reasonable guard against such clashes.

If in the future a capability becomes widely available for efficiently defining ontology concept identi-
fiers for archetypes, the archetype identifier could be reduced to a purely namespaced and versioned
ontology identifier. Such an identifier would resemble the following example:

org.cimi::chem7_panel_result.v2.0.4

3.2.3 Template Identifier
Within a given publishing space, template human-readable identifiers are defined the same way as
archetype identifiers, i.e.:

template_hrid_root: qualified_rm_class_name ‘.’ domain_concept

3.2.4 Terminology Subset Identifier
Terminology subsets (aka ‘ref-sets’, i.e. ‘intentional reference sets’ as defined by IHTSDO) are a rel-
atively new type of artefact. The key requirement is that a system of terminology subset identifiers
accommodates multiple any terminology, regardless of its coding system, publisher or internal
design.

A possible proposal for a subset identifier is to use the ontology approach above, within a larger iden-
tifier constructed as follows:

subset_hrid_root: qualified_terminology_id '.' concept_id
qualified_terminology_id: terminology_originator ‘-’ terminology_name
terminology_originator: V_DOMAIN_NAME

1. http://protege.stanford.edu/

2. http://www.obofoundry.org/
Issuer:openEHR Specification Program Page 15 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://protege.stanford.edu/
http://www.obofoundry.org/

Source Artefact Identification Knowledge Artefact Identification
Rev 0.7.4
terminology_name: V_ALPHANUMERIC_NAME

This would lead to identifiers like the following:

org.ihtsdo-snomed_ct.blood_phenotype.v2 -- Snomed Blood type subset
int.who-icd10.bacterial_infections.v13 -- ICD10 bacterial infections subset

In the above, the concept_id is a short form of an ontological identifier for the ref-set or value set.

3.2.5 Query Set Identifier
There has been little experience with identification of query sets as a design artefact, mainly because
queries in most systems are written in SQL and are not portable to any other system, being based on
the local database structure.

Archetype-based queries, written in AQL or a similar formalism are portable across systems, and
therefore do not need to be re-designed for each environment. Their identification is therefore likely
to be of far greater importance than that of non-portable queries.

TBD_1: human-readable id for queries

3.3 Versioning

3.3.1 General Model
Unlike software artefacts in most modern versioning systems, knowledge artefacts are individually
version-controlled. This is because an archetype, template or terminology subset is, in and of itself, a
potentially complex structure of data points / groups and / or terminology codes and relationships. It
can in general be used on its own or with a small number of related artefacts (e.g. specialisation par-
ents). Therefore, the version identification system applies to each source artefact, rather than an
entire repository in the manner of typical software versioning.

This has a very visible effect: it means that every ‘committed’ change to an artefact is like a release,
whereas with software, numerous changes to source files typically occur between releases. Addition-
ally, each artefact revision is distinguished by its version identifier for the purpose of change tracking
in a repository environment, whereas with software source artefacts, the logical ‘name’ of each entity
(e.g. a class called ‘LinkedList’) within the source repository doesn’t change, even though its con-
tents do. To summarise:

• software versioning is performed by successive snapshots of a repository, and releasing is
performed by assigning a version identifier to some of the snapshots;

• for knowledge artefacts being described here, versioning occurs independently for each arte-
fact, and ‘releasing’ is simply an act of publishing the artefact;

• for knowledge artefacts, the versioned human-readable identifier is or can be used computa-
tionally, e.g. in queries and artefact references, whereas a software release identifier is not
generally computed on by the software itself.

3.3.2 Version Numbering
Despite the above differences, the numbering of versions of knowledge artefacts follows the rules for
identifying software releases described by semver.org.

Accordingly, version identifiers are based on three levels of ‘versioning’, identified by dot-separated
numeric parts, with an optional extension related to the artefact lifecycle, described below. The
numeric parts are:
Date of Issue: 29 Sep 2014 Page 16 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://semver.org

Knowledge Artefact Identification Source Artefact Identification
Rev 0.7.4
• major version - must be incremented with a breaking change to the artefact formal defini-
tion; may be incremented with a lesser change;

• minor version - must be incremented with a non-breaking change to the artefact formal def-
inition; may be incremented with a lesser change;

• patch version - must be incremented with a change to the informal parts of the artefact;

• build number - a number that is incremented every time an artefact is committed, and is
reset to 1 whenever the version id is changed.

In the above, the ‘formal definition’ refers to the following parts of an archetype or template only:

• the identifier section;

• the specialize clause;

• the definition section;

• within the terminology section:

- the text short names of the terms in the term_definitions section (i.e. not the
description long text or other meta-data);

- the term_bindings section;
- the value_set section.

Lexically, the version identifier is defined as follows:

version_id: release_version [extension]
release_version: major_version ‘.’ minor_version ‘.’ patch_version
major_version: {V_NUMBER}+
minor_version: {V_NUMBER}+
patch_version: {V_NUMBER}+
extension: version_modifier instance_uid_slice
version_modifier: ‘-rc’ | ‘-unstable’
instance_uid_slice:{V_UID_DIGIT}(5,) -- 5 or more digits from instance_uid
V_NUMBER: [0-9]+
V_UID_DIGIT: [0-9A-Fa-f]

This leads to identifiers such as:

1.3.5
1.3.5-rc.3 # release candidate for version 1.3.5, build id 3
1.3.5-unstable # unstable development version based on version 1.3.5

The following general rules are required for using version identifiers.

• First version rule: the first version (i.e. version on creation) of an artefact is a ‘v0’ version,
i.e. 0.N.P. Usually it is 0.0.1, but may be a higher v0 version to indicate maturity. The dis-
cussion of lifecycle and distributed semantics below provide more details on the initial ver-
sion semantics.

• Incrementing rule: when generating a release version (i.e. not a candidate or unstable ver-
sion), when the major version is incremented, the minor and patch version numbers are reset
to 0; when the minor version is incremented, the path number is reset to 0.

More specific rules relating to specific lifecycle states are described below.

Two ‘variant’ versions are defined in the above syntax: ‘release candidate’ and ‘unstable’. The first is
a standard software classification, syntactically indicated with the tag ‘rc’. Version numbers including
‘rc’ are always of the form ‘M.N.P-rc.B’, e.g. ‘1.3.5-rc.1’, where the minus sign (‘-’) is understood as
Issuer:openEHR Specification Program Page 17 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Source Artefact Identification Knowledge Artefact Identification
Rev 0.7.4
indicating a version that is ‘less than’ the target version ‘1.3.5’, i.e. ‘1.3.5-rc.1’ is an interim version
leading to the stable version 1.3.5.

The other variant is indicated with the modifier ‘-unstable’, where ‘-’ indicates a version ‘before’ the
version identified by the preceding numeric identifier, and ‘unstable’ indicates an ‘unstable’ develop-
ment version. The magnitude of the differences a ‘-unstable’ version are indicated by the difference
between the 3-part version identifiers of the current artefact and the previously published one on
which it is based.

