

A Practical Guide to
Automated Testing

May 30th 2018

Andrew Jeffery
andrewrj@au1.ibm.com

Hello,

This talk is a walk-through of adding automated
testing to an existing, untested codebase.

Specifically, it’s not a talk about the theory around
testing such as different test types, strategies, and
design – these are topics we can talk about in the
future

Overall I hope that it inspires you to write tests for
your code by giving you the tools to integrate test
suites into your project’s build system, and write
tests that achieve good coverage

More than anything, I hope to show that this is
straight-forward to do, to the point of giving you
snippets that you can almost copy and paste
straight into your work.

Please stop me if you have questions along the way

Assumptions

● C or C++
● Autotools-based project
● lcov

– Ubuntu: `sudo apt install lcov`
● Use of Google Test and Google Mock libraries

To that end, it does come with some assumptions

I will assumes that you’re writing C++ (or C at a
stretch). We also need to write tests for the Python
code in OpenBMC, but as it’s a different language it
requires different practical examples and we can
talk about that another time

I will also assume you’re working with an autotools
project

And that you can install lcov, a gcov-based code
coverage rendering tool.

To test our C++ we’re going to wire Google Test-
based binaries into our Autotools build system

And make use of Google Mock to influence the
behaviour of code under test

phosphor-led-sysfs

https://gerrit.openbmc-project.xyz/#/q/project:openbmc/phosphor-led-sysfs+topic:testing

It would only be a theoretical guide if we weren’t
modifying something concrete!

To develop this talk I dug through the repositories of
the OpenBMC Github organisation to find an
untested repository that was small and reasonably
self-contained.

One of the better candidates was phosphor-led-sysfs.
Again, to improve the chance that this talk would
get some traction I’ve developed a series of 18
patches against phosphor-led-sysfs that
demonstrate:

● Integrating coverage analysis tools
● Developing a first-pass test suite
● Using code coverage to find untested paths
● Patching code so we can test paths we missed
● Patching tests so we can characterise the code
● Using compiler features to enhance our testing

We will be addressing each of these topics in turn

Automated testing...

● Is automated code review
– Less work to do once the tests are in place

● Provides confidence code is working as expected
● Enforces expected behaviour in the face of change

A practical guide is only useful if we’re motivated to
use it, so why is automated testing a good thing?

We want to make the machines do the hard work for
us. This means less time you, as a reviewer or
maintainer, will need to spend looking at patches
and mentally modelling the contracted behaviour vs
the current behaviour vs the changed behaviour, as
well as providing feedback on readability,
maintainability and other non-functional necessities.

With good use-case test coverage you can be
confident that the code works as intended

These same tests enforce expected behaviour on
future changes

But only for the execution paths
that your tests touch!

Your confidence in your code can only be
proportional to the code paths executed by manual
or automated tests.

The easy way out here is to minimise the problems
you’re solving in software – less code means fewer
bugs

But when you can’t reduce number of problems you
are solving in software - or their complexity - you
need to fall back on testing, and instrumenting your
tests for coverage of your code

So the first practical thing we should look at is adding
test coverage instrumentation to your Autotools
config

The first step

diff --git a/configure.ac b/configure.ac
index 6a08be339e16..211e4efe1b02 100644
--- a/configure.ac
+++ b/configure.ac
@@ -29,6 +29,8 @@ PKG_CHECK_MODULES([PHOSPHOR_DBUS_INTERFACES], [phosphor-dbus-interfaces],, [AC_M
 AX_PTHREAD([GTEST_CPPFLAGS="-DGTEST_HAS_PTHREAD=1"],[GTEST_CPPFLAGS="-DGTEST_HAS_PTHREAD=0"])
 AC_SUBST(GTEST_CPPFLAGS)

+AX_CODE_COVERAGE
+
 AC_ARG_VAR(BUSNAME, [The Dbus busname to own])
 AS_IF([test "x$BUSNAME" == "x"], [BUSNAME="xyz.openbmc_project.LED.Controller"])
 AC_DEFINE_UNQUOTED([BUSNAME], ["$BUSNAME"], [The Dbus busname to own])

https://gerrit.openbmc-project.xyz/#/c/10827/

I’ve added a link to the specific phosphor-led-sysfs
commit in question at the top of the slide. This is
done throughout the slide deck for your reference.
Do note that I’ve taken some liberties with the code
in the slides compared to what’s in the patches.

This change covers what you need to do to
configure.ac

It’s literally just adding the line
AX_CODE_COVERAGE

We do however need a companion change in
Makefile.am to make use of the code coverage
feature

https://gerrit.openbmc-project.xyz/#/c/10827/

The first step

diff --git a/Makefile.am b/Makefile.am
index 3c42e07184d7..a5e625fc9160 100644

--- a/Makefile.am
+++ b/Makefile.am
@@ -9,3 +9,10 @@ phosphor_ledcontroller_LDFLAGS = $(SDBUSPLUS_LIBS) \
 $(PHOSPHOR_DBUS_INTERFACES_LIBS)

 phosphor_ledcontroller_CFLAGS = $(SDBUSPLUS_CFLAGS) \
 $(PHOSPHOR_DBUS_INTERFACES_CFLAGS)
+
+@CODE_COVERAGE_RULES@

+
+check_PROGRAMS =
+XFAIL_TESTS =

+
+TESTS = $(check_PROGRAMS)

https://gerrit.openbmc-project.xyz/#/c/10827/

And here’s the change to Makefile.am

We add the @CODE_COVERAGE_RULES@ magic,
and define some new make variables

check_PROGRAMS describes the binaries that will
be run from the `check` `make` target

TESTS defines the applications whose output and
exit status the test runner should consider as input

