
Challenges faced by students in an Open Source
Software Undergraduate Course

Dias Issa1[0000−0002−9114−4610]

Computer Science Department, Nazarbayev University, Nur-Sultan 010000, Republic
of Kazakhstan

dias.issa@nu.edu.kz

Abstract. The Open Source Software (OSS) development is gaining
popularity from year to year, however, entering the OSS community still
remains a challenging task. In this work, we describe challenges faced by a
beginner OSS code-developer during the first contribution. Additionally,
we analyze our experience and offer hints for potential newcomers. Whole
work was done as the project of the Open Source Software undergraduate
course at the Computer Department of Nazarbayev University.

Keywords: Open Source Software · Code developer · OSS Challenges

1 Introduction

The paper reports the student’s experience in contributing to the open-source
software project from GitHub gained during studying at the undergraduate Open
Source Software course. We included a number of failed attempts to contribute
to different projects alongside the successful one. Each project’s background
information and each contribution attempt were analyzed, while the acquired
experience was digested into some useful advises for a newcomer. Finally, we
drew several conclusions and noted about our future plans.

Our background includes experience in developing software systems and ap-
plications, and Machine Learning models for different platforms including mobile
devices, personal computers, and sensor devices. Therefore, we decided to take
the Open Source Software (OSS) course in the final semester in order to have a
broader view of the field of Software Engineering. In detail, our motivations in
taking OSS class were both intrinsic and extrinsic [13] [1]. We love coding and
solving problems, so working on OSS project was a new experience for us. Addi-
tionally, we wanted to enhance our coding skills and learn novel things. Last but
not least was that contribution to the project could improve the “experience”
section of our resume.

Furthermore, our expectations from the course were both in theoretical and
practical areas. We wanted to identify the main features of open source software
development together with the reasons for its emergence and successful existence.
At the same time, we wanted to get a practical experience of contribution to one
of OSS projects. Finally, the internal structure of the OSS community was an
aspect which we were curious to know.



D. Issa

The Open Source Software course has perfectly met our expectations due to
its twofold structure. The first part was comprised of regular lectures about the
history of OSS development, its features and tools. This material was taught us-
ing Open Source: A Multidisciplinary Approach authored by M. Mufatto [13] and
Open Source Software: A Survey from 10,000 Feet authored by Androutsellis-
Theotokis et al. [1]. The material was checked during examinations.

The second part was about contributing to OSS project and it was totally in-
dependent work. A student was responsible for searching an open source software
project and for becoming its active contributor. This part was examined utiliz-
ing the milestone reports and presentations. The next sections describe some of
these milestones and outcomes of the work.

The paper is structured in the following order: the project selection section
with specifications for each option and their comparison, the contribution sec-
tion, the learned lessons, and conclusion.

2 Project Selection

Despite the enthusiasm at the beginning of the course, the process of finding an
appropriate project for further contribution was not an easy task. During the
class, we changed the chosen projects two times due to different reasons that are
described below. Therefore, project selection state is one of the most important
steps during the open source software contribution process. Right decision at
the beginning would help young contributor a lot in decreasing the amount of
resistance during the development. By “resistance” we mean the generalized term
for various factors hindering the process of contribution. In the next subsections,
we describe our project selections, motivations for such selections as well as
expectations, and reasons for withdrawal.

2.1 First Project: AVA

The first project was chosen after a long time spent on project search in GitHub.
The variety of interesting projects there combined with our knowledge of several
programming languages made this decision last so long.

General Project Description AVA [21] is the testing library on Node.js [18],
so the main language of the project is JavaScript. The library allows executing
tests in parallel, therefore, much faster. The community was medium active.
According to AVA’s statistics by February 4, the project had over 1.4k commits,
with the last commit done on 18th of January 2019. During the previous month,
there were done 15 pull requests, 9 issues were closed and 5 issues were opened.
AVA was released 50 times and had 200 contributors. The project has very
decent documentation translated to 8 other languages including English. There
were 141 open issues, with 73 issues good for the first contribution by February
2019. AVA is under MIT license and has support on Twitter, Stack Overflow
and Spectrum [21].



