
A Calculus of Chaos in Stochastic Compilation
Engineering in the Cause of Mathematics

Peter T. Breuer1 and Simon J. Pickin2

1 Hecusys LLC, GA, USA ptb@hecusys.com
2 Universidad Complutense de Madrid, Spain simon.pickin@fdi.ucm.es

Abstract. An unexpected outcome from an open project to develop
a ‘chaotic’ compiler for ANSI C is described here: a trace information
entropy calculus for stochastically compiled programs. A stochastic com-
piler produces randomly different object codes every time it is applied
to the same source code. This calculus quantifies the entropy introduced
into run-time program traces by a compiler that aims for the maximal
possible entropy, furnishing a definition and proof of security for en-
crypted computing (Turing-complete computation in which data remains
in encrypted form throughout), where the status was formerly unknown.

Keywords: Computer Security · Encrypted computing · Program logic.

1 Introduction

This article describes a program calculus that quantifies the entropy introduced
into a run-time trace by a stochastic compiler, developed as part of an open
source project (http://sf.net/p/obfusc) to develop a secure computing in-
frastructure. Open source projects may embrace changes of direction because
the goals are defined by community appetites, and that is what has happened
here. To be clear from the outset, the stochastic element occurs not in the ex-
ecution of a program but in the compilation. The software part of the project
aims to develop a complete tool-chain (compiler, assembler, linker, loader) for
encrypted computing [1] platforms [3, 5, 8, 11, 18, 23]. Those are general purpose
processors in which data remains in encrypted form throughout processing. Ob-
viously computing encrypted is not less ‘secure’ than no encryption at all, but
how secure has little formal backing. A danger point is marked in [7] with a
program for an encrypted computing platform that decrypts ciphertexts back to
plaintext in real time and, intuitively, the constants in it ‘ought’ to be as hard
to guess as the encryption is to crack, but that needs proof. It turns out that
key to a security proof is a stochastic compiler and that story is set out here.

Also introduced in [7] are properties of a machine code instruction set ar-
chitecture (ISA) necessary for a secure runtime environment. Important is mal-
leability: the constants in each machine code instruction may be varied to offset
independently by any amount its inputs and outputs. That allows the data be-
neath the encryption in a program trace to be varied arbitrarily by the compiler

while the program black-box semantics remains the same, the code remains the
same apart from the varied constants, and the same sequence of instructions
appears in the trace [2, 4, 6]. Intuitively that means an attacker cannot be sure
they have ‘cracked the encryption’, as their solution is one of many. How many?

This paper will touch on security but focus on that pure computer science
problem of getting the maximum number of possible variations into run-time
traces via stochastic compilation, and how to state if it is so with assurance.
Introducing maximum variation will be called chaotic compilation. It was not
known if it were possible but this paper quantifies the notion and shows how
to guarantee a compiler gets it right via a formal logic. Then that is used to
formalise and answer the question ‘is secure computing possible’. As the subtitle
to this paper puts it, it is a case of engineering in the cause of mathematics.

The nearest existing applicable security concept is classic ‘Holy Grail’ cryp-
tographic semantic security [14] for encryptions, best known via the game theory
version of it [15]: there is no method of attack M of polynomial time complexity
in the encryption block size n that infinitely often does non-negligibly better
than chance (i.e., probability 1/2 +B for B > 0) at guessing the value of a given
bit of data beneath the encryption, as n→∞. In the encrypted computing con-
text, the encryption block size n is the same as the hardware word size n, the
size of the processor’s registers. The plaintext word beneath the encryption is
constant size, typically 32 bits, but the hardware word may be 128, 256 bits or
more. IBM’s work on (non-Turing complete) computation over fully homomor-
phic encryptions (FHEs; encryptions E that respect addition and multiplication,
with E [a+ b] = E [a] + E [b] and E [a ∗ b] = E [a] ∗ E [b]) [10, 12] uses custom vector
machines with word sizes in the millions of bits and atomic operations that take
on the order of one second [13]. But the word size n cannot vary arbitrarily,
because hardware cannot change, so the concept must be tested mathematically.

The similar security concept this project has created for encrypted comput-
ing is relative semantic security : there is no successful method of attack M that
(i) has polynomial-time complexity in the number of bits n in the hardware
word on the encrypted computing platform, and (ii) reveals the run-time data
beneath the encryption, given (iii) there is no such method that is successful
against the encryption. ‘Success’ means the method has probability of guessing
right on each bit it reports that beats chance by a margin that does not tend
to 0 as n → ∞. Formally, if Tn is the trace of the program on an encrypted
computing platform with an n-bit word and b is the targeted bit beneath the
encryption, and (i) the worst case running time ofM is Onk for some k, then (ii)
prob[M(Tn)=b]>1/2+B for some B > 0 infinitely often as n→∞ is impossible,
provided (iii) there is no such method M ′ against the encryption alone (classic
cryptographic semantic security). Put 1/2m+B in (ii) if guessingm bits at a time.