Note that only the major version forms part of the source artefact human-readable identifier. The
intention of that is that a breaking change causes a new artefact from the point of view of deployment.
This is analagous to breaking changes in software interfaces, web service defintions etc, being seen
as a distinct entity, typically deployed alongside the old version.

3.3.3 Change Semantics
The semver.org model is designed for software, and is based on the concept of the software inter-
face, or ‘public API’. For the the artefact types within the scope of this specification, the concept of
‘interface’ is interpreted as being the .

A ‘breaking change’ for knowledge artefacts in the scope of this specification is defined as follows:

• for archetypes and templates, any change that prevents data created by the previous release
of the artefact validating against the new release.

• for terminology subsets, any change that causes coded data to no longer be found in the rel-
evant subset in the owning model (i.e. archetype or template).

Examples of breaking changes are:

• removal of mandatory data points or groups;

• move of data points to different sub-tree.

Any such change necessarily requires a new major version. The logical consequence of these rules is
that non-breaking (minor version) changes can include:

• constraints redefined to be ‘wider’ (i.e. old constraint subsumed by new constraint);

• additional model nodes (i.e. extensions).

This has the important side-effect that minor versions of a given major version may have additional
semantics comared to the original major version (i.e, minor version 0) and any other intervening
minor version. In other words, specifying a major version in general may not be sufficient to des-
ignate all of the ‘interface’ available in the latest minor version. Therefore, for purposes of refer-
encing an artefact with the expectation that the reference will designate specific elements, at least a
minor version may be needed. This is discussed further in section 6.

Note that there is no assumption that a change of a given technical level (i.e. as evaluated by a diff
tool) will be seen equivalently by domain experts. For example a minor change that only requires the
patch version to be incremented might have major implications for clinical semantics. For this rea-
son, the version identifier may be incremented beyond the minimum level required by a mechanical
comparison.
Date of Issue: 29 Sep 2014 Page 18 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://semver.org

Knowledge Artefact Identification Lifecycle Model
Rev 0.7.4
4 Lifecycle Model

4.1 Conceptual Model
As with software, knowledge artefacts follow a lifecycle with identified states, representable by a
state diagram. A traversal through the state diagram corresponds to the development of changes to an
artefact leading to a release of a specific version.

Although somewhat peripheral to the scope of artefact identification, we describe a ‘de facto’ lifecy-
cle for three reasons:

• to provide at least one lifecycle definition for users who have no other definition available;

• to provide explicit terminology for states and transitions for use in this and other specifica-
tions;

• to concretise the relationship between versioning and state transitions that commonly occur
in software and other formal artefact development.

The lifecycle defined here is shown in FIGURE 3.

A multi-level model is used, where some states have ‘micro-states’, and top-level states are known as
‘macro-states’. The intention is to provide standard names for all macro-states, while suggesting and
allowing micro-states where they make sense. Macro-state names are the basis for software version
identification - ‘development’ corresponds to the ‘-unstable’ variant, release_candidate to the ‘-rc’
variant. Micro-states are useful to indicate because they define names for finer-grain states typically
supported in artefact repositories.

FIGURE 3 Development Lifecycle

in_development

rejected

release_

published

candidate

in_review suspended

reject

release

release

publishsuspend
review

start
review

start_review

start_review

commit

development release

unmanaged

managed environment

commit

upload

publish

deprecated

obsolete superseded
obsolete

start
review

draft

revert

commit
Issuer:openEHR Specification Program Page 19 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Lifecycle Model Knowledge Artefact Identification
Rev 0.7.4
This lifecycle assumes that artefacts start life either in an ‘unmanaged’ environment or directly in a
managed one. In the latter case, it is assumed that there is some distinction between the developers’
view and the ‘release’ view.

The key states are defined with names (dark blue) and transitions (light blue) that correspond to typi-
cal software and document development terms. Typical traversals through the lifecycle are:

• (unmanaged =>) development => published

• development ... development => release_candidate => ... release_candidate => published

• published => deprecated

• development => rejected

A few linguistic conventions used here are worth noting:

• ‘start_review’ is the name of all actions entering the ‘development’ macro-state;

• ‘release’ as an action (i.e. state transition) is taken to mean making any version of an artefact
available to the public user base, including pre-releases, final releases and post-releases
(‘builds’ in semver.org parlance);

• ‘publish’ as an action means to make a definitive release.

4.2 Lifecycle-based Versioning
The correspondence of versioned human-readable identifier and lifecycle states can now be
described, according to the illustration below.

The version identifier evolves according to the general rules described above, and specific rules
related to the lifecycle states, as follows.

• An artefact normally starts life at ‘0.0.1’, although it is acceptable practice to start at some
other v0 version e.g. ‘0.5.0’ to indicate approximately how mature the artefact is. It remains
as a v0 version for a period of unstable early development leading to an initial releasable
‘1.x’ version.

• At some point, the artefact will be uploaded to a managed repository, at which point its iden-
tifier will be prepended with the management organisation namespace (and may change in
other ways).

• During active development, an artefact is considered to be unstable, i.e. any kind of changes
may be made, reversed, redone and so on; due to this, the version id is formed from next
version number that corresponds to the magnitude of the changes currently in the artefact,
and appended with ‘-unstable’;

• An artefact may be rejected, in which case its minor version is incremented (following the
semver.org rules), and the artefact lifecycle state is set to ‘rejected’.

• At some point, the authoring team of an artefact will decide the artefact is ready for release.
Its release version id is then calculated as a function of the difference between the current
form and the base version on which it is based.

• It is then either:

- published into a pre-release cycle, at which point the numerical part of the version is
computed according to the difference between the current form of the artefact and the
release version on which it is based. The form of the identifer becomes M.N.P-rc.B,
which indicates a community testing phase. From the release_candidate state, three
paths are possible:
Date of Issue: 29 Sep 2014 Page 20 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://semver.org
http://semver.org

Knowledge Artefact Identification Lifecycle Model
Rev 0.7.4
* publish definitively with a stable version id of the form M.N.P;

* release a newer release candidate, containing only changes that do not break the
interface, i.e. patch-level changes or less; update the instance UID in any case;

* if larger changes are needed, go back into the ‘development’ state and perform
larger changes as needed;

- released directly to a stable version of the form M.N.P.

• An artefact may eventually be deprecated, in which case its minor version is incremented
(following the semver.org rules), and the artefact lifecycle state is set to ‘deprecated’. It
may be classified inside the repository registry as ‘obsolete’, ‘suspended’ or in some other
way.

According to the basic version rules and the lifecycle model above, the ‘precedence’ of version iden-
tifiers follows is exemplified by the following:

1.2.3-rc.1 < 1.2.3-rc.2 < 1.2.3 < 1.2.4-unstable < 1.3.0-unstable < ... <
1.3.0

4.3 Change Scenarios

4.3.1 Change to Definition
To Be Determined:

FIGURE 4 Development Lifecycle and Versioning

in_development

rejected

release_

published

candidate

in_review suspended

vM.N.P+1-rc.N*
v0.N.P-unstable

vM.N.P-unstable

vM?.N?.P?-rc.N

vM.N.P

reject

release

release

publish

suspend
review

start
review

deprecate
start_review
vM.N.P+1-unstable

start_review
commit

reset version according to diff with base version

Development Release

vM.N.P+1-unstable

unmanaged v0.N?.P?