Challenges faced by students in an OSS UG Course

Justification of the decision This project seemed for us as an appropriate
option for OSS class due to its detailed documentation, friendly community, and
a variety of issues for beginners. Additionally, parallel programming was a new
and interesting field for involvement. Subsequently, we tended to consider that
the code developing for this project could lead to learning a great variety of new
concepts. Finally, we consider AVA as a good project to enhance our skills in
JavaScript.

Detailed role description and provisional activity plan As a developer for
this project, we planned to work on issues tagged as “enhancement” and “bug”.
It was also desirable that these issues were tagged as “good for beginner”. As the
first stage of contribution, we chose to get familiar with the code of the project
and its documentation for contributors. Then, depending on the understanding
of the code, we were going to solve bugs or perform enhancements.

Activities and Reasons for withdrawal After a more detailed analysis of
the project, it was found out that most of the “good for beginner” issues were
outdated and were not solved for a long period of time. Moreover, most of them
were in the field of documentation, while we wanted to solve developer issues [21].
Additionally, there almost did not appear new propositions with “good for begin-
ner” tag, while other issues required skill and knowledge which, in our opinion,
we could not provide. Figure 1 clearly demonstrates all these drawbacks. As a
result, after several unsuccessful attempts to solve issues, we were compelled to
search for a new project to contribute.

2.2 Second Project: Coala

The second project was chosen also after a long time spent on project search
in GitHub. The first failure and aspiration for successful contribution forced us
to treat this process carefully. Therefore, the project is analyzed and described
in details in following subsections: the general description of the project, the
reasons for selection, the role description and provisional activity plan, the gov-
ernance structure of the project, its community structure, its architecture, and
the justification for withdrawal of the project.

General Project Description The project is aimed to help programmers
during revising their codes for bugs. Coala [5] [7] is a software designed for linting
and fixing codes in a very broad range of languages. It is highly customizable, so
the user could utilize Coala from his favorite coding environment (editor) and
add extra Coala plugins whenever he needs. The main language of the source
code of the project is Python.

Justification of the selection We had several reasons for choosing Coala for
OSS class. Firstly, automatic code linting was an undiscovered and intriguing



D. Issa

Fig. 1. Issues tagged as “good for beginner”. AVA.

area for us. Secondly, the community is open for new members and helps them
to make their first contributions. Thirdly, the project has good structured and
well-written guide dedicated to newcomers. Fourthly, a wide range of issues with
difficulty levels suitable for beginners. Finally, we liked their motto, the words
of John F. Woods: “Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you live.” [5].

Detailed role description and provisional activity plan For this project,
we planned to work on coding issues rather than documentation issues due to the
reasons listed in the introduction of this paper. In the beginning, besides studying
contributors guide of the project and its code, we decided to solve bugs because



Challenges faced by students in an OSS UG Course

this procedure seemed to us less complex than developing new features. After
that, when we would gain experience, we were going to perform enhancements of
the code or to develop new functionality. According to the plan, the first issues
with which we wanted to start would have had tags “difficulty/newcomer” or
“difficulty/low”, because it is the part of the requirements of Coala community
for new developers [6].

Governance structure We could not properly identify the governance struc-
ture of the project, however, we tend to think that it is monarchical.

Fig. 2. Contributors. Coala.

The reasons for this claim are the following: from the Figure 2 one could
clearly see that the owner of the project, sils [15], is the most valuable contrib-
utor with almost 7 times and 50 times larger contribution than the second and
third valuable contributors. Also, according to the forum posts depicted on the
Figure 3, he delegated some of his responsibilities to other players in his team,
for example, he delegated to javdb [19] the work with the community. How-
ever, with the owner’s much better knowledge of the project and his amount of
contribution, we assert that the project owner’s voice is the most valuable.



D. Issa

Fig. 3. Issue forum. Coala.

Community structure The community structure of Coala is hierarchical. This
could be seen from their contribution guide [6], which states that in order to solve
issues with a particular level of difficulty, you need to fix at least one issue and
review at least one contribution that is one level of difficulty below. Additionally,
in order to become a full developer of the project, you need to make a promotion
request. Though Coala has such a strict structure that is typical for more propri-
etary software development, it resides under the strongest copyleft license: GNU
Affero General Public License v3.0 [5]. This license obligates potential users to
open the source code of possible derivatives of the project.

It could be said that such structure of Coala project is beneficial for the role
of new developer of the project because a newbie has a clear understanding of
which issues he or she should work and what to do next. At the same time,
more experienced developers will not take out the potential issues that the new
developer could solve due to the strict division of difficulty levels.



