
Runtime Verification of Linux Kernel Security
Module

Denis Efremov and Ilya Shchepetkov

ISP RAS, Moscow, Russia
{efremov,shchepetkov}@ispras.ru

Abstract. The Linux kernel is one of the most important Free/Libre
Open Source Software (FLOSS) projects. It is installed on billions of de-
vices all over the world, which process various sensitive, confidential or
simply private data. It is crucial to establish and prove its security prop-
erties. This work-in-progress paper presents a method to verify the Linux
kernel for conformance with an abstract security policy model written in
the Event-B specification language. The method is based on system call
tracing and aims at checking that the results of system call execution do
not lead to accesses that violate security policy requirements. As a basis
for it, we use an additional Event-B specification of the Linux system
call interface that is formally proved to satisfy all the requirements of
the security policy model. In order to perform the conformance checks
we use it to reproduce intercepted system calls and verify accesses.

Keywords: runtime verification, operating system kernel, security pol-
icy model, event-b, Linux security modules

1 Introduction

Access control mechanisms in operating systems are usually implemented based
on a security policy model, which contains description of the security properties
to be enforced by these mechanisms. A security policy model may be a simple
text document, but for a certain level of assurance it should be formalized and
verified, as stated by the Common Criteria standard [17, 18]. An additional level
of assurance may be achieved by demonstrating that the implementation of an
access control mechanism indeed conforms to its formal specification.

Access control mechanisms in Linux are implemented in the kernel. We pro-
pose to intercept system calls to the kernel while performing various actions like
creating, reading, writing, deleting files, spawning processes, etc, and check that
the results of their execution do not lead to accesses that are forbidden by the
security policy model. It is difficult to check directly because of the abstrac-
tion gap. Security policy models are often too high-level comparing to concrete
data structures and functions of the Linux kernel. To overcome the difference
between the specification and the implementation we develop an Event-B [1]
specification of the Linux system call interface, formally prove that it satisfies all
requirements of the security policy model (which is also formalized in Event-B),



2 Denis Efremov and Ilya Shchepetkov

and then translate it to an executable form which is more suitable for checking
correctness of intercepted system calls.

The following section briefly describes the security policy model in use. Sec-
tion 3 depicts the Event-B language in which the model was formalized and ver-
ified. Section 4 briefly describes the formal specification of the security model.
Section 5 provides a description of an additional Event-B specification required
to perform a conformance verification. Section 6 describes the Linux security
modules framework, which is used to implement security policy models inside
the kernel. Section 7 presents the runtime verification method itself. Related
work is observed in Section 8. The final section concludes the paper and consid-
ers future work.

2 Security Policy Model

A security policy is a high-level specification of the security properties that
a given system should possess, and of security mechanisms that enforce those
properties. Security policies are described in the form of security policy models
as state transition systems, where each possible state transition from a secure
state must preserve security properties and produce another secure state. The
state is declared secure if all current accesses and permissions are in accordance
with a security policy.

Operating system (OS) security policy models define the rules for controlling
accesses of subjects (users and programs running on their behalf) to various ob-
jects (files, directories, devices) and other subjects. They define state transitions
as transition functions that model usual OS actions, like creating and deleting
files, processes, requesting accesses, etc. Examples of such models would be the
classic Bell-LaPadula [5, 4] and Biba [7] models, which were first to describe se-
mantics and security properties of multilevel security and mandatory integrity
control respectively.

In this paper we use a Hierarchical Integrated Model of Access Control and
information Flows (the HIMACF model, previously known as the MROSL DP-
model [8, 9]). It describes means to enforce the separation of information based
on confidentiality and integrity requirements. It combines several security mech-
anisms:

– Role Based Access Control (RBAC). In RBAC, permissions to perform vari-
ous actions are grouped intro roles and are assigned to a user by an adminis-
trator or obtained through special administrative roles. RBAC is often used
as a replacement for more simple discretionary access control;

– Mandatory Integrity Control (MIC). In MIC, an integrity level is assigned
to all users, processes and files. That level represents their level of trustwor-
thiness, so the higher the level — the more trusted and important a user, a
process or a file. MIC controls accesses of subjects to objects according to
their integrity levels. MIC is implemented in Windows and macOS to protect
system files from modification by users or malicious software;



Runtime Verification of Linux Kernel Security Module 3

– Multilevel Security based on Mandatory Access Control (MLS, MAC). It
was designed to deal with classified documents in military computer sys-
tems. MLS controls accesses according to the user’s clearance and the file’s
classification.