XFAIL_TESTS defines the test applications that we
expect to exit with a non-zero status. If these tests
unexpectedly pass (exit with a zero status) the test
suite will also fail, just as it would if an application
listed in TESTS but not XFAIL_TESTS exits with a
non-zero status

And that’s it! We now have test coverage
instrumentation available to us

But, what do we do to make it work?

https://gerrit.openbmc-project.xyz/#/c/10827/

The first result
$./configure –enable-code-coverage && make check-code-coverage
...
==
Testsuite summary for phosphor-led-sysfs 1.0
==
TOTAL: 0
PASS: 0
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[2]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[1]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[1]: Entering directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
 LCOV --capture phosphor-led-sysfs-1.0-coverage.info
geninfo: WARNING: no .gcda files found in . - skipping!
 LCOV --remove /tmp/*
lcov: ERROR: no valid records found in tracefile phosphor-led-sysfs-1.0-coverage.info.tmp
Makefile:1329: recipe for target 'code-coverage-capture' failed
make[1]: *** [code-coverage-capture] Error 255
make[1]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
Makefile:1323: recipe for target 'check-code-coverage' failed
make: *** [check-code-coverage] Error 2

We need to run the configure script with the `--
enable-code-coverage` option. This generates a
Makefile with the `check-code-coverage` make
target, which we use to generate the test coverage
report

However, running `make check-code-coverage` on
phosphor-led-sysfs gives us some pretty bleak
output

We need more than zero tests before test coverage
reports can be useful.

phosphor-led-sysfs
$ git ls-files | grep '\.[ch]pp'
argument.cpp
argument.hpp
controller.cpp
physical.cpp
physical.hpp
$

To add tests we first need to understand the code-
base.

Luckily phosphor-led-sysfs doesn’t have a lot to it,
containing only 5 source files

phosphor-led-sysfs

● argument.[ch]pp: Argument parsing
● controller.cpp: main(), orchestrates everything
● physical.[ch]pp: Testable business logic!

– Converts DBus API to kernel LED sysfs ABI

Note: Talk briefly about argument.[ch]pp and
controller.cpp

For the purposes of the our testing adventure, only
the “physical” header and implementation are really
relevant.

physical.[ch]pp together implement the Physical
class, which is the plumbing between DBus
properties representing an LED and the kernel’s
sysfs LED attributes

The DBus API for LEDs is described in the usual
place, in the phosphor-dbus-interfaces repository

Physical caters to turning LEDs solid on, solid off, or
blinking at a defined percent duty over a 1 second
period.

Physical defines some business logic, and is
something we can test

Testing physical.cpp

diff --git a/Makefile.am b/Makefile.am
index a5e625fc9160..429415b54688 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -15,4 +15,6 @@ phosphor_ledcontroller_CFLAGS = $(SDBUSPLUS_CFLAGS) \
 check_PROGRAMS =
 XFAIL_TESTS =

+include test/Makefile.am.include
+
 TESTS = $(check_PROGRAMS)

https://gerrit.openbmc-project.xyz/#/c/10829/

So far we have:

● added the test coverage instrumentation, and
● Investigated what parts of the application we can

test

What we must do now is integrate our tests and test
infrastructure into Autotools

One of the things I’m going to demonstrate here is
how to write non-recursive make. This is important
for making your build as parallel as possible, thus
reducing wall-clock build times with `make -j$
(nproc)`. Recursive make partitions your targets by
directory, which can really limit the parallelisation of
your build. This technique applies to all
subdirectories, not just tests.

The non-recursive approach starts with defining
Makefile.am.include snippets in your sub-
directories, and using the `include` directive to
bring them into your root Makefile.am as we have
here

https://gerrit.openbmc-project.xyz/#/c/10829/

Testing physical.cpp

diff --git a/test/Makefile.am.include b/test/Makefile.am.include
new file mode 100644
index 000000000000..32b97f79c6ef
--- /dev/null
+++ b/test/Makefile.am.include
@@ -0,0 +1,13 @@
+GTEST_LIBS = -lgtest -lgtest_main -lgmock
+AM_CPPFLAGS = $(CODE_COVERAGE_CPPFLAGS) $(PTHREAD_CPPFLAGS) $(SDBUSPLUS_CPPFLAGS) $(PHOSPHOR_DBUS_INTERFACES_CPPFLAGS)
+AM_CFLAGS = $(CODE_COVERAGE_CFLAGS) $(PTHREAD_CFLAGS) $(SDBUSPLUS_CFLAGS) $(PHOSPHOR_DBUS_INTERFACES_CFLAGS)
+AM_CXXFLAGS = $(CODE_COVERAGE_CXXFLAGS) $(PTHREAD_CXXFLAGS) $(SDBUSPLUS_CXXFLAGS) $(PHOSPHOR_DBUS_INTERFACES_CXXFLAGS)
+AM_LDFLAGS = $(CODE_COVERAGE_LIBS) $(SDBUSPLUS_LIBS) $(PHOSPHOR_DBUS_INTERFACES_LIBS) $(GTEST_LIBS) $(PTHREAD_CFLAGS)
+
+test_physical_SOURCES = physical.cpp %reldir%/physical.cpp
+test_physical_CPPFLAGS = $(AM_CPPFLAGS) $(GTEST_CPPFLAGS)
+
+check_PROGRAMS += %reldir%/physical

https://gerrit.openbmc-project.xyz/#/c/10829/

In our test/Makefile.am.include file, we define all the usual variables to build
a test binary

One catch with non-recursive make is defining paths to objects. This hurdle
is overcome by using the `%reldir%` magic variable, which substitutes the
path to the directory containing the Makefile snippet. Source files, objects
and binaries should be referenced relative to `%reldir%`.

Putting aside the non-recursive make distraction, we want to enable code
coverage reports for our tests.