The argument for that is sketched out further in Section 6. It proceeds via a
quantification of the entropy induced in a program trace by a chaotic compiler.
The formal method involved is a program logic expressing the trace entropy. Ex-
tant program logics with stochastic aspects [16,20] all, as far the authors know,
deal with run-time randomness and we have not been able to discover any that

2

deal with compile-time randomness. Program logics are abstractions of program
semantics and in this case the aspect of interest is how much the program trace
varies when the same program is compiled to make it vary ‘as much as possi-
ble’ from recompilation to recompilation. If the compiler works successfully as
required, its variations statistically swamp the programmed information content
in the trace, meaning that any attack is effectively against statistically indepen-
dent random data, which reduces it to an attack against the encryption alone.

This paper is organised as follows. Section 2 gives an informal introduc-
tion to the ‘trick’ of stochastic compilation and the so-called maximum (h̃) and
minimum (h˜) entropy principles. Section 3 gives a slightly formal view-from-
the-top of stochastic compilation and introduces a modified OpenRISC (http:
//openrisc.io) machine code instruction set as concrete target for chaotically
stochastic compilation. Compilation is described in Section 4 in 4.1 and 4.2. A
pre-/post-condition Hoare program logic [17] for the calculus of differences that
tracks a compiler’s code variations is introduced in 4.3, and in 4.4 it is modified
to an information entropy (‘chaos’) calculus for run-time traces. Section 5 gives
examples and Section 6 sketches the chaotic compilation security argument.

2 Overview of the Technical Foundation

The source language is ansi C [19] here but the approach is generic. Chaotic
compilation is guided by the maximal entropy principle:

Every machine code arithmetic instruction that writes should intro-
duce maximal possible entropy into the run-time trace. (h̃)

The restriction to arithmetic instructions is because copy and goto must work
normally. The mechanism (introduced in [6]) is as follows: the object-code differs
from the nominal semantics beneath the encryption by a planned and different
randomly generated ‘delta’ at every register and memory location before and
after every instruction. That is a difference scheme:

Definition 1 A difference scheme is a set of vectors of deltas from nominal for
the data per memory and register location, one vector per point in the control
graph of the machine code, i.e., before and after each machine code instruction.

The scheme is generated by the compiler and is shared with the user/owner of
the code, so they may validate or verify the run-time trace and create inputs for
the running program and read outputs from it.

A thought experiment illustrates the trick of this mechanism. Consider the
following pseudo-code loop:

while x < y + z + 1 do {x← x + 2; x← x + 3; }

Imagine new program variables X, Y, Z, shifted by different deltas from the
program variables x, y, z at different points in the code as shown below:

while X + 4︸ ︷︷ ︸
x

< Y + 5︸ ︷︷ ︸
y

+ Z + 6︸ ︷︷ ︸
z

+1 do {X+7︸︷︷︸
x
← X + 4︸ ︷︷ ︸

x
+2; X + 4︸ ︷︷ ︸

x
← X + 7︸ ︷︷ ︸

x
+3; }

3

The relation x = X + 4 has to be the same at the end of the loop as at the
beginning, but otherwise the choice of 4, 5, 6, 7 is free. Simplifying, that is:3

while X < Y + Z + 8 do {X← X− 1; X← X + 6; }

An observer can watch the first while loop execute and understand it as the
second loop. Conversely, a user intending the second while loop can execute the
first, with the translations above in mind.

A stochastic compiler systematically does the above, but at the object code
level. It introduces different deltas like 4, 5, 6, 7 above at every register and
every memory location, per machine code instruction. A summary is that the
object codes generated from the same source code

(a) all have the same structure, differing only in the constant parameters em-
bedded in the individual machine code instructions; also

(b) run-time traces have the same instructions (modulo (a)) in the same order
reading and writing the same registers and memory locations; but

(c) data varies from nominal by planned but randomly chosen and arbitrary
deltas, different at every point in the run-time trace and registers/memory.

The catch is, as with the x = X + 4 above, a minimal entropy principle applies:

deltasmust be equal across copy or skip, andwherever control pathsmeet. (h˜)
That is necessary in order for computation to work properly.

Compilation must be systematic, or it will produce neither the intended
semantics nor properties. So this paper first (Section 4) describes ‘correct by
construction’ compilation along the lines of the thought experiment above, in-
troducing the ‘deltas’ of a difference scheme as compile-time parameters.

The question is if those can be chosen without restriction as (h̃) demands. The
induced variation in the run-time program traces is measurable as (information-
theoretic) entropy.4 What (h̃) expresses is that at every instruction in the run-
time trace where, say, a 32-bit value is written beneath the encryption, the
chaotic compiler should introduce a delta with 32 bits of entropy in the choice
available. Shannon’s theorem [21] holds that adding one signal to another in fixed
length arithmetic does not decrease entropy. Here, one input is the compiler’s, the
other is the programmer’s. When the compiler’s has maximal entropy (32 bits)
then the combined signal also has maximal entropy and the information from
the programmer has been statistically swamped and an observer cannot infer
any deterministic relation or statistical tendency from the programmer’s input.
The two inputs are (i) not separately visible to a run-time observer, having been
combined at compile time (and in encrypted computing the unencrypted form
of the data is itself not visible), and (ii) the programmed data can be recovered
afterwards by the intended user with the help of the difference scheme.

But (h˜) acts to constrain entropy. Section 4 will show that, in a chaotically
compiled program, at any m points in the trace not related as in (h˜), variations
3 Signed 2s complement comparison is translation-invariant. I.e., x<y iff x+k<y+k.
4 Entropy is formally the stochastic expectation H = −E[log2 pi] of the probability pi
of the possible observations i, thus H = −

∑
i

pi log2 pi with 0 ≤ pi ≤ 1 and H ≥ 0.
4

Box 1: A stochastic (expression) compiler for encrypted computing.