Fig. 1. The hierarchy of levels
in the HIMACF model.

These mechanisms are integrated into a linear
hierarchy, where each next level is based on the
previous ones. Also since the sequence of perfectly
normal and secure accesses may lead to insecure
information flows, there is an additional level that
contains proofs of their absence (see Fig. 1).

The HIMACF model is implemented in the
certified distribution Astra Linux Special Edi-
tion [24] using the Linux Security Modules frame-
work [23]. The model is written in the plain text
with extensive use of math and consists of ap-
proximately 300 pages. We have formalized and
verified [10] it using the Event-B specification lan-
guage. It took us 4 years, and during this process
we have found and fixed a number of issues and
inconsistencies in the HIMACF model.

3 Event-B

Event-B is a formal method based on set theory and predicate logic. It has
a simple notation and comes with a tool support in the form of the Rodin
Platform [2]. It is mainly used for developing models of various control systems,
but it is also particularly well suited for security policy modeling.

An Event-B specification is a discrete transition system and consists of con-
texts and machines. Contexts contain the static, or unchanged parts of the spec-
ification: definitions of carrier sets, constants, axioms. Machines contain the dy-
namic or behavioral parts of the specification: variables, invariants and events.

Event-B is a state-based method, so values of variables form the current state
of the specification. Events represent the way the state changes over time — the
transition. Events may contain parameters, guard conditions that are necessary
for the event to be enabled (or preconditions), and actions, that change variables’
values. Invariants describe important properties of the system and are supposed
to hold whenever variable values change, so such changes need to be explicitly
proven to be correct. For each case that requires a proof the Rodin platform
generates a corresponding proof obligation, that can be discharged automatically
using various provers and solvers or interactively. Interactive proofs are also
automatically checked for the soundness.



4 Denis Efremov and Ilya Shchepetkov

4 Event-B Specification of the HIMACF Model

The HIMACF model uses set theory and predicate logic for defining the state
and the properties that the state must satisfy, and it also contains several atomic
state transition rules which describe events taking place in the operating sys-
tem. It makes its structure very similar to the structure of a typical Event-B
specification, so its formalization in Event-B was quite straightforward1.

The state variables of the Event-B specification are expressed as sets and
functions (set of ordered pairs with additional restrictions):

– Sets:
• user accounts;
• entities (objects and containers);
• subjects;
• roles (administrative, ordinary, negative).

– Functions:
• integrity and security levels (in the form of lattice);
• current accesses and access rights (or permissions) to entities and roles;
• hierarchies of roles, entities and subjects;
• some additional relations between elements of the specification;
• various flags.

These variables describe the usual operating system elements like user ac-
counts, subjects (which are processes), entities (files, directories, sockets, etc.),
and roles. Each of these elements have integrity and security labels that are
mapped to them by a number of corresponding functions. Some additional things
are also modelled as functions, like current accesses, permissions, hierarchies, and
so on.

In total the specification contains 65 state variables. There are also 80 events
that describe possible state transitions typical for an OS:

– Create or delete entities, user accounts, subjects, roles;
• create or delete hard links for entities and roles;
• rename entities or roles;

– Get or delete accesses, access rights to roles, entities;
– Change security, integrity labels, various flags;
– Additional events for analysis of information flows;
• example: if an entity x have write access to a subject y, which have write

access to a subject z, then there can be an information flow from x to z.

Finally, the specification contains 260 invariants divided into three groups.
First one are type invariants: they describe types of all state variables. For ex-
ample, the type of the variable that contains accesses of subjects to entities
is expressed in Event-B like this: SubjectAccesses ∈ Subjects → (Entities ↔
Accesses). Another group is consistency invariants: they impose correctness con-
straints on the system state. For instance, if we have a variable that describes

1 Publicly available part of the specification: https://github.com/17451k/base-model



Runtime Verification of Linux Kernel Security Module 5

filesystem (hierarchy of files and folders), then it must not contain cycles, i.e., a
folder cannot contain itself, even indirectly.