Managed environment

vM.N.P-unstable = unstable version

vM.N.P-rc.N = pre-release version

vM.N.P = release version

commit

upload

publish

vM.N.P+1

vM.N.P+1

deprecated

obsolete superseded
obsolete

add namespace to id

vM?.N?.P? = M and/or N and/or P changed to new value on transition

vM.N.P+1 = P incremented by one on transition

vM?.N?.P? start
review

draft

vM.N.P-unstable
commit

revert

(determine by diff)

(determine by diff)
Issuer:openEHR Specification Program Page 21 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://semver.org

Lifecycle Model Knowledge Artefact Identification
Rev 0.7.4
4.3.2 Change to Terminology Definition
To Be Determined:

4.3.3 Addition of Terminology Translation
To Be Determined:
Date of Issue: 29 Sep 2014 Page 22 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Distributed Governance
Rev 0.7.4
5 Distributed Governance

5.1 Overview
This section deals with how knowledge artefact identifiers are managed in the distributed environ-
ment illustrated in FIGURE 1. Rules are needed to define how identifiers are managed in the event of
an artefact coming under management, as well as transfers and forking of managed artefacts.

5.2 Management
Many knowledge artefacts start life in an ad hoc way, created by a research project or expert individ-
ual. From the point of view of this specification, they are initially ‘umanaged’, meaning they have no
custodial organisation.

The first step to making an artefact widely visible, and usable to the outside world is to bring it under
management of an organisation that follows rules of governance and quality assurance on which the
outside world can rely. This specification does not describe all these rules, just the rules for identifi-
cation and meta-data of artefacts coming under management.

When an artefact is first created, its lifecycle state is ‘unmanaged’ and its version identifier is v0.N.P,
i.e. a ‘pre- v1’ version, generally recognised (including by semver.org) as being an unstable form
of the artefact that makes no promises with respect to the normal major/minor/patch versioning rules.
The artefact may be given a Guid by tooling, although this will be ignored by a management organi-
sation due to the fact that Guids assigned by ad hoc tools or direct human authoring are often copies
of existing Guids (due to cut and paste) or are unreliable in some other way (improper Guid algorithm
implementation).

When an artefact is accepted by a Custodian Organisation, the following things happen:

• its lifecycle state progresses to ‘initial’;

• its human-readable identifier is changed to the namespaced form;

• it is assigned a newly generated Guid as its uid;

• if its major version number is higher than 0 it is reset to 0.0.1, otherwise it is left unchanged;

• various meta-data items are set, including copyright, license.

In addition, a SHA-1 hash may be generated for the artefact, which is stored within the repository.

5.3 Virtual Referencing across MOs
To Be Continued:

5.4 Transfer and Forking
Once an artefact is under management, it evolves according to the lifecycle described earlier in this
specification. Most of these steps and transitions can be considered ‘details of development’. How-
ever, when an artefact is deployed, data will be created containing the artefact identifiers, and from
this point, the ability to link data to the generating artefacts reliably is the critical issue. The standard
approach to this is described in the next section.

Challenges in data / artefact identification arise from the transfer and/or ‘forking’ of artefacts among
Custodian Organisations. Artefacts can have two possible roles in a management organisation:
Issuer:openEHR Specification Program Page 23 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://semver.org

Distributed Governance Knowledge Artefact Identification
Rev 0.7.4
• as actively developed and maintained artefacts;

• as deployment artefacts.

A Custodian Organisation may decide to cease its own maintenance of an artefact, and transfer that
responsibility to another organisation, e.g. a national level CO. Usually it will continue to use the cur-
rent local form of the artefact in its current deployment contexts, e.g. by local hospital systems or
vendors.

At the moment of acquisition by the new CO, the artefact’s HRID would potentially be re-assigned.

At some point the new custodian will perform maintenance work on the artefact, for example releas-
ing a new minor or patch-level version. If such new releases are considered national standards, the
original CO will most likely adopt them for use. The question is: how are the new releases of the arte-
fact identified?

With respect to the human-readable identifier, two basic strategies are available: retain the original
human-readable identifier, or change it to reflect the new CO. An argument against changing it is that
identifier continuity would be preserved, ensuring that archetype references in extant queries and in
data, as well as in other archetypes and templates remain valid. If it is assumed that all such refer-
ences are limited to the original management domain, the size of this problem is known and most
likely containable.

Arguments for changing the identifier include:

• a requirement of the new Custodian Organisation to be identified in the artefact; this may be
a global expectation of industry as well, e.g. if the new manager is a national organisation, it
will clearly be easier for vendors and system managers if the artefacts it releases carry its
identifier;

• the possibility that the original domain continues to create new local releases, perhaps in
response to problems experienced locally that require unavoidable locally specific changes;

• the new CO wants to rename the artefact to fit in better with its own ontological artefact
classification;

• if no data or queries have ever been created using the artefact in question, changing its iden-
tifier will have no concrete impact anyway;

• if the namespace always reflects the current CO, it will be easier to know who to contact for
support and other purposes.

The second of these points constitutes a ‘fork’ in software terms, i.e. one line of development
becomes two. Common sense would seem to dictate that the likelihood of forking, particularly due to
the unforeseen need of dealing with local problems after an artefact has been promoted to a higher
management domain, will never be zero, and that it may even be frequent.

It also seems reasonable to assume that even if there were no rule or obligation to change the identi-
fier of an artefact when it migrates from one manager to another, that it will occur by mutual consent
in some situations anyway.

The approach of this specification is therefore that rules must be provided that define how artefact re-
identification can be effected, without actually requiring it to be done in any particular situation. Part
of the requirement is to establish a machine processable concept of ‘artefact equivalence’.

Rules for migration are required for both the human-readable identifier and the machine identifier.
With respect to the human-readable identifier, any of the following are assumed to be mutable:

• namespace: at a minimum this will always change;
Date of Issue: 29 Sep 2014 Page 24 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Distributed Governance
Rev 0.7.4
• concept_id: the ontological identifier may or may not change, depending on whether the
new manager wishes to locate the artefact in a different ontology;

• version identifier: the version identifier will in general change, possibly as a function of
whether the concept part of the identifier changes.

The general case is that the transfer of an artefact to another management organisation may result in
an identifier that changes in all aspects apart from the reference model related parts of the identifier,
which cannot change for formal reasons.

It is assumed here that when the human-readable identifier changes (no matter how minimally), the
uid property must be changed as well. This is to prevent confusion between subsequent new versions
of the original with releases of the transferred artefact. A new uid is further justified by the unavoida-
ble ‘migration is forking’ assumption.