The compiler C[−] translates an expression e of type Expr that should end up in
register r at run-time to machine code mc of type MC and plans a 32-bit integer
delta ∆r (type Off) for it in r:

C[-]r :: Expr→ (MC,Off)

C[e]r = (mc,∆r) (1)

Let sr be the value in register (or memory location) r in state s of the processor
at run-time. The state is comprised by the values in registers and memory. Let
peqs be a nominal evaluation of expression e in state s.a Running the code mc
changes the state s after several steps to state s′ that holds a value in r whose
value differs by ∆r from the nominal value of the expression. That is:

s
mc
 s′ where s′r = E [D[peqs] +∆r] (2)

where E is encryption (it may be trivial), D is decryption.

a If source code variable x is in register r with delta ∆r, then the nominal value
pxqs = E [D[sr]−∆r], pe1+e2qs = E [D[pe1qs] +D[pe2qs]], etc.

with 32m bits of entropy are produced among the traces, on a 32-bit machine.
For each pair of points related as in (h˜), entropy reduces by 32 bits. That analysis
leads to the argument (Section 6) that there is no successful5 method of attack
on the run-time data with polynomial-time complexity in the number of bits n
in a processor word on an encrypted computing platform, given there is no such
method that succeeds against the encryption in use (it has an n-bit block-size).

3 Overview of Stochastic Compilation

The action of a stochastic compiler (Box 2) parallels (a-c) of Section 1: (A)
the constants embedded in the machine code instructions are varied so (B) all
feasible trace variations are exercised (C) equiprobably, because an equiprobable
distribution over the full range of values (uniquely) has maximal entropy.

An implementation generates a new difference scheme at each recompilation,
as set out in Box 1 for compilation of pure expressions. The ∆r is the entry in
the difference scheme for register r at the given point in the program.

A reduced instruction set (RISC) machine code with ‘fused anything and add’
(FxA) [6] -style ISA will be the compilation target here, adapted originally from
OpenRISC v1.1 (http://openrisc.io/or1k.html), The portion needed for this
paper is shown in Table 1. The general pattern of the ISA is that instructions

5 ‘Success’ is stochastic: the method has probability of being right on each bit that
beats chance by a (‘non-negligible’) margin B that does not tend to 0 as n→∞.

5

Box 2: A stochastically ‘chaotic’ compiler implements the following strategy:

(A) change only program constants, generating an arrangement of planned deltas
from nominal for instruction inputs and outputs (a difference scheme);

(B) leave run-time traces unchanged, apart from differences in the program con-
stants (A) and run-time data;

(C) equiprobably generate all possible difference schemes satisfying (A), (B).

Table 1. RISC ‘FxA’ machine code instruction set.

op. fields mnem. semantics

add r0 r1 r2 Ek add r0←E[Dr1 +Dr2 + k]
sub r0 r1 r2 Ek subtract r0←E[Dr1 −Dr2 + k]
mul r0 r1 r2 Ek0Ek1Ek2 multiply r0←E[(Dr1− k1) ∗ (Dr2− k2) + k0]

div r0 r1 r2 k0k1k2 divide r0←E[(Dr1− k1)÷(Dr2− k2) + k0]
. . .
mov r0 r1 move r0←r1
beq i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1 =Dr2 + k
bne i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1 6=Dr2 + k
blt i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1<Dr2 + k
bgt i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1>Dr2 + k
ble i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1≤Dr2 + k
bge i r1 r2 Ek branch if b then pc←pc+i, b⇔ Dr1≥Dr2 + k
. . .
b i branch pc ← pc + i
sw (Ek0)r0 r1 store memJE[Dr0 + k0]K← r1
lw r0 (Ek1)r1 load r0 ← memJE[Dr1 + k1]K
jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

Legend
r – register index
k – 32-bit integer
pc – prog. count reg.
j – prog. count
‘←’ – assignment
ra – return addr. reg.
i – prog. incr.
r – register content
E – encryption
D – decryption

access up to three 32 general purpose registers (GPRs), and one of those may
instead be a (‘immediate’) constant embedded in the instruction. The salient
feature here is that every arithmetic instruction embeds encrypted constants that
may displace the instruction’s inputs and outputs independently (‘malleability’).

Add and branch would suffice for Turing completeness (c.f. Fractran [9]).

4 Chaotic Compilation

The compilerworkswith difference scheme sectionsD : Loc→Off with integer ent-
ries∆l (typeOff), indexed per register ormemory location l (type Loc). A differ-
ence scheme {Dp | p ∈ P} has one section per point p in the object code program
P ’s control graph, i.e., before and after every machine code instruction. The
delta ∆l is how much the run-time data is to differ from nominal in l at point p.

A database L : Var→Loc that maps source code variables to registers and
memory will be assumed. Then the expression compiler C[e]r described in Box 1

6

that puts a result in register r is more exactly CL[D : e]r of type:

CL[_ : _]r : Dsect× Expr→ MC×Off (3)

where Dsect is the type of D, MC is the type of machine code, a sequence of
(FxA) instructions mc. The compiler aims to vary the deltas ∆l equiprobably
over the full range across recompilations. The following paragraphs explain how.