To do this we make sure to include the $(CODE_COVERAGE_*) variables
in their respective build variables as highlighted in the slides (note that
the $(AM_*) variables are used unless overridden by application-specific
variables). The $(CODE_COVERAGE_*) variables hold the compiler and
linker flags needed to track executed source lines, typically -fprofile-arcs -
ftest-coverage (when compiling) and -lgcov (when linking)

Finally, after defining our test program variables we add its binary to
`check_PROGRAMS` as seen at the bottom

https://gerrit.openbmc-project.xyz/#/c/10829/

Testing physical.[ch]pp
diff --git a/test/physical.cpp b/test/physical.cpp
new file mode 100644
index 000000000000..511bbfa4f70e
--- /dev/null
+++ b/test/physical.cpp
@@ -0,0 +1,36 @@
+#include <gtest/gtest.h>
+#include <sdbusplus/bus.hpp>
+
+#include "physical.hpp"
+
+constexpr auto LED_OBJ = "/foo/bar/led";
+constexpr auto LED_SYSFS = "/sys/class/leds/test";
+
+using Action = sdbusplus::xyz::openbmc_project::Led::server::Physical::Action;
+
+TEST(Physical, ctor)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ phosphor::led::Physical led(bus, LED_OBJ, LED_SYSFS);
+}
+
+TEST(Physical, off)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ phosphor::led::Physical led(bus, LED_OBJ, LED_SYSFS);
+ led.state(Action::Off);
+}
+
+TEST(Physical, on)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ phosphor::led::Physical led(bus, LED_OBJ, LED_SYSFS);
+ led.state(Action::On);
+}
+
+TEST(Physical, blink)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ phosphor::led::Physical led(bus, LED_OBJ, LED_SYSFS);
+ led.state(Action::Blink);
+}

And here’s the code for the first test suite of
phosphor-led-sysfs

It uses Google Test as a test framework, and defines
four separate test cases.

The test cases clearly are not complicated - I’ve
managed to jam the entire file in one slide.

One of the tests simply constructs a Physical
instance

The remaining tests simply call the APIs to turn the
LED off, on and make it blink

What we know from these tests is that we don’t
receive any funny exceptions when calling the
interfaces. It’s not much, but it’s something

Note: Stop for any questions

Having done that, how did we do for code coverage?

The second result
$./configure –enable-code-coverage && make check-code-coverage
...
==
Testsuite summary for phosphor-led-sysfs 1.0
==
TOTAL: 1
PASS: 1
SKIP: 0
XFAIL: 0
FAIL: 0
XPASS: 0
ERROR: 0
==
make[3]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[2]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[1]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
make[1]: Entering directory '/home/andrew/src/openbmc/phosphor-led-sysfs'
 LCOV --capture phosphor-led-sysfs-1.0-coverage.info
 LCOV --remove /tmp/*
 GEN phosphor-led-sysfs-1.0-coverage
file:///home/andrew/src/openbmc/phosphor-led-sysfs/phosphor-led-sysfs-1.0-coverage/index.html
make[1]: Leaving directory '/home/andrew/src/openbmc/phosphor-led-sysfs'

We can see here that our test suite ran one test
binary and passed all tests! We also successfully
generated some test coverage output

Lets have a look at the code coverage report

The second result

We will step through some screenshots of LCOV’s
output

We can see here that it’s profiled lots of build
components, including system libraries and
headers, and provides various stats on line and
function coverage

We’re only interested in the coverage of our own
code, and even then we’re only interested in
coverage of the production code, not of the code
composing the test suite

From that, we can see that we’ve achieved 79.4%
code coverage and 92.9% function coverage, from
four tests.

Again, admittedly, not very good tests, but something
we can build on.

Lets drill into the stats on the production code

The second result

Here we can see we achieved 83.7% line coverage
of physical.cpp and 70.0% of physical.hpp

On the other-hand we achieved 100% function
coverage in physical.cpp, and got a decent 87.5%
of physical.hpp

So what did we miss? We can drill down further into
the files themselves to see annotated source
indicating which lines we hit and missed

What we missed: physical.hpp

In physical.hpp, we missed the critical chunks of the
read() and write() methods. We pointed the tests to
a dummy directory in the sysfs tree, and thus the
tests in both read() and write() simply return a T
instance instantiated with the no-args constructor

What we missed: physical.cpp

In physical.cpp, we missed lines whose execution depend on reading
particular values out of the sysfs LED attribute files

Now, these attributes don’t exist as we provided a dummy sysfs LED path to
use! The fact that we charged off down the else paths when the attributes
we are attempting to read didn’t exist should be sounding some alarm
bells – failing to read the attribute file should be an error condition that is
propagated out as necessary!

Please don’t swallow errors this way in your code! Part of the design
challenge is understanding who should handle the error. Often it is an
actor well removed from where the error occurs. My gut feeling in this
case is the application shouldn’t be launched if the appropriate attributes
are not available in sysfs, which would remove the error handling problem
entirely (or at least move it to another layer)

Regardless, what can we do to hit these paths?

Ultimately, we need a way to make the conditions on lines 41 and 66
evaluate to true.

The unhelpful design of Physical

1) read() and write() are non-virtual functions
2) read() is called by the constructor
3) read() and write() are template functions
4) There is a better choice of abstraction

1) One way to hit the lines we missed in physical.cpp would be to override
read() and write() to return the expected values using inheritance, and
instantiate this decended class in the tests. However, as read() and
write() are non-virtual they cannot be overridden, and even if they were
virtual,

2) They are executed in the context of Physical’s constructor, and thus the
compiler will bind the calls to Physical’s definitions and not a decendent’s.
This eliminates virtualising the methods as a solution.

3) read() and write() are template functions, where the template parameter is
the type that will be constructed and returned. A search of the code-base
showed that the only type parameter used with read() and write()
invocations was std::string, negating the need for the template entirely.