To enable tools to determine what archetypes are equivalent, a specific section of the artefact meta-
data is proposed, which records the equivalence between the current identifier and previous ones.
Assuming that an artefact could migrate more than once in its life, this section would need to accom-
modate multiple such statements. For purposes of helping human use of this information, it is also
proposed that a date be included. The section would therefore have the logical structure of a history
of equivalences, as shown in the following example for an archetype (‘hrid’ = human-readable id):

id_history = <
[“2001-05-27”] = <

old = <
hrid = <“au.com.rbh::openEHR-EHR-EVALUATION.problem_desc.v2.4.1”>
uid = <“5221C9E5-0ECA-469F-83C5-A5D5A0C6682C”>

>
new = <

hrid = <“au.gov.nehta::openEHR-EHR-EVALUATION.problem.v1.0.1”>
uid = <“094C8B37-F0CD-45C9-A1B7-CDFDE14C67AB”>

>
>
[“2004-14-03”] = <

old = <
hrid = <“au.gov.nehta::openEHR-EHR-EVALUATION.problem.v1.6.3”>
uid = <“E50290BB-890A-4344-9480-D40AF01C5BCC”)

>
new = <

hrid = <“au.gov.doha::openEHR-EHR-EVALUATION.problem.v1.6.3”>
uid = <“F4166F58-4EDA-4F13-B413-45A8F7A3E53D”)

>
>

>

These equivalence histories would be used by Custodian Organisations to populate artefact identifier
equivalence tables that could be shared on request with other manager organisations. This system is
reminiscent of the CNAME record type in the internet Domain Name System (DNS), which is used
to record alias domain names for canonical domain names.
Issuer:openEHR Specification Program Page 25 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Referencing Knowledge Artefact Identification
Rev 0.7.4
6 Referencing

This section describes how artefact are referenced, by other artefacts and software. The general prin-
cipal for referencing is that references based on human-readable identifiers are used between source
artefacts, in the same way as for software, while references in operational forms of the artefacts or
from data may be in the form of either HRIDs or machine identifiers.

A key semantic difference exists with references as opposed to identifiers. A reference is either a full
physical artefact identifier, or else an identifier with partial version information. In both cases, a ref-
erence is used to match artefacts carrying full identification. In general, there can be several candi-
date matches, and therefore a matching algorithm has to be specified in each case, in order to ensure
constant meaning for a given reference in all modelling and computing environments.

Various forms of the references based on the HRID are used, depending on the need, as described
below. These are denoted as follows:

• the interface HRID reference (ihrid_ref), which is the same for all artefact instances sharing
the same core interface, in other words, the form of the identifier including only the major
version; this will match the latest relase available of that major version;

• the specific interface HRID reference (sihrid_ref), which is the form of the identifier includ-
ing the major and minor versions, which will match a specific release of the interface;

• the physical HRID reference (phrid_ref), which identifies artefact instances which are iden-
tical; this is the form of identifier with the full version identifier included.

The grammar for this is as follows.

hrid_ref: namespaced_hrid_ref | local_hrid_ref
namespaced_hrid_ref: namespace ‘::’ local_hrid_ref
local_hrid_ref: ihrid_ref | sihrid_ref | phrid_ref
ihrid_ref: hrid_root ‘.v’ major_version
sihrid_ref: hrid_root ‘.v’ major_version ‘.’ minor_version
phrid_ref: local_hrid

By way of example, the following two archetype iHRID references denote different logical arche-
types, from a data processing point of view, since their major versions are different, indicating a
breaking change between the two:

org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1
org.openehr::openEHR-EHR-EVALUATION.diagnosis.v2

Conversely, the following references denote physically distinct archetypes that are regarded as logi-
cally substitutable:

org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.1.5
org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.1.7

6.1 Source Artefact References
This section describes the scenarios and representation required for identifier-based referencing
between design time ‘source’ (i.e. compiler input) artefacts.

6.1.1 Archetype External References (ADL/AOM 1.5)
In ADL 1.5, a direct archetype-archetype reference, known as an ‘external reference’ can be defined,
which uses the archetype miniHRID, as shown in the following example.

ACTIVITY[id2] {-- Medication activity
Date of Issue: 29 Sep 2014 Page 26 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Referencing
Rev 0.7.4
description {
use_archetype ITEM_TREE [openEHR-EHR-ITEM_TREE.medication.v1]

}
}

If such a reference does not include a namespace, the meaning is that the same namespace as the cur-
rent archetype is assumed (which may be no namespace). A namespace would be included to express
a reference to an archetype outside the current namespace.

A reference such as the above will resolve to an actual archetype at runtime according to the follow-
ing algorithm:

• the most recent released version variant of openEHR-EHR-ITEM_TREE.medication.v1, i.e.
the latest minor or patch version such as v1.0.4, v1.2.49 etc OR

• the latest release candidate version of openEHR-EHR-ITEM_TREE.medication.v1, e.g.
v1.2.3-rc44, because ‘rc’ versions are guaranteed to be semantically compatible with their
target version

Because minor versions can include structural additions, it may be that in some cases, archetype
external references need to be include a minor version as well - allowing an exact structual form of
the archetype (interface) to be identified. Similarly For testing or other research purposes, it should
probably be assumed that patch and ‘-rc’ and ‘+u’ versions of an archetype need to be referenced.

The general case is therefore assumed to be that an artefact reference is a hrid_ref, but most com-
monly an ihrid_ref.

6.1.2 Template References to Archetypes and Templates
Templates are normally designed as pre-cursors to software artefacts, such as forms, message defini-
tions and document schemas. Consequently, their exact contents and structure are usually carefully
controlled by their developers, in the interests of stability. To achieve this, references from templates
to other templates or archetypes need to be able to refer to any level of version of the target artefact.
During a development phase, it may be that the template references are limited to major versions of
the human-readable identifier, i.e. the ihrid_ref. At some point it may be the case that the minor
version must be included as well. As noted above, this is because minor versions of archetypes can
include structural additions, and therefore affect the structure of the final document / data-set etc. It
may even be the case that patch level versions need to be identified, so as to ensure no changes what-
ever can occur in the template, even if upgraded versions of the source artefacts become available.

Such tight control is not however a universal requirement. A conscious design decision may have
been taken that says that the resulting software artefact contents are whatever results from the tem-
plate definition at the time of publishing, assuming references to major versions only.

To accommodate these scenarios, template references to archetypes and other templates need to be
legal at any version level. For example, any of the following references should be legal in a template:

• org.openehr::openEHR-EHR-EVALUATION.problem.v2
• org.openehr::openEHR-EHR-EVALUATION.problem.v2.4
• org.openehr::openEHR-EHR-EVALUATION.problem.v2.4.17

In development and research environments, it is reasonable to allow ‘-rc’ and ‘+u’ variants as well.

The general case is therefore as for archetype external references: a template reference is a hrid_ref.
Issuer:openEHR Specification Program Page 27 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Referencing Knowledge Artefact Identification
Rev 0.7.4
6.1.3 Between Specialised Archetypes
A specialised archetype refers to its parent using the human-readable reference, including only the
major version. Two possible variants can occur:

• With a non-namespaced reference. This is assumed to come from the same namespace as the
specialised archetype.