4.1 Pure Expressions

How source code is translated has to be shown in some detail in order to confirm
or deny (h̃), because every time an ‘instruction that writes’ is emitted, it must
be checked if it can be varied by the compiler to the maximum extent possible.
Compilers work compositionally, so structural induction suffices for that. For
pure expressions, every operation in it requires that the operands be in registers
and a single machine code instruction then acts on them arithmetically and
writes the result into another register. That instruction must be varied.

Translating x+y where x, y are signed 32-bit integer source code variables,
the compiler emits machine code mc1 as in (4a) that at run-time puts the value
of x in register r1=Lx with offset delta ∆r1 (a pair (D,_) is written D : _ here):

(mc1, ∆x) = CL[D : x]r1 (4a)

By inductive hypothesis, that is the nominal value plus the target register’ delta:

s0
mc1 s1 : s1 r1 = E [D[pxq s0] +∆r1] (4b)

The small step semantics is from Table 1, with sr = s r for the value in register
r in state s of the processor. The nominal value pxqs of variable x, as defined in
footnote a of Box 1, is preserved as the state s changes from s0 to s1 via mc1:

pxq s1 = E [D[s0 Lx]−DLx] = E [D[s0 r1]−∆r1] = pxq s0 (4c)

By induction too, machine codemc2 for y is emitted preserving its nominal value:

(mc2, ∆y) = CL[D : y]r2 (5a)

s1
mc2 s2 : s2 r2 = E [D[pyq s1] +∆r2] (5b)
pyq s2 = . . . = pyq s1 (5c)

The compiler then emits the extra add instruction that at run-time sums r1 and
r2 into r0 with an increment k, a constant embedded in the instruction:

CL[D : x + y]r0 = (mc0, ∆e) (6a)
mc0 = pmc1; mc2; add r0 r1 r2 kq

Choosing k=∆r0−∆r1−∆r2, the following value goes in r0 at run-time:

s0
mc0 s2 : s2 r0 = E [D[pxq s0] +D[pyq s1] +∆r0] (6b)

= E [D[px + yq s2] +∆r0] (6c)

The nominal value plus a delta ends up in register r0 and the delta ∆r0 is
independently and arbitrarily chosen by the compiler via its choice of k. The
induction shows (h̃) is satisfied for pure expressions.

7

4.2 Statements

Let Stat be the type of statements, then compiling a statement changes the
deltas and produces a new difference scheme section, as well as machine code:

CL[_ : _] : Dsect× Stat→ Dsect×MC (7)

Consider an assignment z=x + y of expression x + y to a source code variable
z, which the location database L binds in register rz=Lz. Let x+y be called e
here. The compiler emits code mc0 that evaluates expression e in register t0 with
(randomly chosen) offset ∆r0 as described in (6a) with t0 = r0. A short-form
add instruction with semantics rz ← t0 + k is emitted to move that to rz:

CL[D0 : z=e] = D1 : pmc0; add rz t0 kq (8a)

The compiler sets k=∆rz−∆r0 to choose delta ∆rz arbitrarily:

s0
mc0 s2

add
 s3 : s3 rz = E [D[px + yq s2] +∆rz] (8b)

The difference scheme section is updated at rz from D0rz to D1rz=∆rz, so:

pzq s3 = px + yq s2 (8c)

The final delta ∆rz = D1Lz may be freely and independently chosen by set-
ting the instruction constant k appropriately. This is the induction step for the
assignment statement, with the inductive result for pure expressions as hypoth-
esis, and it implies side-effecting expressions are compiled both to preserve the
intended ‘nominal value’ per (8c) and to preserve principle (h̃).

4.3 Difference Calculus

A Hoare-style deterministic pre-/post-condition calculus [17] is a natural step-
ping stone to a stochastic calculus. The Hoare-style calculus expresses the evo-
lution of the current difference scheme section during a compiler pass. The op-
erational semantics of the code is not at issue, freedom of choice is.

Assignment. Generalise the x+y with intermediates in r1, r2 of 4.1 to e with
intermediates in ρ={r0, . . . , rn}. The result z is stored in r0. The delta offsets
have value ∆ri in ri before and value ∆′ri after the assignment. That is:

{∆r0, ∆r1, . . . , ∆rn}
z = e

{∆′r0, ∆
′r1, . . . , ∆

′rn}
(9)

By (6b,8b), ∆′r,∆r can be independently chosen. Reading the ∆ as a vector:

{∆} z = e {∆′} (9a)
∆ ⊇ ∆′|ρ̄ (9b)

8

That is, ∆ extends ∆′|ρ̄, ∆ (possibly) differs from ∆′ on ρ and is unaltered from
it on the complement ρ̄ of ρ. The ∆ are indexed by the full range of registers
and memory locations but in practice only a small subset need be considered.

When pointers (memory addresses calculated dynamically) are available to
programmers, the type system of the source language must be augmented so
each pointer is declared as pointing into a named global array as workspace:

int A[100]; . . . ; restrict A int ∗ ptr;

That limits the possible memory locations (indices of ∆) for ptr to A. An unre-
stricted pointer may gain any address at runtime, which results in the compiler
producing impossibly large/slow code, so the programmer wants to use restrict.