4) Given we can’t solve the problem by inheritance due to 1) and 2), and
having removed the complication of 3), another possibility is dependency
injection, also known as the inversion-of-control design pattern. This
pattern moves read() and write() into their own class, and we provide an
instance of this new class to Physical’s constructor. To clarify, we’re
viewing implementing read() and write() on Physical as an abstraction
violation: We’re mixing the business logic with the mechanics of
interacting with sysfs.

Lets explore the dependency injection approach of moving read and write
out of Physical.

sysfs.[ch]pp

diff --git a/sysfs.hpp b/sysfs.hpp

new file mode 100644
index 000000000000..e88cfd09465b

--- /dev/null
+++ b/sysfs.hpp

@@ -0,0 +1,39 @@
+namespace phosphor {

+namespace led {

+class SysfsLed
+{

+ public:
+ SysfsLed(std::experimental::filesystem::path&& root) : root(root) { }

+ virtual ~SysfsLed() { }
+ virtual unsigned long getBrightness();

+ virtual void setBrightness(unsigned long value);

+ virtual unsigned long getMaxBrightness();
+ virtual std::string getTrigger();

+ virtual void setTrigger(std::string trigger);
+ virtual unsigned long getDelayOn();

+ virtual void setDelayOn(unsigned long ms);

+ virtual unsigned long getDelayOff();
+ virtual void setDelayOff(unsigned long ms);

+ protected:
+ std::experimental::filesystem::path root;

+};
+}

+}

diff --git a/sysfs.cpp b/sysfs.cpp

new file mode 100644
index 000000000000..89b85e125c08

--- /dev/null
+++ b/sysfs.cpp

@@ -0,0 +1,86 @@
+namespace fs = std::experimental::filesystem;

+namespace phosphor {

+namespace led {
+template <typename T> T get_sysfs_attr(fs::path&& path);

+template <typename T> void set_sysfs_attr(fs::path&& path, T& value)
+

+unsigned long SysfsLed::getBrightness()
+{

+ return get_sysfs_attr<unsigned long>(root / BRIGHTNESS);
+}

+

+void SysfsLed::setBrightness(unsigned long brightness)
+{

+ set_sysfs_attr<unsigned long>(root / BRIGHTNESS, brightness);
+}

+

+unsigned long SysfsLed::getMaxBrightness()
+{

+ return get_sysfs_attr<unsigned long>(root / MAX_BRIGHTNESS);
+}

...

https://gerrit.openbmc-project.xyz/#/c/10830/

To separate the functionality, we introduce a new
SysfsLed class in sysfs.[ch]pp

Its design is to expose each of the sysfs LED
attributes via virtual getter and setter methods,
seen here on the left.

The functionality for reading and writing the attribute
files is wrapped up in two template function
definitions which are called from the class’ method
implementations seen on the right. This retains the
brevity whilst hiding the templates from the class
API.

The advantage of virtual getters and setters is we can
make a sock-puppet out of the interface for testing
purposes.

This will allow us to guide test execution through the
paths we failed to hit with the existing test cases.

https://gerrit.openbmc-project.xyz/#/c/10830/

test/sysfs.cpp
+class FakeSysfsLed : public phosphor::led::SysfsLed
+{
+ public:
+ static FakeSysfsLed create()
+ {
+ const char* const tmplt = "/tmp/FakeSysfsLed.XXXXXX";
+ char buffer[MAXPATHLEN] = {0};
+
+ strncpy(buffer, tmplt, strlen(tmplt));
+ char* dir = mkdtemp(buffer);
+ if (!dir)
+ throw std::system_error(errno, std::system_category());
+
+ return FakeSysfsLed(fs::path(dir));
+ }
+
+ ~FakeSysfsLed()
+ {
+ fs::remove_all(root);
+ }
+
+ private:
+ FakeSysfsLed(fs::path&& path) : SysfsLed(std::move(path))
+ {
+ std::string attrs[4] = {BRIGHTNESS, TRIGGER, DELAY_ON, DELAY_OFF};
+ for (auto attr : attrs)
+ {
+ fs::path p = root / attr;
+ std::ofstream f(p, std::ios::out);
+ f.exceptions(f.failbit);
+ }
+
+ fs::path p = root / MAX_BRIGHTNESS;
+ std::ofstream f(p, std::ios::out);
+ f.exceptions(f.failbit);
+ f << MAX_BRIGHTNESS_VAL;
+ }
+};

https://gerrit.openbmc-project.xyz/#/c/10830/
+TEST(Sysfs, getBrightness)
+{
+ constexpr auto brightness = 127;
+ FakeSysfsLed fsl = FakeSysfsLed::create();
+
+ fsl.setBrightness(brightness);
+ ASSERT_EQ(brightness, fsl.getBrightness());
+}
+
+TEST(Sysfs, getMaxBrightness)
+{
+ FakeSysfsLed fsl = FakeSysfsLed::create();
+

+ ASSERT_EQ(MAX_BRIGHTNESS_VAL, fsl.getMaxBrightness());
+}
+
+TEST(Sysfs, getTrigger)
+{
+ constexpr auto trigger = "none";
+ FakeSysfsLed fsl = FakeSysfsLed::create();
+
+ fsl.setTrigger(trigger);
+ ASSERT_EQ(trigger, fsl.getTrigger());
+}
+
+TEST(Sysfs, getDelayOn)
+{
+ constexpr auto delayOn = 250;
+ FakeSysfsLed fsl = FakeSysfsLed::create();
+
+ fsl.setDelayOn(delayOn);
+ ASSERT_EQ(delayOn, fsl.getDelayOn());
+}
+
+TEST(Sysfs, getDelayOff)
+{
+ constexpr auto delayOff = 750;
+ FakeSysfsLed fsl = FakeSysfsLed::create();
+
+ fsl.setDelayOff(delayOff);
+ ASSERT_EQ(delayOff, fsl.getDelayOff());
+}

Of course, if we’re adding new code we need to test it, so here’s the
implementation of the SysfsLed test suite

The nature of SysfsLed is to read and write files on the filesystem. Ideally
we wouldn’t touch the filesystem as then the tests have a dependency on
an external resource that is another point of failure. This drives to the
heart of “integration” vs “unit” testing. Unit testing is considered ideal
because by definition it’s required that all external points of failure are
removed such that the only entity that is exercised is the code under test.