Challenges faced by students in an OSS UG Course

Architecture The general architecture of the project is modular. Basically,
Coala consists of different modules each dedicated to a particular programming
language. Most of the popular languages are supported right now. The project
has working builds on Linux and MacOS, and it is planned to develop a working
build for Windows because currently, it is failing [7]. Most of the issues of the
project reside in the area of documentation and dependencies, some of the issues
are bugs [5]. Also, due to such variety in supported programming languages,
there are lots of issues connected with a particular language. Additionally, the
project does not have a nice user interface and the work is performed using a
command line [6]. This is acceptable for the current auditorium, however, better
UI could attract more people who are not professionals (students, newbies in
programming, etc.)

Activities and Interaction We started to search for an issue at the issue
forum of Coala on GitHub [5]. There was a strong deficit of “newcomer” issues,
so it was decided to monitor the forum for the appearance of new issues in this
category. At the time when a new issue appeared, we were too hesitant in taking
it. Therefore, because of this several minute long hesitancy, another contributor
was assigned to the issue. After that, the sudden freeze of the project occurred,
so we decided to communicate with the owner of the project in order to get
any issues to work on. The owner of Coala, sils [15], stated that he is no longer
engaged in the project and cannot help us much. Sils suggested us to check out
“newcomer” issues on the GitHub forum. We also wrote an email to another
active community member, jayvdb [19]. However, he did not answer the letter.

Reasons for withdrawal Coala was an ideal potential project for OSS class,
the only drawback was that there were a large number of new contributors, so
the number of issues was not enough for everyone. Nevertheless, the main reason
for withdrawal was in project freeze, which occurred suddenly. Eventually, we
were forced to search a new OSS project, because we needed to contribute as
soon as possible due to deadlines of the OSS class schedule.

2.3 Third Project: Jarvis

The third and final project was chosen in a short amount of time, mostly spent
on traversing GitHub. Jarvis [17] was listed as the third and the second project
for potential contribution during two previous searches. Therefore, after two
unsuccessful attempts, it was Jarvis’ time to come on stage.

General Project Description Jarvis is an open source personal assistant
for Linux and MacOS platforms, which works using command line interface.
Additionally, it supports voice response. The assistant has such features as telling
the weather, finding nearby places for having meal, etc. [17] The community is
medium active. Jarvis has the following statistics statistics by March 26: the



D. Issa

project has over 800 commits, with the last commit done on the 26th of March.
During the last month, there were done 11 pull requests, 7 issues were closed
and 5 issues were opened. Jarvis has 74 contributors. The project is young and
ambitious. Jarvis is under MIT license and has support on Gitter [17].

Justification of the selection We state that this project was a good option
for the OSS course due to its young age, which gives an opportunity to find
bugs and design new functionality. Additionally, personal assistance was a very
interesting field to study and develop, especially for us, because we could apply
our knowledge in Machine Learning in order to design new features for Jarvis.
Also, we assert that we learned Python better during solving the issues because
all code of the project is written in this language.

Detailed role description and provisional activity plan As a developer
for this project, we planned to work on issues tagged as “bug”. We also wanted to
design new features for Jarvis, several of them we published at the forum [9] [8].

Governance structure We again could not properly identify the governance
structure of the project due to the absence of a document with the rules of Jarvis’
community [17]. Nevertheless, we tend to think that the governance structure
is federal. The reason for this claim is the following: the owner of the project is
only the 6th most valuable contributor of the project (Figure 4).

Moreover, according to Figure 4, appi147 [4], the core member of Jarvis, has
the largest amount of code contributed. Additionally, the owner allowed to the
other major contributors to work with the master branch [10]. Also, according
to the forum posts, the new functionality could be confirmed by the core team
of the project, not only by the owner [8]. Therefore, we state that the major
contributors have the most valuable vote, which corresponds to the meritocracy
that is the base of the federal model.

Community structure The community structure of Jarvis is not clear, be-
cause of its small size and anarchistic way of contributions. Subsequently, we
assume that the community structure of this project is based on a fluid commu-
nity organization model. The reasons for such assertion are the following: every
member of the community, even newbies with no contribution, could offer new
features and implement them, which was proved by our contribution [8]. This, in
turn, leads to the second point, that membership in the community and its roles
are fluid, so a developer could be an idea creator or a tester. Finally, according
to the issue forum, the project evolution depends on the innovations offered by
the members of the community [17].

