
Overview of CDMS

National Meteorological Service 
of Belize

Dwayne Scott - Technician



Climate database background
● Prior to 2010 NMS used MS-DOS based Climate database system called 

CLICOM







Climate database background...
● 2010 CLICOM crashed and NMS started to think through development of 

a web-based climate data management system(CDMS)

● Between 2010 and 2015 the NMS used Central American database system 

called “BDCAC”

● In 2016 NMS launched its own web based system called “HydrometDB”



HydrometDB - web based user interface



Spatial Analysis - Custom Analysis Tool



Charts and Reports Samples



Charts and Reports Samples



Climate database background...
● Our idea all along was to have a system/application that could store a 

wide range of observational data e.g:
○ Weather Stations

○ Radar

○ Weather Satellites - Geostationary and Polar Orbiting

○ lightning detection Network

● From this data set, Weather and Climate patterns could be derived and 

compared to short term and long term forecasts.



Climate database background...
● Over a period of time the NMS as well as its stakeholders would have 

large data sets that could be used in conjunction with stakeholder specific 

algorithms to create tools that can assist with decision making 

● Our Goal is to help the various sectors(in Belize) affected by weather and 

climate to develop tools to help them make daily, weekly, monthly 

decisions. 

● Visually this would look like this...









Limitations of HydrometDB
● Timeseries data storage and access ineffiecient(using relational database)

● Background processing in PHP(lack scientific libraries)

● PHP lack ability to process large amount of data quickly

● Lack robust API for easy interface with stakeholders

● Quality Control module inoperable 



JCCCP improvements made in 2019
● Improvements to system architecture, reliability and data security by 

leveraging reliable, stable and well supported open source technologies

● Refactoring of the storage layer to use a time series database to store 

Hydrological and Meteorological datasets

● Refactoring of the current source code to a modular design using 

Python/django framework/REST API ;

● Improvements to the Quality Control module to include manual validation 

procedures;

● Support processing of hydrological measurements and automatic 

computation of stream flows;

● New Rack mount Server



CDMS Version 2 called “SURFACE” 
System for Unified Real-time monitoring and Forcasting of Atmospheric and Climatic Events

http://34.235.26.110


System Architecture 
and 

Components



Five Basic System Components
● Database - Stores Data - PostgreSQL

● Workers - Processes Data - Celery

● Message Broker - Arranges a list of processes - RabbitMQ

● Web API - Making available backend data - Python/Django/RESTFUL

● Front End Interface - Displays Information from backend on browser - 

Vue.js --Vuetify



System Component - Database
● A newer version of PostgreSQL (version 10) was adopted together with 

PostGIS and TimescaleDB extensions. 

● PostGIS is a popular extension that adds spatial capabilities to 

PostgreSQL, enabling the database to store and query spatial datasets.

● TimescaleDB is an open-source project that was recently released by MIT 

researchers and adds special features to PostgreSQL to manage time 

series data. 



System Component - Message and Worker
● To enable parallel processing for the heavier tasks, such as importing and 

exporting large datasets of measurement data, RabbitMQ and Celery 

where adopted for the development of the message broker subsystem.

● RabbitMQ is an open source message queue based on Erlang, a 

technology widely adopted for the development of fault-tolerant 

distributed systems infrastructure. 





System Component - Worker(Celery)
● Celery is an asynchronous task/job framework based on RabbitMQ and 

Python that integrates natively with Django. 

● All tasks that needs to be processed in the backend were developed in the 

new system based on Celery workers.



System Component - Web API 
● For the backend Django was adopted as the option for the development 

of the Web API. 

● Django is a mature and popular web framework based on Python 

Programming language, and is considered one of the most productive 

frameworks available for backend web development.

● To support the development the REST based web API, an extension called 

"Django REST Framework" was added to Django.

● Django backend interface used as to administer application



System Component - Frontend 
● Vue.js is a modern Javascript framework for creating modern Single Page 

Applications (applications like Gmail) and enables the development of 

user interfaces that deliver better user experience and usability

● Vuetify is a library for Vue.js with a set of high quality user interface 

graphic components based on Google's Material Design standard.

● Vuetify also provides important features for data input validation and 

presenting user interfaces in devices with very different screen 

resolutions (smartphones, tablets, desktop computers).



Detailed System Overview



Installation
● A totally new approach was selected for the deployment of this version of 

the system into production.

● One of the main complaints with the old system was the complexity 

involved in all the steps required for building and deploying the CDMS 

into a new hardware. 

● To overcome these problems, a container-based solution was structured 

based on Docker containers.



Installation and update - Docker
● Docker is an open source software platform that allows packaging of 

applications into portable containers that can be easily deployed into 

Windows, Linux and MacOS operating systems.

● Using this approach, each subsystem of the new CDMS was packaged into 

individual containers where all the files required for building and 

integrating the Docker images of the database, message broker, web api, 

workers, and frontend are located in the project's source code repository.



Installation and update - Docker
● With the source code, creating a new development environment to 

maintain or extend the system, and deploying it to a new hardware is a 
trivial task achieved by running a single docker-compose command in the 
terminal. 

● This approach also allows synchronizing updates in the source code from 
the repository to the server using regular git commands, making it easier 
to apply bug fixes to the system.





System Screen Shots - login Screen
● Ability to ingest data from multiple sources

○ Stations, Radar, lightning detection network
○ Handles AWS data aggregations

● Monitors Station performance & data flow
● Metadata for Stations & Instruments
● Uses Restful API(Open Source)
● Python/Django Backend(Open Source)
● Modular design using Docker(Open source)

http://34.235.26.110


Map Display



django Backend Interface



Rest API end points



Thank You