Depending on the filesystem makes this an integration test.

Further, we don’t want to actually manipulate system LEDs whilst we’re
testing the code (that makes us dependent on the system configuration,
and would be confusing for system owners), and we also want the tests
to fail if necessary.

Instead, we isolate each test case to its own temporary directory. This has
two useful properties:

1) The tests can read or write whatever files are necessary without affecting
system behaviour or being influenced by system configuration

2) The tests can be run in parallel because each test case receives its own
isolated temporary directory

This means that, short of filesystem failure, the tests will run correctly and
quickly if we have available CPUs.

The tests themselves simply write the value through the setter and read it
back through the getter, then assert that the read value is equal to the
written value.

https://gerrit.openbmc-project.xyz/#/c/10830/

The third result

Running `make check-code-coverage` to understand
how well our new class works, we see we’ve
achieved 100% coverage of sysfs.cpp with our
tests (it turns out the 50% coverage of sysfs.hpp is
spurious).

Now that we’ve got the SysfsLed class implemented
we need to integrate it back into the Physical class.

Integrate SysfsLed into Physical

@@ -70,12 +42,12 @@ class Physical : public sdbusplus::server::object::object<
 * @param[in] ledPath - sysfs path where this LED is exported
 */
 Physical(sdbusplus::bus::bus& bus, const std::string& objPath,
- const std::string& ledPath) :
+ SysfsLed& led) :

 sdbusplus::server::object::object<
 sdbusplus::xyz::openbmc_project::Led::server::Physical>(
 bus, objPath.c_str(), true),
- path(ledPath)
+ led(led)
 {
 // Suppose this is getting launched as part of BMC reboot, then we
 // need to save what the micro-controller currently has.
@@ -96,25 +68,13 @@ class Physical : public sdbusplus::server::object::object<
 /** @brief File system location where this LED is exposed
 * Typically /sys/class/leds/<Led-Name>
 */
- std::string path;
+ SysfsLed& led;

 /** @brief Frequency range that the LED can operate on.
 * Will be removed when frequency is put into interface
 */
 uint32_t frequency;

https://gerrit.openbmc-project.xyz/#/c/10831/
-
- /** @brief Generic file writer.
- * There are files like "brightness", "trigger" , "delay_on" and
- * "delay_off" that will tell what the LED driver needs to do.
- *
- * @param[in] filename - Name of file to be written
- * @param[in] data - Data to be written to
- * @return - None
- */
- template <typename T> auto write(const std::string& fileName, T&& data)
- {
- if (std::ifstream(fileName))
- {
- std::ofstream file(fileName, std::ios::out);
- file << data;
- file.close();
- }
- return;
- }
-
- /** @brief Generic file reader.
- * There are files like "brightness", "trigger" , "delay_on" and
- * "delay_off" that will tell what the LED driver needs to do.
- *
- * @param[in] filename - Name of file to be read
- * @return - File content
- */
- template <typename T> T read(const std::string& fileName)
- {
- T data = T();
- if (std::ifstream(fileName))
- {
- std::ifstream file(fileName, std::ios::in);
- file >> data;
- file.close();
- }
- return data;
- }

Once we integrate SysfsLed we can remove the
read() and write() implementations from Physical,
reducing the number of lines and thus increasing
the line coverage percentage.

The core of the integration work is quite straight-
forward, limited to the three lines on the left column,
though there is some fallout around the code-base.

There’s one trick to the integration which is we take a
reference to the SysfsLed for Physical’s
constructor, and stash the reference in the class
member. This way when we extend SysfsLed with
mock classes we dispatch to the right method
implementations. However, constructors of Physical
instances must ensure that the provided SysfsLed
outlines the Physical instance.

https://gerrit.openbmc-project.xyz/#/c/10831/

The fourth result

Removing read() and write() gives us with 100%
coverage of physical.hpp, though the physical.cpp
coverage drops slightly in terms of percentage.

Mocking SysfsLed
diff --git a/test/physical.cpp b/test/physical.cpp
index fd1157e9a115..eab8ac9b03dc 100644
--- a/test/physical.cpp
+++ b/test/physical.cpp
@@ -1,25 +1,87 @@
 #include <gtest/gtest.h>
+#include <gmock/gmock.h>
...
+class MockLed : public phosphor::led::SysfsLed
+{
+ public:
+ /* Use a no-args ctor here to avoid headaches with {Nice,Strict}Mock */
+ MockLed() : SysfsLed(…) { }
+ virtual ~MockLed() { ... }
+
+ MOCK_METHOD0(getBrightness, unsigned long());
+ MOCK_METHOD1(setBrightness, void(unsigned long value));
+ MOCK_METHOD0(getMaxBrightness, unsigned long());
+ MOCK_METHOD0(getTrigger, std::string());
+ MOCK_METHOD1(setTrigger, void(std::string trigger));
+ MOCK_METHOD0(getDelayOn, unsigned long());
+ MOCK_METHOD1(setDelayOn, void(unsigned long ms));
+ MOCK_METHOD0(getDelayOff, unsigned long());
+ MOCK_METHOD1(setDelayOff, void(unsigned long ms));
+};