Conditionals. An if then else is compiled to machine code using branch instr-
uctions, but which branch is for true and which for false is varied by the com-
piler. It randomly chooses to generate code for b or for ¬b at each level of boolean
subexpression. The compile procedure is detailed in [6], but it has been described
here already: the result b of each boolean subexpression is modified by a ran-
domly chosen 1-bit delta δ to b + δ mod 2 just as for arithmetic expressions
except that the arithmetic is 1-bit (i.e., mod 2), not 32-bit (mod 232).

The same technique is used in classic ‘garbled circuits’ [24] technology for
obfuscating hardware logic circuit design – an arbitrarily selected exclusive-or
(i.e., addition mod 2) mask is applied to inputs and outputs of every gate in the
circuit in order to recover the designer’s intended logic.

The compiler ensures that whichever branch is taken at runtime, the same
difference scheme avails for the instruction after the conditional. It appends add
instructions at the end of each branch as necessary for that. The upshot is the
logic is nondeterministic choice. Let ρ be the registers written in e. The rule is:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (e) s1 else s2 {∆′}

(10a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (10b)

and ∆1,∆2 are equal on ρ̄ after e, independently chosen on ρ by the compiler,
and deltas ∆′ are set up by it to be equal at the end of both branches, per (h˜).
Loops. The compiler implements do while loops as code for the body followed
by a conditional branch back to the start. Let ρ be the registers written in e and
put ∆1|ρ̄=∆2|ρ̄=∆′|ρ̄ in (10a),(10b) to get the following rule for compiled code:

{∆} s {∆′}
{∆} do s while e {∆′}

(11a)

∆ ⊇ ∆′|ρ̄ (11b)

The compiler sets deltas∆|ρ,∆′|ρ independently. Per (h˜), the deltas are arrangedto be the same values ∆′|ρ̄ at beginning and end of the loop.

9

4.4 Calculus of Chaos

Let fr be the probability distribution of offset ∆r from nominal value v in
register r, as the compilation varies stochastically. That is prob[sr = v+d] =
prob[∆r=d] = fr(d), where s is the processor state. A stochastic analogue (12)
of (9) is obtained by regarding each ∆r, ∆′r as a random variable. Let variable
x be stored in location rx = Lx, y in ry = Ly, z in rz = Lz. Then:

{∆rx, ∆ry, ∆rz}
z = x + y

{∆′rx, ∆′ry, ∆′rz}
(12)

That asserts possibly different probability distributions before and after the as-
signment. Now let T be the run-time trace of a program. That is a sequence
consisting of instructions executed and the values each read and wrote.

The entropy H(T) of the random variable T distributed as fT is the ex-
pectation E[− log2 fT]. The increase in entropy from T to longer T ′ (it cannot
decrease) is interpretable as the number of bits of unpredictable information
introduced. These two facts from information theory will be needed:

Fact 1 The flat distribution fX=1/k constant is the unique one with maximal
entropy H(X)= log2 k, on a signal X that can take k values.

Fact 2 Adding a maximal entropy signal to any random variable on a n-bit
space (i.e., with 2n values) gives another maximal entropy, flat, distribution.

Fact 1 identifies maximal entropy as n on n-bit space, achieved when each of
the 2n possible values is equiprobable. That is a disordered, i.e., ‘chaotic’, signal.
Fact 2 uses the result (Shannon [21]) that the entropy of the sum of two n-bit
signals is no less than that of either. The inference is that the characteristics of
any distribution on a finite point space are obscured completely, not partially,
by adding a ‘chaotic’ signal to it, i.e., one with flat, uniform distribution.

Below, logic is given for this stochastic view of compilation for the three
source code constructs treated in 4.3, supposing the compiler implements (h̃).

Assignment. As in (9a), for pre-/post-condition:

{∆} z = e {∆′} (13a)

but the ∆, ∆′ are vectors of random variables ∆r, ∆′r. Let ρ={r0, . . . , rn} be
the registers written in e or in writing to z. For r/∈ ρ, ∆′r=∆r, as those r are
unchanged, by (9b), so the same condition ∆|ρ̄=∆′|ρ̄ holds here. I.e.:

∆ ⊇ ∆′|ρ̄ (13b)

We suppose the compiler follows (h̃), and that means each new random variable
is independent with maximal entropy and each represents the compiler’s free

10

choice of embedded constant, like k of (6a,8a), in ‘an arithmetic instruction
that writes’. Then the machine code instruction that writes rz does so with a
delta that is a uniformly distributed independent random variable U and that
increases the trace entropy to H(T ′)=H(T)+H(U). The delta is 32-bit on a 32-
bit platform, chosen with flat distribution by the compiler, per (h̃), so H(U)=32.
There are n+1 registers r0, . . . , rn written independently, including that for z,
so trace entropy increases by 32(n+1) bits. For any predicate p(x), e.g., h = x:

{p(H(T)+32(n+1))} z = e {p(H(T ′))} (13c)

If the machine code instruction that writes has appeared earlier in the trace, the
delta is already known, and the increment in trace entropy is zero second time:

{p(H(T))} z = e {p(H(T ′))} (13c0)

Conditionals. As in (9b),(10b) but with random variables for the deltas:

{∆1} s1 {∆′} {∆2} s2 {∆′}
{∆} if (b) s1 else s2 {∆′}

(14a)

∆ ⊇ ∆1|ρ̄ ∪∆2|ρ̄ (14b)

The deltas ∆r=∆1r=∆2r are all the same for r/∈ρ by (10b). The entropy added
to the trace T is from the trace of b, say 32n bits of entropy from n writes to n
registers, plus the entropy from the trace through branch s1 or s2:

{p(H(T ′))} s1 {q} {p(H(T ′))} s2 {q}
{p(H(T)+32n)} if (b) s1 else s2 {q}

(14c)

The compiler inserts extra ‘arithmetic instructions that write’ (adds) so the
entropy increase is the same in both branches. It can because, even for loops,
the entropy increase is finite and bounded (see below).