Architecture The architecture of Jarvis is highly modular. Basically, Jarvis
operates using a variety of plugins, which are independent of each other and



Challenges faced by students in an OSS UG Course

Fig. 4. Contributors and the highlighted owner of the project. Jarvis.

are responsible for different features of the personal assistant. The project has
working builds only on MacOS and Linux platforms, while Windows is not sup-
ported at all and is not planned to be supported in the near future. Most of
the issues of the project are located in the area of enhancements of the current
functionality and in the area of implementation of new features. Jarvis has no
GUI and operates through the command line and voice commands, which are not
supported well [17]. Therefore, we claim that in order to increase the popularity
of the project, Jarvis needs GUI.

2.4 Comparison of the projects

Table 1 shows the comparison of the three projects described in this section. The
“starting complexity” entry of the table was assessed by the following criteria: the
effort spent for understanding the code of the project, the amount of knowledge
of the project needed to perform a contribution, time spent on learning the
documentation to become familiar with the project and its order of contribution,
and the effort spent for getting assigned for an issue. From the table, we can
see that both Coala [7] and AVA [21] were founded in 2014, while Jarvis [17] is
relatively young. Also, according to the number of contributors, AVA and Coala



D. Issa

Table 1. General comparison

AVA [21] Coala [5] Jarvis [17]

Commits number >1.4k >4.4k >800
Contributors 200 439 74
Releases 50 17 0
License MIT AGPL-3.0 MIT
Documentation very decent decent poor
Time of 1st commit Nov. 2014 Jul. 2014 Mar. 2017
Starting complexity Hard Medium Hard Easy

projects are significantly more popular than Jarvis. At the same time, starting
complexity at Jarvis is much lower than in the two older projects. Therefore,
using the given data, it could be said that as a project gets older and more
popular, the “resistance” for making the first contribution increases, such that
even well-written documentation does not facilitate this procedure to the right
degree. By resistance here we mean such hindrances for contribution as individual
skills requirement, the complexity of issues, the requirements on the knowledge of
the project to make the contribution, etc. This issue could be addressed using the
following method utilized by some OSS projects [12]: new contributors start their
development via pair coding sessions organized by other experienced members
of the project, which in turn helps newbies to adapt, popularizes the project and
leaves a good impression that motivates them to join its community.

To conclude, entering the OSS community for a new member is a complex
procedure that is mostly dependent on the user’s individual skills, project’s age
and its attitude towards new contributors.

3 Contribution

As said before, Jarvis was the most appropriate project for us to contribute. We
contributed to the project in four different ways: fixed the bug, offered the new
features, implemented the new features, and found the bug in the code of the
project [8] [10] [9]. The subsections below describe each of the contributions.

3.1 Bug fix

We decided to start our first contribution to Jarvis with the simple task of fixing a
bug. Fortunately, the project owner had found an “easy to fix” bug and offered
it to community members [10]. We took into the account the last experience
with the issue assignment in Coala project, and answered immediately, without
any idea of solving the bug. Fortunately, we were assigned this bug and started
working on it. Though the bug was easy and eventually was solved by us, we
spent a very large amount of time fixing it. This happened mostly because of
the absence of experience in contribution to OSS projects using GIT framework.
Additionally, the time was also spent on multiple corrections of the submitted



Challenges faced by students in an OSS UG Course

code due to our limited knowledge of such OSS code writing rules as no empty
lines with spaces, or space after comment sign, etc. Finally, we had done our pull
request and it was merged with the master branch of the project [10].

3.2 New feature offers

Furthermore, we offered two new features for Jarvis. First of them was about
adding the functionality of searching images using their description [9]. We even
implemented the basic functionality using deep neural networks, however, the
core team did not give an answer for this request. We assume that this happened
due to the large complexity of implementation and usage of the offered feature.

Additionally, we offered a console game “Bulls and Cows”, which was im-
mediately accepted with strong enthusiasm [8]. We suppose that this occurred
due to the simplicity of the idea and implementation process. Also, there could
be other reasons for this. The nature of OSS encourages community members
for voluntary contributions. The silence of the core members of Jarvis to our
previous feature offer could made them feel uncomfortable due to possible “mis-
conduct” on the subconscious level. Thus, unconscious desire to improve could
affected the level of their enthusiasm.