• With a namespaced identifier where the namespace is different from that of the referencing
archetype. This resolves against the latest release of the referenced archetype in the locally
available repository copy of the referenced namespace.

The following figure shows a number of archetypes related by specialisation.

One question that naturally arises to do with specialisation is what happens when the parent arche-
type is revised. The approach is the same as for object-oriented software: all archetypes in a given
‘check-out’ or release must always compile at any point in time to be valid. If a revised parent is
introduced that invalidates any of its inheritance children, revisions must be made to the children
before the repository becomes valid as a whole again. This means that a new version of an archetype
in general may require child archetypes to be re-versioned as well.

6.2 Source Artefact Relationship Constraints
Related to the concept of ‘references’ is constraints that when evaluated at runtime, resolve to artefact
identifiers. Two types are described here, which are the two kinds of archetype ‘slot’ definition.

6.2.1 ADL 1.4 Archetype Slots
In ADL 1.4, archetypes slots are defined via assertions in their slot statements. Although the specifi-
cation allows for all kinds of possibilities, the only one in use is regular expressions (REs) on the
archetype identifiers allowed to fill the slot. Current ADL 1.4 tooling supports REs on full (non-
name-spaced) ADL 1.4 archetype identifiers, which include only the major version number, e.g.:

openEHR-EHR-EVALUATION.problem.v1

Note that such REs often include disjoint patterns, by using the form
“id_pattern1|id_pattern2|id_pattern3”.

A typical slot definition using REs based on such identifiers is as follows:

protocol matches {
ITEM_TREE[at0015] {

items cardinality {0..*; ordered} {

org.openehr::

org.openehr:: au.gov.nehta::
openEHR-EHR-EVALUATION.diagnosis.v1

openEHR-EHR-EVALUATION.problem.v1

openEHR-EHR-EVALUATION.diagnosis.v1

au.gov.nehta::
openEHR-EHR-EVALUATION.genetic_diagnosis.v1

FIGURE 5 Specialisation relationships
Date of Issue: 29 Sep 2014 Page 28 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Referencing
Rev 0.7.4
allow_archetype CLUSTER[id20] occurrences {0..1} matches {
include

archetype_id/value {/openEHR-EHR-CLUSTER\.device(-[a-zA-
Z0-9_]+)*\.v1/}

}
}

}
}

This slot allows any archetype named openEHR-EHR-CLUSTER.device.v1 or openEHR-EHR-CLUS-
TER.device-xxx.v1, which used the ADL 1.4 method of signifying specialised archetypes.

The rule for namespace inclusion is as for external references:

• no namespace means the same namespace as the current archetype;

• an explicit namespace means archetypes from that namespace.

As for external references, there is technically nothing to stop a slot RE being defined to refer to spe-
cific minor versions or builds of an archetype. The same rule applies: released archetypes should only
include major versions.

6.2.2 ADL 1.5 Archetype Slots
In ADL/AOM 1.5 a semantic slot type will be introduced in which matching archetypes are defined in
the form of a constraint on the archetype concept (and optionally namespace), reminiscent of the
SNOMED CT post-coordination constraint syntax. This is shown in the following example.

allow_archetype CLUSTER [id4.1] occurrences {0..1} {
include {True}

archetype_id {
ARCHETYPE_ID {

namespace {...}
concept {<< investigation_methodology OR

<< investigation_protocol}
...

}
}

}

The above kind of referencing relies on an ontological underpinning for the concept_id part of the
human-readable identifier.

6.3 AQL Query Sets
AQL queries are in general authored in a ‘set’ in order to achieve a design objective, e.g. populate a
report, screen, or for some analytical objective. Many are purely local in nature and may be consid-
ered ‘throwaway’. Others are carefully designed for needs like populating a clinical guideline or per-
forming a standard computation. Within an archetyped framework, such query sets need to be
indentified and managed in a similar way to other artefacts.

6.4 AQL Queries
Archetype-based queries contain archetype references and paths, and can also contain template iden-
tifiers and paths. Typical examples are the paths (in green) in the following query:

SELECT pulse
FROM EHR[ehr_id/value=$ehruid]
Issuer:openEHR Specification Program Page 29 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Referencing Knowledge Artefact Identification
Rev 0.7.4
 CONTAINS COMPOSITION c
 CONTAINS OBSERVATION pulse[openEHR-EHR-OBSERVATION.pulse.v1]

WHERE c/name/value='Encounter‘ AND
c/context/start_time/value <= $endperiod AND
c/context/start_time/value >= $startPeriod AND
pulse/data/events[id6]/data/items[id4]/value/value < 60

The semantics of referencing in queries differ from those of the archetype-to-archetype form, due to
the fact that references are normally followed by paths that refer to specific data points within the
structure. For an AQL query to be correct, the path must exist in the archetype at the release matched
by the reference. Since minor versions can add to the archetype ‘interface’ (i.e. add data points, and
therfore paths, to the structure), a given path needs to reference the oldest archetype for which the
path is valid. Consider the following path:

[openEHR-EHR-OBSERVATION.pulse.v1]/data/events[at0006]/data/items[at0004]/
value/value

For this to be valid, the path /data/events[at0006]/data/items[at0004]/value/value must
exist within the earliest v1.x release of the archetype openEHR-EHR-OBSERVATION.pulse.v1, i.e.
v1.0.0. If this path happened to have been added in a more recent minor release, the archetype refer-
ence would need to include the first minor version containing that path.

Once an AQL query processor can work with a valid path, it will match the following data:

• any instance of the data point at that path in the referenced archetype;

• any instance of a data point in a congruent path in a specialisation child archetype.

An example of a congruent path in a child archetype is:

/data/events[id6.0.4]/data/items[id4.1]/value/value

6.5 Operational Artefacts
Operational artefacts such as flattened archetypes and operational templates generated by compiler
tools are built from source artefacts, including by reference resolution from within some source arte-
facts to others within the current repository of the local and imported artefacts. The particular ver-
sions of reference targets are determined by the contents of the configuration, and are thus a function
of version management activities, in the same way as for software development.

When an operational artefact is generated from controlled source artefacts (i.e. within a Custodian
Organisation), it is possible to include the fine-grained revision information from the relevant source
artefacts, so that the operational form describes exactly which set of source artefacts were used to
produce it. The source artefact semantic signatures can also be included. This information can be
included in a configuration section of the artefact. This would be expressed in ODIN (previously
dADL) or an XML equivalent, and would list the 'configuration' of concrete artefact revisions used to
generate the operational version.