The last group of invariants is the most important one: it contains all se-
curity properties of corresponding security mechanisms. For example, there is
the following security property: if a subject has write access to an entity, then
its integrity label must be bigger or equal then the integrity label of this en-
tity. It is expressed in Event-B like this: ∀s, e · s ∈ Subjects ∧ e 7→ WriteA ∈
SubjectAccesses(s) =⇒ EntityInt(e) 6 SubjectInt(s).

5 Event-B Specification of the System Call Interface

The HIMACF model and its Event-B specification, however, is quite abstract
and different from the concrete data structures and functions of the Linux kernel,
which contain the security policy implementation as the Linux Security Module.
To prove their conformance it is necessary to reduce this gap. Event-B supports
the refinement technique [3] to represent systems at different abstraction levels
that can be used to resolve this issue.

We have used refinement to develop an additional Event-B specification of
the Linux kernel system call interface. Using Rodin we have formally proved
that the additional specification correctly refines the Event-B specification of
the HIMACF model and thus satisfies its properties. Hence, if we will show the
conformance between the additional specification of the system call interface and
the Linux kernel, then the desired conformance between the Linux kernel and
the security policy model will be derived automatically.

The additional specification, however, has quite an unusual structure. The
difference lies in the nature of system calls: the exact sequence of actions that
will be performed as the result of the system call depends on the current state
of the OS and on the arguments of the call. Because of this variability it is
impossible to model them as single atomic events. Instead, we used a different
approach.

To overcome this issue we have decided to represent each system call as a
graph of events connected together with the special state variable called Next.
Next is used to specify the order in which normally independent events should
occur. This is achieved as follows: each event in the graph of events have a
guard condition specifying that it can only occur if the current value of the Next
variable is the name of this event. Depending on other guards the event also
changes the value of the Next variable with the name of the event that should
follow next.

Each graph of events representing a system call have a single entry node (the
“initial” event), a single exit node (the “final” event) and a large amount of
paths in between. Each path is a series of events and the next event in the path
is specified by the current value of the Next state variable. The path (concrete
series of events representing a particular execution of the system call) is defined
by the parameters of the “initial” event and the current state of the specification



6 Denis Efremov and Ilya Shchepetkov

in a way that for each event in the path there is no more than one possible next
event.

Let’s consider the open() system call to open or create a file. This sys-
tem call has the following declaration2: int open(const char *pathname, int

flags). The open() call has two arguments: pathname specifies the file to open,
and flags determines its access mode: read-only, write-only, or read/write.
These access modes are expressed by corresponding flags O RDONLY, O WRONLY

and O RDWR. flags may also contain additional file creation and status flags.
The return value of open() is a file descriptor, which can be later used in sub-
sequent system calls (read(), write(), etc.).

Now let’s consider a specific case of open() system call in which the file
from the pathname argument does not exist, and the flags argument contains
O WRONLY (open file to write) and O CREAT (create file if it does not exist) flags.
If the process which calls open() has all necessary permissions, then open()

performs the following sequence of actions:

– parse and validate values of it arguments;
– check that the process has all necessary permissions. In this case the check

is successfull;
– get the process write access to the directory where the file will be created;
– create the file;
– get the process permission to write to the created file;
– get the process write access to the created file;
– return file descriptor of created and opened to write file.

This case can be formalized in the Event-B specification of the system call in-
terface as the sequence of 8 events: open start, open check p, open write p,

open create, open grant, open check, open write, open finish, where:

– open start contains preconditions (guards) that analyze arguments of the
(open) call and decide which event should occur next. In the given case, the
file being opened does not exist, so the next event is open check p. If the
file existed, the next event would be open check, and the sequence of events
would be different;

– open check p checks that the process has all necessary permissions. In this
case the check is successfull, so the next event is open write p;

– open write p is a refinement of the access write entity event of the
Event-B specification of the HIMACF model. This event grants the process
write access to the directory where the file will be created;

– open create is a refinement of the create object event of the Event-B
specification of the HIMACF model. This event creates the file;

– open grant is a refinement of the grant rights event of the Event-B speci-
fication of the HIMACF model. This event grants the process permission to
write to the created file;

2 According to the Linux manual page
http://man7.org/linux/man-pages/man2/open.2.html



Runtime Verification of Linux Kernel Security Module 7

– open check checks that the process has necessary permissions to obtain ac-
cess to the created file and decides which event should occur next. In this
case the process opens file to write, so the next event is open write;

– open write is a refinement of the access write entity event of the Event-
B specification of the HIMACF model. This event grants the process write
access to created file;

– open finish returns the requested file descriptor.