+using ::testing::NiceMock;
+using ::testing::Return;
+
 TEST(Physical, ctor)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
- phosphor::led::SysfsLed led = phosphor::led::SysfsLed(fs::path(LED_SYSFS));
+ /* NiceMock ignores calls to methods with no expectations defined */
+ NiceMock<MockLed> led;
+ ON_CALL(led, getTrigger()).WillByDefault(Return("none"));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 }

 TEST(Physical, off)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
- phosphor::led::SysfsLed led = phosphor::led::SysfsLed(fs::path(LED_SYSFS));
+ NiceMock<MockLed> led;
+ ON_CALL(led, getTrigger()).WillByDefault(Return("none"));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 phy.state(Action::Off);
 }
@@ -27,7 +89,8 @@ TEST(Physical, off)
 TEST(Physical, on)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
- phosphor::led::SysfsLed led = phosphor::led::SysfsLed(fs::path(LED_SYSFS));
+ NiceMock<MockLed> led;
+ ON_CALL(led, getTrigger()).WillByDefault(Return("none"));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 phy.state(Action::On);
 }
@@ -35,7 +98,9 @@ TEST(Physical, on)
 TEST(Physical, blink)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
- phosphor::led::SysfsLed led = phosphor::led::SysfsLed(fs::path(LED_SYSFS));
+ NiceMock<MockLed> led;
+ ON_CALL(led, getTrigger()).WillByDefault(Return("none"));
+ ON_CALL(led, getDelayOn()).WillByDefault(Return(500));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 phy.state(Action::Blink);
 }

https://gerrit.openbmc-project.xyz/#/c/10832/

Now that we’ve cleaned up the Physical implementation we can begin
shifting the needle on our tests away from integration- and towards unit-
style tests.

We still depend on sdbusplus to provide a bus instance, which means we
won’t be achieving the goal of full independence from the system
environment.

The left diff hunk in the slide defines the mock class using the macros
provided by Google Mock, and the hunks on the right set about
instantiating the mock class and defining behaviours with the ON_CALL()
macro.

Specifically, we’re making the mock class return “none” on calls to
getTrigger() in each test case, and 500 on calls to getDelayOn() in the
last test case.

Note that we encapsulate our mock class in a nifty template class
NiceMock, that stubs out all the mocked methods so calls are ignored if
there is no explicit mock implementation defined. The alternative
StrictMock will error on calls to methods not explicitly mocked.

https://gerrit.openbmc-project.xyz/#/c/10832/

The fifth result

Generating the code coverage report shows what we
should expect from switching to a SysfsLed mock in
the test cases: There has been no change in the
code coverage metrics

With the mock equivalents of our original tests in
place, we can set about putting them to good use
by writing tests to hit the code paths that were not
covered by our initial test case implementations.

The un-hit paths in Physical.cpp

Going back to our earlier code coverage snapshot,
we found that two code paths were not tested:

1) Where ‘trigger == “timer”’, from lines 36-48
2) Where ‘trigger != “timer”’ and ‘brightness ==

ASSERT’, from lines 61-63

Using our mock class we can now configure
instances that allow us to test both of these code
paths. We’ll address path 1) first.

Hitting ‘trigger == “timer”’

diff --git a/test/physical.cpp b/test/physical.cpp
index eab8ac9b03dc..a853dcd748aa 100644

--- a/test/physical.cpp
+++ b/test/physical.cpp
@@ -68,7 +68,7 @@ using ::testing::NiceMock;
 using ::testing::Return;
 using ::testing::Throw;

-TEST(Physical, ctor)
+TEST(Physical, ctor_none_trigger)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
 /* NiceMock ignores calls to methods with no expectations
defined */
@@ -77,6 +77,16 @@ TEST(Physical, ctor)
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 }

+TEST(Physical, ctor_timer_trigger)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ NiceMock<MockLed> led;
+ EXPECT_CALL(led, getTrigger()).WillOnce(Return("timer"));

+ EXPECT_CALL(led, getDelayOn()).WillOnce(Return(500));
+ EXPECT_CALL(led, getDelayOff()).WillOnce(Return(500));
+ phosphor::led::Physical phy(bus, LED_OBJ, led);
+}
+

https://gerrit.openbmc-project.xyz/#/c/10833/

Testing path 1) from the previous slide is a matter of
defining three expectations on our mock object

Google Mock tests the expectations at the end of the
test case to ensure that our expectations have
matched reality – it’s enough to simply define the
behaviour we want to see.

We define getTrigger() to return “timer” as desired by
the branch that we missed in previous testing, and
then mock out the getDelayOn() and getDelayOff()
to provide sensible values. Finally we instantiate
the object.

With the new test in place, we can confirm we’ve hit
the previously untested path by invoking `make
check-code-coverage`

https://gerrit.openbmc-project.xyz/#/c/10833/

The sixth result

The result confirms our mocking is doing the trick!

The left screenshot shows increased code coverage
while the right screenshot shows we’re now hitting
lines 36-48.

Now we need to cover case 2). The mechanics of this
are very similar to dealing with 1)

Hitting ‘brightness == ASSERT’

diff --git a/test/physical.cpp b/test/physical.cpp
index a853dcd748aa..9bb8424bee8f 100644
--- a/test/physical.cpp
+++ b/test/physical.cpp
@@ -114,3 +114,13 @@ TEST(Physical, blink)
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 phy.state(Action::Blink);
 }
+
+TEST(Physical, ctor_none_trigger_asserted_brightness)
+{
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ NiceMock<MockLed> led;
+ EXPECT_CALL(led, getTrigger()).WillRepeatedly(Return("none"));
+ constexpr auto val = phosphor::led::ASSERT;
+ EXPECT_CALL(led, getBrightness()).WillRepeatedly(Return(val));
+ phosphor::led::Physical phy(bus, LED_OBJ, led);
+}

https://gerrit.openbmc-project.xyz/#/c/10834/

There are a few minor differences to the previous test
case – here we don’t want to hit the “timer” trigger
path, so we mock getTrigger() to return “none”.
Then we want to meet the condition ‘brightness ==
ASSERT’, so we mock getBrightness() to return the
value ASSERT.