The structure of a Configuration is as follows:

configuration: archetype_config template_config subset_config rm_release
archetype_config: { config_item }+
template_config: { config_item }*
subset_config: { config_item }*
rm_release: rm_name release_id

config_item: identifier [revision_id [commit_id]] [signature]
Date of Issue: 29 Sep 2014 Page 30 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Referencing
Rev 0.7.4
signature: CHARACTER_SEQUENCE
revision_id: V_INTEGER
commit_id: V_INTEGER
release_id: V_STRING

An example of the configuration of an operational template in a controlled environment (dADL for-
mat) is as follows:

configuration = <
archetypes = <

[1] = <
id = <“org.openehr::openEHR-EHR-OBSERVATION.heartrate.v1.3.28”>
signature = <“23895yw85y0y0”>

>
[2] = <

id = <“au.gov.nehta::openEHR-EHR-EVALUATION.genetic-
diagnosis.v1.2.0”>

signature = <“98typrhweruhfd”>
>
[3] = <

id = <“org.openehr::openEHR-EHR-EVALUATION.problem.v2.4.0”>
signature = <“2rfhweiudfwieurfh”>

>
 >
 templates = <

[1] = <
id = <“au.gov.nehta::openEHR-EHR-COMPOSITION.vital_signs.v5.36.1”>

>
>
subsets = <

[1] = <
id = <”org.ihtsdo.general::cardiac_diagnoses.v18.1.0”>

>
>
rm = <

name = <“org.openehr.rm”>
release = <“1.1”>

>
>

6.6 References from Data

6.6.1 Requirements
In knowledge-enabled information environments such as those built on the archetype principles,
knowledge artefacts are used to control the creation and validation of data, with the effect that data
eventually stored in such systems ‘conform’ to the relevant artefacts. In order to be able to further
process (e.g. display, modify and query) such data, references of some kind to the knowledge artefacts
must be stored in the data. The requirements for such references depend on where the data are found,
broadly within two possible situations, namely data within operational systems (e.g. EHR systems)
and data within ‘messages’, ‘extracts’, or ‘documents’ sent between systems.

Three requirements can be identified with respect to data within systems.
Issuer:openEHR Specification Program Page 31 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Referencing Knowledge Artefact Identification
Rev 0.7.4
Reconstitutability: firstly, it must be possible to re-connect data with the archetypes, templates
and subsets, used to create them. This implies that the major and minor versions at least are
recorded in data, since a minor version may have an effect on structure.

Querying: secondly, it must be possible to know what archetypes (including major version), and
therefore what path-sets can be used for querying data - given that this may well include
parents of specialised archteypes, not just the archetypes used to directly create the data.

Optimisation: we can also assume that in a typical production system handling millions of
health records, that the size of artefect identifiers embedded in data (especially if repeated)
may be an issue, and that some kind of space optimisation may be required.

Within extracts or messages, the same requirements broadly hold, but could be better restated as fol-
lows.

Reconstitutability: it must be possible for the receiving system to be able to determine the
relationship of each data element with the artefacts(s) used to create it, so that it can be
correctly reconstituted in the receiver system environment.

Querying: for ensuring the correct functioning of querying, the extract or message should
potentially carry sufficient archetype lineage information the archetypes used in the data to
allow querying at the receiver, particularly if the latter wants to be able to query using more
general parents (e.g. a ‘problem’ archetype rather than some specific diagnosis
specialisation).

Optimisation: a reasonable trade-off between space optimisation and clarity of representation
must be used, given that messages, extracts etc flow between heterogeneous systems.

6.6.2 Reconstitutability
The reconstitutability requirement means recording archetype and template identifiers on the relevant
nodes in the data. A basic form of this has always been used in openEHR, such that at archetype root
nodes, the archetype identifier and if relevant the template identifier is recorded, and at interior nodes,
the at-codes are recorded (formally, the archetype identifier and at-codes are recorded in the LOCATA-
BLE.archetype_node_id attribute of each data node). For example, in data created based on openEHR
Releases 1.0.2 or earlier, the archetype identifier references are of the form:

openEHR-EHR-EVALUATION.diagnosis.v1

With the more sophisticated identification system described here, these archetype references need to
include namespace, and full version identifier, i.e.:

org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.29.0

References with no namespace will remain legal, since there should be no computational impediment
to using uncontrolled archetypes and templates, e.g. in an experimental situation. The lack of minor
and patch level version numbers should also be legal for non-namespaced identifiers, and be inter-
preted as meaning ‘0’ in both cases, i.e. ‘.v1’ means ‘.v1.0.0’.

6.6.3 Supporting Archetype-based Querying
Querying of data in openEHR systems is assumed to be based on archetype ‘path-sets’, i.e. the set of
paths extracted from an operational (flat-form) archetype. The paths are a slight simplification of
standard X-paths. Two querying methods have been described to date, AQL and a-path, both making
this assumption (see openEHR wiki).

Based on this assumption, given an archetype X used to create data, the following archetypes could
be used for querying:
Date of Issue: 29 Sep 2014 Page 32 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

http://www.openehr.org/wiki/display/spec/openEHR+Query+Specifications

Knowledge Artefact Identification Referencing
Rev 0.7.4
• X, i.e. exact same version, revision & commit;

• any previous minor or patch variant of X;

• any of the specialisation parents of X;

• any previous minor or patch variant of any of the specialisation parents of X.

For non-specialised archetypes, the allowable querying archetypes can be deduced from the arche-
type reference recorded in the data. For specialised archetypes, the specialisation lineage can only be
obtained from the operational form of the archetype, found in the template used to create the data.
This would create a potential problem where for data imported from another site without the relevant
template(s), the archetype lineage information was not available. This would prevent the query
engine at the receiver system knowing how to query the data using even the more general archetypes
in the lineage, that it may have access to.

To address this situation, one of the following strategies is required:

• include the configuration meta-data from the operational template(s) with the data when it is
exchanged, i.e. in an EHR Extract.

• include archetype lineage information in the data itself. This could be a modified form of the
identifier reference in the case of specialised archetypes to allow lineage information to be
stored.

The second approach can be considered a generalisation of recording just the current archetype iden-
tifier, i.e. the ‘lineage’ for non-specialised archetypes evaluates to just that archetype id, and for spe-
cialised archteypes, it will be a list. This specification assumes that the second is used.

The simplest form of this would be as a list of operational identifiers, e.g.

au.gov.nehta::openEHR-EHR-EVALUATION.genetic_diagnosis.v1.12.9,
org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.29.0,
org.openehr::openEHR-EHR-EVALUATION.problem.v2.4.18

6.6.4 Formal Model
A formal definition of reference catering to the above requirements is as follows:

archetype_data_ref: archetype_ver_ref { ‘,’ archteype_ver_ref }*
archteype_ver_ref: hrid_root ‘.’ version_id_ref
version_id_ref: ‘v’ version_id

6.6.5 Optimisations
In normal archetype-based data, both basic references and additional lineage information might be
repeated throughout a given component, such as an openEHR or ISO 13606 COMPOSITION. Consider
a COMPOSITION documenting problems & diagnoses of the patient, where each problem is recorded
using the archetype

uk.nhs.royalfree.clinical::openEHR-EHR-EVALUATION.diagnosis.v2.15.0

whose lineage is:

org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.29.0
org.openehr::openEHR-EHR-EVALUATION.problem.v2.4.0

In this example, the archetype reference lengths are 66, 57 and 54 characters respectively, i.e. a total
of 177 characters. Repeated say 5 times would give 885 characters of identifier meta-data for the
COMPOSITION, whose main clinical data could easily be similar. Even in an XML-based storage sys-
tem, various kinds of compression are used, the identifier reference overhead might be considered as
an unacceptable fraction of the overall data storage requirement.
Issuer:openEHR Specification Program Page 33 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Referencing Knowledge Artefact Identification
Rev 0.7.4
It is therefore worth considering various simple optimisations, while retaining clarity and comprehen-
sibility in the data. The following ideas are currently intended to be limited to serialised forms of
data. They would therefore only require changes to openEHR XML-schemas rather than the abstract
reference model.