Fig. 2. Graph of events corresponding to several special cases of open() system call.

This sequence of events corresponds to one specific case of open() system
call. To demonstrate our approach we have formalized a few more cases3(see
Fig. 2). You can see that the graph consists mostly from the same events, but
there are more possible paths between them.

3 Code can be found here: https://github.com/17451k/base-model/tree/open



8 Denis Efremov and Ilya Shchepetkov

If we formalize all the remaining cases, the resulting graph will be a formal
specification of the behavior of the open() system call. Due to the use of re-
finement, this specification will be correct by construction and fully conform to
the rules and events of the HIMACF model. In turn, this will mean that for any
combination of parameters and the state of the system, executing the open()

system call will hold all the security properties of the HIMACF model.
All system calls can be formalized in a similar way, resulting in the specifi-

cation of the system call interface that is proved to be consistent and complete.
But such specification can turn out to be extremely large (several times more
than the Event-B specification of the HIMACF model) and difficult to write
and prove, mainly from the complicated refinement relation between them (see
Fig. 3).

Fig. 3. Refinement between Event-B specifications of the HIMACF model and the
system call interface.

6 Linux Security Modules

In Linux, userspace programs work with external resources via the kernel, and
make requests for accesses through system calls. When a program executes a
system call to, for example, open a file, the kernel performs a number of checks.
It verifies the correctness of the passed arguments, checks the possibility of their
allocation, and also checks that the program has the permission to obtain the
requested resource by the discretionary access control. If more advanced access
control mechanisms are used, then the kernel also checks that the access request
satisfies their security policy. Such mechanisms are called security modules and
based on the Linux Security Modules (LSM) framework. LSM adds a call to



Runtime Verification of Linux Kernel Security Module 9

a security module after the discretionary access checks in a control flow of a
system call handling. These calls are placed across the kernel and called LSM
hooks (see Fig. 4).

Fig. 4. Linux Security Modules (LSM) hooks.

There are several potential cases when the kernel manages permissions and
accesses incorrectly. First, it is possible that the control flow does not reach a
security module [27, 12, 6]. The LSM interface may not be complete enough, so
it may lack hooks to check certain situations [20, 14]. A security module can also
be implemented incorrectly and grant accesses that should not be granted, or
deny accesses that should be granted. There is always place for errors due to the
abstraction gap and specifics of kernel — module interactions. Thus, we want to
verify that the kernel of Astra Linux distribution with the security module indeed
conforms the Event-B specification of the HIMACF model and this includes all
enumerated errors.

It is worth to note that the Event-B specification of the system call interface
does not model such things as the availability of resources (number of processes,
virtual memory), and does not contain description of the discretionary access
control mechanism. So, for example, the kernel could deny an access due to the
lack of physical resources of the machine, but at the same time the specification
grants it assuming that the resources are unlimited. Thus the divergence between
the specified behavior and the real one should be treated as an error only in case
the security policy model denies the access, but the security module grants it.



10 Denis Efremov and Ilya Shchepetkov

7 Runtime Verification Method

We propose to demonstrate the absence of such divergences by means of runtime
verification, which require a test suite. The test suite should cover various pat-
terns of access requests. In this paper we do not consider the issue of constructing
tests and instead use special tests for our model and whole system tests such
as Spruce [25], ltp [22] fuzzing with syzkaller [26]. These test suites allow us to
achieve relatively good line coverage (more than 80%) on our security module
and to cover all LSM hooks in target subsystems of the Linux kernel.

The runtime part of the method is divided into two consecutive steps: gath-
ering of information about the kernel behavior (monitoring) and its analysis.

At the first step, the execution traces of the Linux kernel are collected. It is
performed while a test suite is run. In order to reproduce such traces on the spec-
ification we also need to record a global state of the kernel, which is performed
at the very beginning of this step. This includes, for example, information about
running processes, opened files, shared resources, etc.

Traces contain arguments of the system call and the result of its processing
by the kernel (output arguments and the result code). Along with this, each
trace contains an additional information that is necessary for mapping the global
kernel state to the state of the specification, such as inodes and dentries for files,
user ids, etc.