If the conditional appears in the trace a second time and branches the same
way again then that contributes zero entropy as the deltas are already known:

{p(H(T))} if (b) s1 else s2 {p(H(T ′))} (14c0)

If it branches differently from the first time, the branch (but not the test) con-
tributes entropy, as the deltas in that branch are yet unknown. But the, say m,
instructions that align final deltas are constrained in (10b) to agree with the
deltas in the other branch, which are already known. So those m do not count:

{p(H(T ′))} s1 {q} {p(H(T ′))} s2 {q}
{p(H(T)+32m)} if (b) s1 else s2 {q}

(14c1)

Those m instructions that ‘align final deltas’ with the other branch have a name:

Definition 2 An instruction emitted by the compiler to adjust a final delta to
agree with that in a joining control path is called a trailer instruction.

11

Loops. Let ρ={r1, . . . , rn} be the registers written during b. Then, per (11a),
(11b), but with random variables as deltas, the following rule holds:

{∆} s {∆′}
{∆} do s while (b) {∆′}

(15a)

∆ ⊇ ∆′|ρ̄ (15b)

That means ∆r=∆′r for r/∈ρ. Those distributions are equal because the values
are equal, by (13b), and trailer instructions reestablish ∆ on the loop back-path.

A trace over the loop is always the same length between recompiled codes,
because the compiler varies data values, not the semantics at a deeper level (see
conserved nominal values in 4.1). Say the loop repeatsN≥1 times for a particular
set of input values. Then it could be unrolled to N instances of the loop body s
and N instances of the loop test b. The variation in the trace is only that of (a)
s repeated once, because the same m deltas appear second time too, and (b) b
repeated once, for the same reason, with n deltas. The entropy calculation is (a)
plus (b), no matter what N ≥ 1 is (a do while loop repeats at least once):

{p(H(T)+32m)} s {p(H(T ′))}
{p(H(T)+32(n+m))} do swhile b {p(H(T ′))}

(15c)

So do while lengthens the trace like a loop but adds entropy to it like a condi-
tional. Note that second time through the loop, zero entropy is added, because
the same deltas are repeated:

{p(H(T))} do s while b {p(H(T ′))} (15c0)

Equations (13c),(13c0),(14c),(14c0),(14c1),(15c),(15c0) are an information en-
tropy calculus for runtime traces when compilation follows (h̃). Counting up:

Lemma 1 The entropy of a trace is 32(n+i) bits where n is the number in it
of distinct arithmetic instructions that write (a pair of trailer instructions that
regulate the same delta count as one and a trailer instruction that reestablishes
an earlier delta does not count) and i is the number of inputs.

‘Inputs’ are those instructions that read a location that has not been written.
(Remark) The logic holds for incomplete and/or non-contiguous sub-traces too.

The following characterises the compiler strategy that produces the maxi-
mum run-time trace entropy:

Proposition 1 The entropy in the run-time traces induced by a compiler fol-
lowing the principle (h̃) as modified by (h˜) is maximal among compositional
compilation strategies.

Proof: The issue is over whether a compiler could put more entropy into the
run-time trace. The final deltas for data that is not read by following code do
not have to be in agreement along both branches of a conditional, for example,

12

so not following (h˜) for them does no harm. But a compiler that works compo-
sitionally does not know the eventual context in which the code will be used so
it must suppose that data that is written will later be read, and so must arrange
for agreement between all final offset deltas in both branches of conditionals,
enforcing (h˜) in that case, indeed in all cases.

The other way to put more entropy into the trace is to vary instructions
more, but that is impossible if the compiler already implements (h̃). �

That characterisation decides details of chaotic compilation. For example, to the
question of whether an array should have (a) one delta common to the whole
array or (b) one per entry, the answer is (b) one per entry. One per array would
mean each write to an entry must be followed by a ‘write storm’ to all other
entries too, to realign their deltas to the newly written entry’s (which is changed
because the write instruction must add entropy to the trace). But the write
storm’s write instructions import no entropy as their deltas are all the same as
the first, contradicting the characterisation.

The Proposition implies that, on a 32-bit platform, 32 bits of entropy per
datum are provided by a chaotic compiler, a (weak) form of semantic security:

Corollary 1 The probability across different compilations that any particular
32-bit value x beneath the encryption is in a given register or memory location
at any given point in the trace at run-time is uniformly 1/232.

The general interest is with multiple data values observed at different points in
the trace. The result depends on how they are connected computationally:

Definition 3 Two data values in the trace are (entropy) dependent if they are
from the same register or memory location at the same point, are input and
output of a copy instruction, or are from the same register or location at a join
of two control paths after the last write to it in each and before the next write.