6.6.5.1 Identifier Aliasing
The most obvious optimisation is to use a set of variable references local to the data context, in this
case an openEHR or ISO 13606 Extract. For example, at the top of the Extract, the following defini-
tions could be made:

id01=uk.nhs.royalfree::openEHR-EHR-EVALUATION.diagnosis.v2.15.0,
org.openehr::openEHR-EHR-EVALUATION.diagnosis.v1.29.0,
org.openehr::openEHR-EHR-EVALUATION.problem.v2.4.0

id02=au.gov.nehta::openEHR-EHR-OBSERVATION.hba1c_result.v1.4,
org.openehr::openEHR-EHR-OBSERVATION.lab_result.v1.18

etc

The identifiers ‘id01’, ‘id02’ etc would then be used in the data, reducing the identifier overhead by
perhaps 50% in some cases. This possibility would be enabled by adding an attribute to contain the
variable definitions at the top of the EHR_EXTRACT type in the openEHR Reference Model, and in
equivalent classes in other models.

The use of such variables will slightly complicate querying and other data processing, since a query
that returns part of a Composition would return data containing meaningless local variable names
rather than proper archetype meta-data.

A second question to consider is whether any parts of the identifiers could be removed. For example,
it might initially appear that the reference model and class identification could be removed altogether,
since the data when initially created would seem by definition to be based on the reference model and
class of the archetype. However, neither are guaranteed. Consider the following two cases which use
archetypes based on a different reference model to create data:

• a data extractor that transforms source data, say in openEHR form, to a standard form, say in
ISO 13606 form. The archetype identifiers embedded in the latter data will be the original
openEHR archetype identifiers (the extractor does not create new archetypes to do its trans-
formation work);

• a product that is directly based on another standard, such as ISO 13606 but uses the pub-
lished library of openEHR archetypes.

Similarly, in the case of the class, the data may easily be based on a descendant (e.g. the
POINT_EVENT class in openEHR) of the class mentioned in the archetype (e.g. EVENT).

We therefore assume that although some of the above assumptions might be available in very particu-
lar environments, they cannot be safely made in general, particularly since it can never be predicted
where data may be shared.

6.6.5.2 Reference Compression
Nevertheless, it would be possible to go further in terms of removing repetition in the once-only dec-
larations. For instance, a compressed form of the archetype lineage information could be constructed,
whereby repeated sections in each subsequent identifier are replaced by a special character. The
example above would become:

id01=uk.nhs.royalfree::openEHR-EHR-EVALUATION.diagnosis.v2.15.0,
org.openehr::~.diagnosis.v1.29.0,
~::~.problem.v2.4.0

id02=au.gov.nehta::openEHR-EHR-OBSERVATION.hba1c_result.v1.4.0,
Date of Issue: 29 Sep 2014 Page 34 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Referencing
Rev 0.7.4
org.openehr.ehr::~.lab_result.v1.18.0

The above syntax uses the '~' character in each identifier in the list to mean 'the missing parts are
taken from the corresponding element(s) of the previous identifier in the list' (the inspiration is the
use of the ‘~’ in dictionaries to stand for the keyword). In this syntax, the concrete archetype used to
create the data is guaranteed to appear first and in its entirety in the list.

Clearly in a particular system in which archetypes were only ever used from the same reference
model as the system itself is built on, an even further reduced form of these references could be cre-
ated. However, if the data were ever to be shared, such references would be in danger of being non-
interoperable.

Whether the additional saving in space justifies the added complexity in parsing is debatable.
Issuer:openEHR Specification Program Page 35 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

A Reliable URI for Knowledge Resources Knowledge Artefact Identification
Rev 0.7.4
7 A Reliable URI for Knowledge Resources

There should be a standardised and reliable Uniform Resource Identifier (URI) for all released
knowledge resources, in both source and operational forms. This may justify its own scheme-space,
but is at least achievable within the normal http scheme-space.

To Be Continued:
Date of Issue: 29 Sep 2014 Page 36 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Scenarios
Rev 0.7.4
8 Scenarios

This section describes typical scenarios to do with artefact development, deployment and querying.

8.1 Minor Version Upgrade
To Be Continued:

8.2 Major Version Upgrade
To Be Continued:

8.3 Templates using Archteypes and Subsets
To Be Continued:

8.4 Artefact Transfer / Fork
To Be Continued:
Issuer:openEHR Specification Program Page 37 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Artefact Authentication Knowledge Artefact Identification
Rev 0.7.4
9 Artefact Authentication

In theory, revision information should be reliable, and no two physical knowledge artefacts should
exist that are either identical but have different identifiers and/or revision information, or are different
but are identified as being the same. However, in practical systems, such situations can occur due to
uncontrolled artefact creation, uncontrolled copying, and errors in version management.

TBD_2: hashing on source v operational artefacts? Consider templates that
don’t change but referenced archetypes that do.

9.1 Integrity Check
It is therefore useful to be able to determine whether two artefacts (usually purported copies or subse-
quent revisions) are the same or not, even if the version information is the same. This can be achieved
by the use of a digital hash function (e.g. SHA-1, MD5), which generates a 'fingerprint' of the arte-
fact. Two archetypes with the same hash value must be the same – hash functions generate a different
result if even a single bit is different in the input stream. However, applying such functions to the typ-
ical file representation of an archetype or template will not usually have the desired result. This is
because differences in white-space and non-significant ordering, which make no difference to the
semantics – will still generate different hash values. Other semantically insignificant differences
include changes to meta-data values, such as descriptions, etc may have been changed (e.g. to correct
spelling, improving wording), and changes or additions to translations.

As a consequence, the input to a hashing function for the purpose of generating a semantic signature
of an openEHR knowledge artefact must be some canonical form of the original literal artefact, that is
impervious to differences of the above types while retaining differences that will affect computation
with such artefacts. The integrity check process is illustrated below.

9.2 Authentication
A second need to do with validity of knowledge artefacts is establishing their authenticity, i.e. their
true origin. The usual way of supporting authentication is with a digital signature. A typical scheme

FIGURE 6 Integrity check applied to knowledge artefact

Digestcanonical
serialiser

xxxx=<>
yyyy= <
zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>
aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<
ddd=<
eee=<124>
fff=<“wdfiubwiefug”>
>
>

canonical
serialised form

Hash
(e.g. MD5)

xxxx=<>
yyyy= <

zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>

aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<

ddd=<
eee=<124>
fff=<“wdfiubwiefug”>

>
>

Artefact
text form

publish

radix-64
ASCII

encode

Digest
(ASCII)
Date of Issue: 29 Sep 2014 Page 38 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification Artefact Authentication
Rev 0.7.4
based on the public key infrastructure (PKI) concept is for the producer of an artefact to sign it with
their private key, and for the public key to be used by a consumer of the artefact to decrypt the signed
entity.

