The Equations Behind DALL-E
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This document derives DALL-E’s equation. Basically, where does Eq. 1 come from?
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In 2019, OpenAl released GPT-2 [1], an auto-regressive model that takes word vectors as input and
predicts next words as output. Later in 2021, OpenAl released DALL-E [2] to generate images. Similar to
GPT-2, DALL-E is an auto-regressive model that takes word vectors as input. Yet, different from GPT-2,
DALL-E ought to predict/generate images as output, i.e., instead of next words. To bypass the ” continuous”
nature of images, OpenAl trained a discrete variational autoencoder (AVAE) [5; 3] to convert RGB images
into a discrete image vocabulary of K, = 8192 tokens. With both image z and text y vocabularies, training
an auto-regressive transformer p,(y, z) becomes quite similar to GPT-2, i.e., just two vocabularies (text and
images) instead of one.
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Figure 1: DALL-E components

With its multiple vocabularies, DALL-E has more components compared to GPT-2. Fig. 1 shows DALL-
E’s three components:(1) an image encoder g4(z|z) to convert RGB images x into a discrete tokens z; (2)
an image decoder pp(z|z) to convert discrete image tokens z back into RGB images z; (3) a transformers
py(y, z) trained to predict/generate both text y/image z tokens.
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Figure 2: DALL-E graphical moodel

We believe DALL-E uses the graphical model depicted in Fig. 2. Accordingly, the model’s joint distri-
bution is defined as follows

po,u(7,Y, 2) = po(xly, 2)p(2|y)p(y) = po(xly, 2)py (Y, 2), (2)

where z,y,and z denote RGB images, text, and image-tokens, respectively. This yields the lower bound
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Now, Eq. 9 is missing the Dk, term from Eq. 1. Indeed, Eq. 9 has two terms py(y, 2) and g4(z|x),
but these represent incompatible distributions. Concretely, g,(z|z) represents a single-variable discrete
distribution over the image tokens z, while py(y, z) represents a multi-variable (joint) discrete distribution
over the joint image z and text y tokens as illustrated in Fig. 3. Basically, it makes no sense to reduce the
distance (Kullback-Leibler divergence) between these distributions.

Figure 3: (Left) A Toy single-variable distribution over the image vocabulary ¢4(z|x). (Right) A Toy multi-
variable joint distribution over the joint image z and text y vocabularies py(y, 2).

To bring the Dgr, (g (y, z|x), py(y, 2)) term, we should convert the single-variable g4(z|z) into a multi-
variable (joint) ¢4 (y, z|z). Accordingly, we introduce ¢4 (y|x) as follows
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It is important to note that the dAVE encoder gy is trained to convert RGB images x into a discrete
image tokens z. Thus, the probability distribution over text tokens g4(y|x) is independent of both the dAVE
encoder’s parameter ¢ and input z, i.e., ¢o(2|2)qe(y|2) = g4 (y, 2|x)
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Since gy (y|z) is independent of both ¢ and z, the term g4 (y|z) follows the probability mass function of
the BPE-encode learned by Sennrich et al. [4]. So, E. <y, (-|2) [Ing4(ylz)] is a constant positive value that we
can drop from Eq. 13. This leads to
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where the bound only holds for § = 1. In practice, Ramesh et al. [2] found that 5 = 6.6 promotes better
codebook usage and ultimately leads to a smaller reconstruction error at the end of training [cf. 2, §2.1].
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