If data is taken at m independent points, the variation obtained by a chaotic
compiler is maximal, i.e., 32m bits, because the data is not constrained by (h˜):
Theorem 1 The probability across different compilations that any m particular
32-bit values beneath the encryption in the trace are precisely xi, provided they
are pairwise independent, is 1/232m.

(Remark) Each dependent pair reduces the entropy by 32 bits.

5 Implementation

Our prototype ‘chaotic’ compiler http://sf.net/p/obfusc is for ansi C [19],
where pointers and arrays present particular difficulties. Currently, the compiler
has near total coverage of ansi C and GNU C extensions, including statements-
as-expressions and expressions-as-statements, gotos, arrays, pointers, structs,
unions, floating point, double integer and floating point data. Pointers are obli-
gatorily declared via ansi restrict to point into arrays. It is missing longjmp

13

Table 2. Trace for Ackermann(3,1), result 13.

PC instruction trace update
...
35 add t0 a0 zer -86921031 t0 = -86921028
36 add t1 zer zer -327157853 t1 = -327157853
37 beq t0 t1 2 240236822
38 add t0 zer zer -1242455113 t0 = -1242455113
39 b 1
41 add t1 zer zer -1902505258 t1 = -1902505258
42 xor t0 t0 t1 -1734761313 1242455113 1902505258

t0 = -17347613130
43 beq t0 zer 9 -1734761313
53 add sp sp zer 800875856 sp = 1687471183
54 add t0 a1 zer -915514235 t0 = -915514234
55 add t1 zer zer -1175411995 t1 = -1175411995
56 beq t0 t1 2 259897760
57 add t0 zer zer 11161509 t0 = 11161509
...
143 add v0 t0 zer 42611675 v0 = 13
...
147 jr ra # (return 13 in v0)

Legend (registers)
a0 = function argument
sp = stack pointer
t0, t1 = temporaries
v0 = return value
zer = null reference

and efficient strings (char and short are same as int). The largest C source com-
piled (correctly) so far is 22,000 lines for the IEEE floating point test suite at
http://jhauser.us/arithmetic/TestFloat.html. A trace6 of the Ackermann
function7 [22] is shown in Table 2, with null encryption for better visibility. The
instruction constants and values written to registers are encrypted on an en-
crypted computing platform, with, e.g., E [-86921031] in place of -86921031.

6 (Informal) Security Argument

Here is a sketch proof that a chaotic compiler makes programs ‘safe from polynom-
ial-time discovery’ of what the data in the runtime-trace is intended to mean,
in the context of encrypted computing. The claim is that there is no polynomial
time method M that can estimate the value of a designated bit b in the trace of
a program P , if there is none that succeeds against the encryption alone. Success
means with a probability that exceeds 1/2 by some margin B > 0 infinitely often
as the word size n tends to infinity, but the precise notion may be varied for the
proof: for example, being correct about b with probability p > 1/2 + 1/n.

Proof: [Sketch] Let the compiler unroll source code loops to depth N=2n and
inline function calls to depth N and push code after conditional blocks into both
branches to depth N , leaving no branches, loops or function calls for N steps. By
Theorem 1 a chaotic compiler generates object code for P with maximal entropy
in at least the first N instruction cycles of the run-time traces, measured from
one recompilation to the next, following (h̃). The constraint (h˜) does not apply.By Theorem 1, there is no algebraic or any other relation M can rely on
among the m≤p(n)≤N trace-points it has time to access, for polynomial p of
6 For readability here, the final delta in register v0 is set to zero.
7 C code: int A(int m, int n) { if (m=0)return n+1; if (n=0)return A(m−1, 1);

return A(m−1,A(m, n−1)); }.

14

order k, and M must depend on its capability against the encryption alone,
which it is hypothesised to be not successful against. �

The same argument works for any number of bits.

7 Conclusion

In summary, this paper discusses stochastic compilation and defines chaotic com-
pilation as stochastic compilation with maximum entropy. The compiler works
with a difference scheme describing the variation from nominal of the value in
each register and memory location, differing per instruction in the machine code
program. A program logic of differences extends to an information entropy cal-
culus for run-time traces that quantifies chaotic compilation. That feeds an argu-
ment for security against polynomial-time complexity methods of attack against
encrypted computing. The unusual aspect here is software engineering in the
cause of mathematics. Definition and proof of security for encrypted computing
has been the goal, and the idea of a chaotic compiler is to allow mathematical
reasoning for the stochastic properties to be replaced by engineering for them.

The chaotic C compiler (‘havoc’) is available from the open source project
at http://sf.net/p/obfusc and covers all of ansi C except longjmp/setjmp.
Array access is On but otherwise the compiled code is not slower than normal.

Acknowledgments: Simon Pickin’s work has been supported by the Span-
ish MINECO-FEDER (grant numbers DArDOS, TIN2015-65845-C3-1-R and
FAME, RTI2018-093608-B-C31). Peter Breuer thanks Hecusys LLC for contin-
ued support in encrypted computing research.