In the case of openEHR knowledge artefacts, the need is to know the originating Custodian Organisa-
tion of an artefact. The PKI approach is for each CO to generate a key pair, and to provide the public
key to the Central Governance Authority. Signing is then carried out using the CO private key on the
hash digest already generated for an artefact. The modified process is illustrated in FIGURE 7.

9.3 Canonical Form – Archetype 'semantic view'
For hashing and signing to be useful, the input artefacts need to have two characteristics. Firstly, we
need to know that the artefact has been validated, since there is no use in disseminating digitally
authenticated but useless artefacts. Secondly, the effects of ‘non-semantic’ changes in the artefact
must be removed. This requires a syntactic canonical form.

Both requirements can be achieved for archetypes and templates with a canonical form based on a
'semantic view' of an archetype, analagous to the 'interface class' idea in software development. The
semantic view is created from a specific serialisation of the abstract syntax tree (AST) form of the
artefact, which is its computable form. The full AST form is in fact defined by the openEHR AOM,
but this contains all textual meta-data from the description, ontology and other sections of the arche-
type. The ‘semantic’ form of this model, suitable for generating a normalised serialisation for hashing
has the following reduced form:

• the identifier;

• specialisation identifier, where present;

FIGURE 7 Digital signature check applied to knowledge artefact

Digest

E
n

cryp
t

Signature

112647565637224

CO private key

radix-64
ASCII

encode

Signature
(ASCII)

canonical
serialiser

xxxx=<>
yyyy= <
zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>
aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<
ddd=<

eee=<124>
fff=<“wdfiubwiefug”>
>
>

canonical
serialised form

Hash
(e.g. MD5)

xxxx=<>
yyyy= <

zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>

aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<

ddd=<
eee=<124>
fff=<“wdfiubwiefug”>

>
>

Artefact
text form

publish
Issuer:openEHR Specification Program Page 39 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Artefact Authentication Knowledge Artefact Identification
Rev 0.7.4
• concept code;

• definition section (comments stripped).

These objects would be represented in the same form as defined by the AOM. A suitable serialisation
is the dADL syntax form. XML forms could be used, but they depend on which schema variant is in
use, and there is no single normative openEHR XML-schema for the AOM.

TBD_3: canonical forms of other artefact types. Since all forms of archetypes
and templates are now AOM-based (as of 1.5), a single canonical algorithm
based on the AOM (with TOM extensions) can be described.

TBD_4: Operational template hashing & signing is required
Date of Issue: 29 Sep 2014 Page 40 of 41 Issuer:openEHR Specification Program

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

Knowledge Artefact Identification
Rev 0.7.4

Issuer:openEHR Specification Program Page 41 of 41 Date of Issue: 29 Sep 2014

© 2009- The openEHR Foundation
Issue tracker: www.openehr.org/issues/browse/SPECPR Web: www.openEHR.org

END OF DOCUMENT

	Knowledge Artefact Identification
	Revision: 0.7.4
	Pages: 41

	Amendment Record
	0.7.4
	S Garde,
	I McNicoll, H Leslie
	29 Sep 2014
	0.7.3
	I McNicoll T Beale
	28 May 2014
	0.7.2
	S Garde I McNicoll T Beale
	21 May 2014
	0.7.1
	S Garde I McNicoll
	09 May 2014
	0.7.0
	T Beale
	20 Jun 2013
	0.6.5
	T Beale
	15 Jun 2013
	0.6.0
	S Garde H Leslie I McNicoll T Beale
	21 Apr 2013
	0.2.0
	T Beale
	M van der Meer
	01 Feb 2010
	0.1.0
	T Beale
	09 Jul 2009

	Trademarks
	Acknowledgements
	1 Introduction 6
	2 Introduction 7
	3 Source Artefact Identification 11
	4 Lifecycle Model 19
	5 Distributed Governance 23
	6 Referencing 26
	7 A Reliable URI for Knowledge Resources 36
	8 Scenarios 37
	9 Artefact Authentication 38

	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status

	2 Introduction
	2.1 The Environment
	FIGURE 1 Distributed Development Environment

	2.2 The Problem
	2.3 Human-readable and Machine Identifiers
	2.4 Meta-data

	3 Source Artefact Identification
	3.1 Overview
	3.2 Formal Model
	3.2.1 Human-readable Identifier (HRID)
	3.2.2 Archetype Identifier
	3.2.2.1 Concept Identifier
	Legacy ADL 1.4 Semantics
	Concept Identifier Semantics
	FIGURE 2 Example archetype artefact ontology within a namespace

	3.2.2.2 Need for RM Class Name in Identifier

	3.2.3 Template Identifier
	3.2.4 Terminology Subset Identifier
	3.2.5 Query Set Identifier

	3.3 Versioning
	3.3.1 General Model
	3.3.2 Version Numbering
	3.3.3 Change Semantics

	4 Lifecycle Model
	4.1 Conceptual Model
	FIGURE 3 Development Lifecycle

	4.2 Lifecycle-based Versioning
	FIGURE 4 Development Lifecycle and Versioning

	4.3 Change Scenarios
	4.3.1 Change to Definition
	4.3.2 Change to Terminology Definition
	4.3.3 Addition of Terminology Translation

	5 Distributed Governance
	5.1 Overview
	5.2 Management
	5.3 Virtual Referencing across MOs
	5.4 Transfer and Forking

	6 Referencing
	6.1 Source Artefact References
	6.1.1 Archetype External References (ADL/AOM 1.5)
	6.1.2 Template References to Archetypes and Templates
	6.1.3 Between Specialised Archetypes
	FIGURE 5 Specialisation relationships

	6.2 Source Artefact Relationship Constraints
	6.2.1 ADL 1.4 Archetype Slots
	6.2.2 ADL 1.5 Archetype Slots

	6.3 AQL Query Sets
	6.4 AQL Queries
	6.5 Operational Artefacts
	6.6 References from Data
	6.6.1 Requirements
	6.6.2 Reconstitutability
	6.6.3 Supporting Archetype-based Querying
	6.6.4 Formal Model
	6.6.5 Optimisations
	6.6.5.1 Identifier Aliasing
	6.6.5.2 Reference Compression

	7 A Reliable URI for Knowledge Resources
	8 Scenarios
	8.1 Minor Version Upgrade
	8.2 Major Version Upgrade
	8.3 Templates using Archteypes and Subsets
	8.4 Artefact Transfer / Fork

	9 Artefact Authentication
	9.1 Integrity Check
	FIGURE 6 Integrity check applied to knowledge artefact

	9.2 Authentication
	FIGURE 7 Digital signature check applied to knowledge artefact

	9.3 Canonical Form – Archetype 'semantic view'
	END OF DOCUMENT