We use SystemTap [19] tool to gather the traces from the kernel. It allows
one to describe desired probe points in the kernel, such as system calls, with a
special language and log the state of in-kernel data structures to a journal.

Algorithm 1 Replay of single system call on the Event-B specification

1: procedure Replay Syscall(spec, syscall)
2: syscall graph := spec[syscall[name]]
3: params := syscall[args]
4: event := syscall graph[initial]
5: while event 6= syscall graph[final] do
6: if guards hold(spec[state], event, params) then
7: spec[state]← event(spec[state], params) . update
8: else
9: return Denied

10: end if
11: event := next(spec[state], event, params)
12: end while
13: return Granted
14: end procedure

At the second step, we initialize the state of the Event-B specification with
the state of the kernel and replay system calls from the trace on the Event-B
specification.

The replay algorithm consists of the following steps (see Alg. 1):



Runtime Verification of Linux Kernel Security Module 11

1. Pass the arguments of the system call as parameters to the “initial” event
of its specification;

2. Check that all guards of the current event are satisfied. If they are not
satisfied, then report that the access is denied according to the security
policy rules (lines 6, 9);

3. If current event is not “final”, then compute the “next” event, apply event
to the current state to change it (line 7), mark the “next” event as current
and return to step 2;

4. If current event is “final”, then apply it to the current state and report that
the access is granted according to the security policy rules;

Algorithm 2 Replay of kernel traces on the spec

1: procedure Replay Trace(trace, spec, journal)
2: spec[state]← trace[init state] . initial state for the specification
3: while syscall := shift(trace[syscalls]) do
4: real result := syscall[result]
5: spec result := Replay Syscall(spec, syscall)
6: switch (spec result, real result) of
7: case (Denied,Granted) :
8: journal← (CRIT, syscall) . An error with its level
9: return(Failure, journal)

10: case (Granted,Denied) :
11: journal← Check ErrCode(syscall)
12: spec[state]← revert(spec[state], syscall) . rollback update
13: end switch
14: end while
15: journal← compare states(trace[final state], spec[state])
16: return (Success, journal)
17: end procedure

We need to check that the result of the replaying conforms the result of the
real system trace execution (see Alg. 2):

1. If access is granted or denied on both the specification and the real system,
then we should proceed to the next system call (lines 3, 14);

2. If access is granted on the real system, but it is denied on the Event-B
specification (line 7), this clearly signals about an error in the kernel or in
the security module. It is not possible to proceed further after this kind of
error, the analysis is stopped;

3. If access is denied on the real system, but it is granted on the Event-B specifi-
cation (line 10), the return code of the system call is investigated (see Alg. 3).
For example, if the return code signals about4:

4 The listed error codes are taken from the Linux kernel file
include/uapi/asm-generic/errno-base.h



12 Denis Efremov and Ilya Shchepetkov

– not enough memory in the system, then no additional actions are taken;

– invalid values in the system call’s arguments, then with high probability
this means that the specification is not complete. This divergence is
recorded to the anomaly journal;

– not enough permissions. That means there is an error in the kernel or in
the security module. This kind of divergence is recorded to the journal.

After this we restore the previous state of the specification (line 12) and
proceed to the next system call from the trace.

4. If the replay reaches the end of the trace the global states of the kernel and
the specification are compared. The divergences are logged to the anomaly
journal.

Algorithm 3 Investigation of the error code of a system call

1: procedure Check ErrCode(syscall)
2: err code := syscall[result][err code]
3: switch err code of
4: case ENOMEM : . Out of memory
5: return ∅
6: case EINVAL : . Invalid argument
7: return (WARN, syscall)
8: case EACCES : . Permission denied
9: return (CRIT, syscall)

10: case . . . :
11: . . .
12: end switch
13: end procedure

The replay analysis outputs the journal of the divergences between the be-
havior of the real system and the modelled behavior of the Event-B specification.
The journal records need to be analyzed manually to reveal flaws in the specifi-
cation or the implementation. However, if no divergences were found then with
a certain level of certainty based on obtained sources and specification cover-
age, we can claim that we successfully demonstrated conformance between the
implementation and its specification.