References

1. Breuer, P., Bowen, J.: A fully homomorphic crypto-processor design: Correctness of
a secret computer. In: Proc. Int. Symp.Eng. Sec. SW Sys. (ESSoS’13), pp. 123–38.
No. 7781 in LNCS, Springer (2013). https://doi.org/10.1007/978-3-642-36563-8_9

2. Breuer, P., Bowen, J.: Chaotic compilation: A (statistical) cloak for a secret com-
puter. In: Proc. 1st Ann. Int. Workshop SW/HW Interaction Faults (SHIFT’19),
IEEE Int. Symp. SW Reliability Eng. Workshops (ISSREW’19). pp. 428–433.
IEEE, CA, USA (Oct 2019). https://doi.org/10.1109/ISSREW.2019.00106

3. Breuer, P., Bowen, J.: A fully encrypted high-speed microprocessor architecture:
The secret computer in simulation. Int. J. Crit. Computer-Based Sys. 9(1/2), 26–55
(2019). https://doi.org/10.1504/IJCCBS.2019.10020015

4. Breuer, P., Bowen, J.: (Un)encrypted computing and indistinguishability obfusca-
tion (Jan 2019), http://arxiv.org/abs/1811.12365v1, Principles of Secure Com-
pilation (PriSC’19) at 46th ACM Symp. Principles Prog. Lang. (POPL’19)

5. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: A practical encrypted mi-
croprocessor. In: Callegari, C., et al. (eds.) Proc. 13th Int. Conf. Sec.
Crypto. (SECRYPT’16). vol. 4, pp. 239–50. SCITEPRESS, Port. (Jul 2016).
https://doi.org/10.5220/0005955902390250

15

6. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: On obfuscating compilat-
ion for encrypted computing. In: Samarati, P., et al. (eds.) Proc. 14th
Int. Conf. Sec. Crypto. (SECRYPT’17). pp. 247–54. SCITEPRESS, Port. (Jul
2017). https://doi.org/10.5220/0006394002470254

7. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: On security in encrypted computing.
In: Naccache, D., et al. (eds.) Proc. 20th Int. Conf. Info. Comm. Sec. (ICICS’18),
chap. 12, pp. 192–211. No. 11149 in LNCS, Springer, Cham. (Oct 2018).
https://doi.org/10.1007/978-3-030-01950-1_12

8. Breuer, P., Bowen, J., Palomar, E., Liu, Z.: Superscalar encrypted RISC:
The measure of a secret computer. In: Proc. 17th Int. Conf. Trust, Sec.
Priv. Comp. Comms. (TrustCom’18). pp. 1336–41. IEEE Comp. Soc. (2018).
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00184

9. Conway, J.H.: Fractran: A simple universal programming language for arithmetic.
In: Cover, T.M., Gopinath, B. (eds.) Open Problems Commun. Comp., pp. 4–26.
Springer, Heidelberg/Berlin (1987). https://doi.org/10.1007/978-1-4612-4808-8_2

10. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Proc. 29th Int. Conf. Th. Appl. Crypto. Tech. (EU-
ROCRYPT’10). pp. 24–43. Springer (May 2010)

11. Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architec-
ture for encrypted computation on untrusted programs. In: Proc. 7th ACM
Work. Scal. Trust. Comp. (STC’12). pp. 3–8. ACM, NY, USA (2012).
https://doi.org/10.1145/2382536.2382540

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. 41st
Ann. ACM Symp. Th. Comp. (STOC’09). pp. 169–178. NY, USA (2009).
https://doi.org/10.1145/1536414.1536440

13. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) Proc. 30th Int. Conf. Th. Appl. Crypto. Tech.
(EUROCRYPT’11), pp. 129–148. No. 6632 in LNCS, Springer (2011)

14. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proc. Ann. ACM Symp. Th. Comp. pp.
365–77. (STOC’82), ACM (1982). https://doi.org/10.1145/800070.802212

15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comp. Sys. Sci. 28, 270–299
(1984)

16. den Hartog, J.I.: Verifying probabilistic programs using a Hoare-like logic. In:
P.S., T., R., Y. (eds.) Proc. 5th Annual Asian Computing Science Conference
(ASIAN’99). LNCS, vol. 1742, pp. 113–125. Springer, Berlin/Heidelberg (1999).
https://doi.org/10.1007/3-540-46674-6_11

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–80 (1969). https://doi.org/10.1145/363235.363259

18. Irena, F., Murphy, D., Parameswaran, S.: CryptoBlaze: Apartially homomorph-
ic processorwithmultiple instructions and non-deterministic encryption support. In:
Proc. 23rdAsia S. Pac.Des. Auto. Conf. (ASP-DAC’18). pp. 702–8. IEEE (2018)

19. ISO/IEC: Programming languages – C. 9899:201x Tech. Rep. n1570, Int. Org. for
Standardization (Aug 2011), JTC1, SC 22, WG14

20. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transform-
ers. ACM Trans. Prog. Lang. Sys. (TOPLAS) 18(3), 325–353 (1996).
https://doi.org/10.1145/229542.229547

21. Shannon, C.E.: A mathematical theory of communication. Bell System
Technical Journal 27(3), 379–423 (Oct 1948). https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

22. Sundblad, Y.: The Ackermann function: a theoretical, computational, and formula
manipulative study. BITNum.Math. 11(1), 107–19 (1971)

23. Tsoutsos, N.G., Maniatakos, M.: TheHEROIC framework: Encrypted computation
without shared keys. IEEE TCAD IC Sys. 34(6), 875–88 (2015)

24. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Ann. Symp. Found.
Comp. Sci. pp. 162–167. IEEE (1986). https://doi.org/10.1109/SFCS.1986.25

16