Again we can instrument with `make check-code-
coverage` to test whether our mocking has done
the trick.

https://gerrit.openbmc-project.xyz/#/c/10834/

The seventh result

Sure enough it has: we’re hitting lines 61-63 on the
right, and we’ve now achieved 100% line coverage
of the three critical files as shown on the left.

Enforce behaviour with Sensing

diff --git a/test/physical.cpp b/test/physical.cpp
index fade5c8c3bd9..bbb51438c722 100644
--- a/test/physical.cpp
+++ b/test/physical.cpp
@@ -110,7 +110,10 @@ TEST(Physical, blink)
 {
 sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
 NiceMock<MockLed> led;
- ON_CALL(led, getTrigger()).WillByDefault(Return("none"));
+ EXPECT_CALL(led, getTrigger()).WillOnce(Return("none"));
+ EXPECT_CALL(led, setTrigger("timer"));
+ EXPECT_CALL(led, setDelayOn(500));
+ EXPECT_CALL(led, setDelayOff(500));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 phy.state(Action::Blink);
 }

https://gerrit.openbmc-project.xyz/#/c/10836/

Line coverage isn’t the end-game though – the tests so far have not
captured the expected behaviour, rather guided execution through
particular code paths

Here we use the concept of value sensing – mocking a lower-level API and
then placing expectations on both the calls into this API and the values
passed to it from the code under test

This way we lock in the behaviour of the code under test with respect to the
abstraction that it sits on top of. Sensing in this manner is sometimes
necessary to constrain the implementation(s) when we can’t inspect the
behaviour of the code directly. By introducing sensing we can then safely
evolve the code under test.

Looking to the example, we’re placing expectations that setDelayOn() and
setDelayOff() will both be called once with the value 500. If this does not
occur the test case will fail.

This is why our initial tests were poor – we did no testing or sensing of
values, mainly because we didn’t have a well contained mechanism to
access the values that were being written across multiple calls. If we fell
back to writes the fhe filesystem, we could only inspect the state after the
code under test has completed execution, which may not be what we
want in general.

With mocking and sensing we can detect all calls, all values, and even
enforce call ordering constraints as much or as little as we desire. This is
the power of the tools that Google Test and Google Mock provide.

https://gerrit.openbmc-project.xyz/#/c/10836/

Branch Coverage
make CODE_COVERAGE_BRANCH_COVERAGE=1 check-code-coverage

Now that we’ve tested, mocked and sensed our way to capturing the
behaviour of the code, it is time to dive deeper.

Covering lines and functions only gets us part of the picture. It’s possible to
hit all of the lines in your code-base without hitting all the execution paths.

We can extend our understanding of path coverage by enabling branch
coverage metrics in our test runs with the
CODE_COVERAGE_BRANCH_COVERAGE=1 environment
configuration.

Function, line and branch coverage metrics are all increasingly complete
models of the the ultimate test regime: program state coverage. The
nature of testing is always incomplete as program state coverage is
practically unattainable. Consider having a single 32-bit value in your
code: Your application or library immediately has over four billion states.
Most code-bases use multiple 32-bit quantities, which puts state testing
out of reach.

With C++, branch coverage creeps up on the tipping point of diminishing
returns due to exception handling. Each function call may throw, and a
branch for exception handling is inserted at each call site. This
demonstrates the state space explosion at play before we’ve even
reached the point of testing each of our integer values. This is the reason
that despite having 100% line coverage we only have around 50% branch
coverage.

Branch Coverage

However, despite the considerable noise that results, branch coverage
metrics can identify genuine deficiencies in the test suite. Our branch
coverage information is on the left in the column between the line
numbers and the line’s hit count. A red minus indicates we failed to take
an arm of the branch, whilst a blue plus indicates an arm was taken. In
this case we’ve found two conditionals where at least one branch was not
taken: Line 108 and 118.

Lets go through the process of adding a test to cover both states of line 118.
We have already covered one state, but which one? We have three
relevant tests: off, on, and blink.

We’ve implicitly initialised our LEDs to off in our tests by not specifying the
getBrightness() behaviour, so explicitly calling Physical.state(Action::Off)
hits the early exit at the top of driveLED() on line 98.

We have already tested the off-to-on transition with our ‘on’ test, as we
initialised our LEDs to off as we just mentioned.

By this reasoning we want to test the on-to-off path, which means our LED
must first be on, and then be turned off. Lets write a test that does just
that.

Covering un-hit branches
diff --git a/test/physical.cpp b/test/physical.cpp
index 156a2e5e87d1..fade5c8c3bd9 100644
--- a/test/physical.cpp
+++ b/test/physical.cpp
@@ -64,6 +64,7 @@ class MockLed : public phosphor::led::SysfsLed

 MOCK_METHOD1(setDelayOff, void(unsigned long ms));
 };

+using ::testing::InSequence;
 using ::testing::NiceMock;
 using ::testing::Return;
 using ::testing::Throw;

@@ -123,3 +124,20 @@ TEST(Physical, ctor_none_trigger_asserted_brightness)
 EXPECT_CALL(led, getBrightness()).WillRepeatedly(Return(val));
 phosphor::led::Physical phy(bus, LED_OBJ, led);
 }
+
+TEST(Physical, on_to_off)
+{

+ InSequence s;
+
+ sdbusplus::bus::bus bus = sdbusplus::bus::new_default();
+ NiceMock<MockLed> led;
+ EXPECT_CALL(led, getTrigger()).Times(1).WillOnce(Return("none"));
+ unsigned long deasserted = phosphor::led::DEASSERT;
+ EXPECT_CALL(led, getBrightness()).WillOnce(Return(deasserted));
+ unsigned long asserted = phosphor::led::ASSERT;

+ EXPECT_CALL(led, setBrightness(asserted));
+ EXPECT_CALL(led, setBrightness(deasserted));
+ phosphor::led::Physical phy(bus, LED_OBJ, led);
+ phy.state(Action::On);
+ phy.state(Action::Off);
+}

https://gerrit.openbmc-project.xyz/#/c/10836/

Here we mock our LED to off on initialisation, then
expect two calls to setBrightness(), one turning the
LED on followed by another turning the LED off. We
then go and issue the calls on our Physical
instance to set the LED on, then set it off.