We measure the coverage by lines of code of the security module and the
number of covered LSM hooks across the kernel. The specification allows more
behaviors (states) than it is possible to observe on the real system, thus the spec-
ification coverage consists of covered global invariants and different conjuncts of
guards conditions. To evaluate the proposed algorithms we have manually trans-
lated a part of the Event-B specification of the HIMACF model to an executable
program and tested it on the system call traces gathered with SystemTap.



Runtime Verification of Linux Kernel Security Module 13

8 Related Work

In the paper [28] Zanin and Mancini present a formal model for analyzing an
arbitrary security policy configuration for SELinux. At the end of the paper
the authors propose an algorithm based on their model for verifying whether,
given an arbitrary security policy configuration, a given subject can access a
given object in a given mode. However, they don’t go down to the SELinux
implementation.

Guttman et al [15] present a formalization of the access control mechanism
of the SELinux security server together with a labeled transition system rep-
resenting an SELinux configuration. Linear temporal logic is used to describe
the desired security objectives. The authors use model checking to determine
whether security goals hold in a given system.

There are other examples of using formal methods such as B and TLA+ to
formalize and prove correctness of various access control mechanisms or security
policy models [16, 21], but they also do not consider the implementation.

In the work [11] the correctness of LSM hooks placement in the Linux kernel
is analyzed. The proposed runtime verification method leverages the fact that
most of the LSM hooks are correctly placed to find the misplaced ones.

The authors of the paper [13] analyze the information flows in the LSM
framework. They verify that for any execution path in the kernel starting with
a system call and leading to an information flow, there is at least one LSM
hook before the flow is performed. The analysis statically checks the control
flow graphs of kernel functions, which are obtained by a compiler plugin during
the kernel build, for existence of feasible paths without mediation of the LSM
framework.

9 Conclusion and Future Work

We have outlined a method for verification of the access control mechanisms im-
plemented as a module inside the Linux kernel for conformance with its abstract
specification. The method consists of several steps. First, one need to formalize
the specification of the access control mechanisms in the Event-B language and
prove its correctness. Then, since the resulted Event-B specification is high-level
and too different from the concrete data structures and functions of the Linux
kernel, we propose to develop an additional specification of the Linux system
call interface and prove that it conforms to the Event-B specification of access
control mechanisms. Next, we trace system calls to the kernel while performing
a series of typical user actions and tests. Finally, we replay them on the Event-B
specification of the system call interface to check the obtained accesses satisfy
the security policy model.

We have evaluated the proposed method on the HIMACF model, which in-
tegrates several advanced access control mechanisms, and its implementation
inside Astra Linux distribution. We have developed and proved both Event-B
specifications, which are required by the method. We have found that the spec-
ification of the system call interface, which is required by the method, turns out



14 Denis Efremov and Ilya Shchepetkov

to be much larger and more complex than the specification of the security pol-
icy model. A part of the specification was manually translated to an executable
form to obtain the proof of concept and test the replay algorithm of the proposed
method. For this we have gathered system call traces with the SystemTap tool.
The future work involves development of a translator from Event-B to an effec-
tive executable form and research the possibility of simultaneous OS execution
and in-kernel verification of accesses.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edn. (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int J Softw Tools Technol
Transfer 12(6), 447–466 (Nov 2010). https://doi.org/10.1007/s10009-010-0145-y

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to event-b. Fundamenta Informaticae 77, 1–28 (04 2007)

4. Bell, D.E., La Padula, L.J.: Bell, D. E., LaPadula, L. J. Secure Computer System:
Unified Exposition and MULTICS Interpretation. ESD-TR-75-306, Electronic Sys-
tems Division, AFSC, Hanscom AFB, 1976. (1976)

5. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
ESD-TR-73-278 v. 1, Electronic Systems Division, AFSC, Hanscom AFB (1973)

6. Belousov, K., Viro, A.: Linux kernel LSM file permission hook restriction bypass.
https://vulners.com/osvdb/OSVDB:25747 (2006)

7. Biba, K.: Integrity considerations for secure computer systems. Technical Report
MTR-3153, The MITRE Corporation (1977)

8. Devyanin, P.N.: The models of security of computer systems: access control and in-
formation flows. (in Russian). Goryachaya Liniya-Telecom, Moscow, Russia (2013)

9. Devyanin, P., Khoroshilov, A., Kuliamin, V., Petrenko, A., Shchepetkov, I.: For-
mal Verification of OS Security Model with Alloy and Event-B. In: International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z. pp. 309–313
(Jun 2014). https://doi.org/10.1007/978-3-662-43652-3 30

10. Devyanin, P.N., Khoroshilov, A.V., Kuliamin, V.V., Petrenko, A.K., Shchepetkov,
I.V.: Using Refinement in Formal Development of OS Security Model. In: Mazzara,
M., Voronkov, A. (eds.) Perspectives of System Informatics. pp. 107–115. Lecture
Notes in Computer Science, Springer International Publishing (2016)

11. Edwards, A., Jaeger, T., Zhang, X.: Runtime Verification of Authorization Hook
Placement for the Linux Security Modules Framework. In: Proceedings of the 9th
ACM Conference on Computer and Communications Security. pp. 225–234. CCS
’02, ACM, New York, NY, USA (2002). https://doi.org/10.1145/586110.586141,
http://doi.acm.org/10.1145/586110.586141

12. Georget, L.: Add missing LSM hooks in mq timed send,receive and splice.
http://thread.gmane.org/gmane.linux.kernel.lsm/28737 (2016)

13. Georget, L., Jaume, M., Tronel, F., Piolle, G., Tong, V.V.T.: Verifying
the reliability of operating system-level information flow control systems
in linux. In: 2017 IEEE/ACM 5th International FME Workshop on For-
mal Methods in Software Engineering (FormaliSE). pp. 10–16 (May 2017).
https://doi.org/10.1109/FormaliSE.2017.1



Runtime Verification of Linux Kernel Security Module 15

14. Goyal, V.: Overlayfs SELinux support. https://lwn.net/Articles/693663/ (2016)
15. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying informa-

tion flow goals in security-enhanced linux. Journal of Computer Security 13(1),
115–134 (2005)

16. Huynh, N., Frappier, M., Mammar, A., Laleau, R., Desharnais, J.: Validating
the RBAC ANSI 2012 Standard Using B. In: Abstract State Machines, Alloy,
B, TLA, VDM, and Z. pp. 255–270. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (Jun 2014), https://link.springer.com/chapter/10.1007/978-3-
662-43652-3 22

17. ISO/IEC 15408-1:2009. Information technology – Security techniques – Evaluation
criteria for IT security – Part 1: Introduction and general model. ISO (2009)

18. ISO/IEC 15408-2:2008. Information technology – Security techniques – Evaluation
criteria for IT security – Part 2: Security functional components. ISO (2008)

19. Jacob, B., Larson, P., Leitao, B., Da Silva, S.: SystemTap: instrumenting the
linux kernel for analyzing performance and functional problems. IBM Redbook
116 (2008)

20. Jurgens, D.: SELinux support for Infiniband RDMA.
https://lwn.net/Articles/684431/ (2016)

21. Kozachok, A.: TLA+ based access control model specification. Proceedings of
the Institute for System Programming of the RAS 30, 147–162 (Jan 2018).
https://doi.org/10.15514/ISPRAS-2018-30(5)-9

22. Larson, P.: Testing Linux with the Linux Test Project. In: Ottawa Linux Sympo-
sium. p. 265 (2002)

23. Morris, J., Smalley, S., Kroah-Hartman, G.: Linux security modules: General se-
curity support for the linux kernel. In: USENIX Security Symposium. pp. 17–31.
ACM Berkeley, CA (2002)

24. RusBITech: Astra Linux R© Special Edition. https://astralinux.ru/products/astra-
linux-special-edition/

25. Tsirunyan, K., Martirosyan, V., Tsyvarev, A.: The Spruce System: quality verifi-
cation of Linux file systems drivers. In: Proceedings of the Spring/Summer Young
Researchers Colloquium on Software Engineering. ISP RAS (2012)

26. Vykov, D.: Syzkaller. https://github.com/google/syzkaller (2015)
27. Write, C.: LSM update, another missing hook. https://lwn.net/Articles/155496/

(2005)
28. Zanin, G., Mancini, L.V.: Towards a formal model for security policies specifica-

tion and validation in the SELinux system. In: Proceedings of the ninth ACM
symposium on Access control models and technologies. pp. 136–145. ACM (2004)