Let’s check the branch coverage metrics to see
whether this has achieved our goal.

https://gerrit.openbmc-project.xyz/#/c/10836/

The eighth result

And we see that it has! We’ve now hit both arms of
the branch on line 118. This demonstrates how to
reason with branch coverage metrics to improve
your test coverage. Disregarding the exception
handling cases, the other branch arm misses can
be dealt with in the same way.

Now that tests are in place...

– physical: Conform to LED class kernel ABI
– physical: Avoid unreachable statement in driveLED()
– physical: Cleanup unnecessary variables
– physical: Rework commentary for brevity
– physical: 'frequency' is really periodicity

Now that the tests are in place, we can start
massaging the code to reduce complexity and
introduce bug fixes with confidence.

The patches in the slide all depend on the existing
tests or introduce their own to ensure that we don’t
regress in functionality.

Getting the basic tests in place was the big effort, the
patches above took about 5 minutes to write in
total, but measurably improve the code, fixing bugs
and removing a net 32 lines.

https://gerrit.openbmc-project.xyz/#/c/10842/
https://gerrit.openbmc-project.xyz/#/c/10841/
https://gerrit.openbmc-project.xyz/#/c/10840/
https://gerrit.openbmc-project.xyz/#/c/10839/
https://gerrit.openbmc-project.xyz/#/c/10838/

Ratcheting up the pressure
diff --git a/bootstrap.sh b/bootstrap.sh
index 50b75b7ee911..11c8ae9f96c0 100755
--- a/bootstrap.sh
+++ b/bootstrap.sh
@@ -1,10 +1,20 @@
 #!/bin/sh

+set -eu
+
 AUTOCONF_FILES="Makefile.in aclocal.m4 ar-lib autom4te.cache compile \
 config.guess config.h.in config.sub configure depcomp install-sh \
 ltmain.sh missing *libtool test-driver"

-case $1 in
+BOOTSTRAP_MODE=""
+
+if [$# -gt 0];
+then
+ BOOTSTRAP_MODE="${1}"
+ shift 1
+fi
+
+case ${BOOTSTRAP_MODE} in
 clean)
 test -f Makefile && make maintainer-clean
 for file in ${AUTOCONF_FILES}; do
@@ -15,4 +25,17 @@ case $1 in
 esac

 autoreconf -i
-echo 'Run "./configure ${CONFIGURE_FLAGS} && make"'
+
+case ${BOOTSTRAP_MODE} in
+ dev)
+ FLAGS="-fsanitize=address -fsanitize=leak -fsanitize=undefined -Wall -Werror"
+ ./configure CFLAGS="${FLAGS}" CXXFLAGS="${FLAGS}" --enable-code-coverage "$@"
+ ;;
+ *)
+ echo 'Run "./configure ${CONFIGURE_FLAGS} && make"'
+ ;;
+esac

https://gerrit.openbmc-project.xyz/#/c/10828/

Finally, I want to talk about code sanitizers. These are
compiler options that augment our code to catch
error conditions at runtime.

The patch above augments our standard
bootstrap.sh script to add a ‘dev’ option, which I
highly encourage you to use when developing.

The sanitizers will cause your binaries to fail fast,
hard and informatively when they misstep. This is
precisely the behaviour we want for a our test
cases – having the tests carry on and providing a
false positive might feel good but will come back to
bite us in the future. Fast and accurate feedback is
desirable over anything else, and this is what the
sanitizers give us.

Obviously these shouldn’t be used in production code
– we want to flush out the issues and deploy
debugged code, thus the addition of ‘dev’ mode.

https://gerrit.openbmc-project.xyz/#/c/10828/

Code Sanitizers
● -fsanitize=address

– Immediate abort and report on bad memory
accesses

● -fsanitize=leak
– Memory leak report on application termination

● -fsanitize=undefined
– Immediate abort and report on undefined behaviour

Addressing each of the sanitizers used, we’re
enabling:

● The address sanitizer
● The leak sanitizer, and
● The undefined behaviour sanitizer

Each of the bullets above is a link to more information
about the sanitizers and I encourage you to read
up.

There is another important sanitizer: The thread
sanitizer, which catches and aborts on racy data
accesses. If your application uses threads, please
do enable that as well!

If you want to know more about how to debug
sanitizer failures, talk to me afterwards and we can
go over some examples.

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan/

Wrapping up...
● Automated testing is automated code review

– Accelerates future development through characterisation
– Good coverage drastically reduces risk of (invasive) changes

● You need to instrument your tests
– Use code coverage metrics to guide your testing

● Rework abstractions to increase coverage
– Dependency injection allows for mocks and thus sensing

● Use branch coverage analysis to find missed paths
● Use sanitizers so your tests fail fast, hard and informatively
● Use this presentation to adopt tests in your code!

Thanks!

Recommended Reading
● Working Effectively with Legacy Code

● Design Patterns: Elements of Reusable Object-Oriented Software

https://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
https://www.amazon.com.au/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Please attribute IBM Corp when using or adapting this work

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