Finally, we have a lot of ideas of new features that could be added to Jarvis,
and which we could offer to the community.

3.3 New feature implementation

We implemented our first feature before it was offered, however, the feature was
not accepted by the core team of Jarvis [9]. Therefore, we moved to create a
plugin for our next offered feature - the game [8]. The programming part of the
game was easy, so we wrote the code considerably faster than in bug fix case.
However, the way of plugin creation and its insertion to Jarvis was not so clear,
so most of the time was spent on these two tasks. Finally, after some attempts,
we were able to submit our pull request, which passed all tests. The plugin was
tested by the core members of Jarvis, and the pull request was merged with the
master branch [8].

3.4 Bug investigation

Finally, we detected bugs occasionally while submitting our pull request. It was
found out that some of the tests on Python 2.7 were not passing on the remote
code checking server. However, according to the error report, the problem was
not in the game plugin but in another plugin, which was part of the project, and,
subsequently, was downloaded during cloning Jarvis. After the post on the forum,
one member of the core team answered that he had merged his contribution with
the master branch without checking it with lower Python version. Finally, he
fixed the bug himself, which allowed us to finish our pull request [8].



D. Issa

4 Lessons learned

The project contribution procedure is not an easy process. Additionally, the right
decision at the beginning could substantially affect the future performance of a
contributor. This could be clearly seen from the evidence given in section 2.

From sections 2.1 and 2.2 we learned several lessons. Firstly, the contribution
to OSS project requires some amount of courage. One should not stand in awe
of potential failures because failure always could happen even with the most
experienced programmers as clearly illustrates “bug investigation” section [8]. A
newbie should be worried more about not contributing. It is better to try and
fail rather than stay in silence. In the end, the only important thing in OSS
contribution is an experience both technical and behavioral.

Secondly, it is better to search for projects, which have a considerable amount
of issues dedicated to beginners. Also, these issues should be fresh enough, not
problems that are not solved for months. The issue of finding a task to start was
emphasized in works of Von Krogh et al. [20], Ben et al. [2] and Capiluppi and
Michlmayr [3].

Finally, communicate with core community members in advance, do not wait
for an appropriate moment. Core members could be busy and answer after a
significant amount of time. In cases when no answer is received, it could be
a sign for a newbie to immediately withdraw from a potential project. This
situation was described in the work of Jensen et al. [11], where they note that
the posts of newcomers which were replied, especially within 48 hours, had a
positive correlation with their future project activity.

These lessons were learned by us at the time when we approached our third
project selection - Jarvis [17]. Another lesson was learned from Jarvis’s section:
do not hesitate to offer something new. Even if one’s offer is rejected, it gives
him an experience, which could be used in the next attempt. Additionally, peo-
ple do not like to reject, especially in the OSS community, where volunteering
is encouraged. Therefore, one should propose his offer because even rejections
eventually will lead to acceptance.

Furthermore, governance and community structures substantially affected
the challenges we had to face. According to our own experience, the strict hier-
archical structure could be beneficial for newbies due to its clear guidance offered
by a project. This assertion is indirectly supported by the works of Park and
Jensen [14], and Von Krogh et al. [20], where they claim that the community
delegates the process of picking up the task for contribution to a newcomer [20],
while the newcomer is not aware how to perform it [14]. However, on the other
hand, the severe hierarchy limits the potential of a new contributor, it confines
him in particular boundaries restricting from different possible ways of contribu-
tion. We encountered this phenomenon during interaction with Coala project’s
community [6], eventually ending with the contribution to Jarvis [17], which has
fluid community structure.

Additionally, younger projects could be a better source of contribution than
mature ones. The reasons are that younger projects are less complex and have
more space for new ideas and creativity. At the same time, they offer a decent



Challenges faced by students in an OSS UG Course

opportunity of finding new bugs and designing new features. Studies of Capiluppi
and Michlmayr [3] support this point by stating that new members of a project
“tend to work more easily on new modules than on older ones”. Moreover, they
claim that new developers should be encouraged to create new ideas for a project.
At the same time, mature projects are more stable, therefore, have fewer bugs.
They tend to enhance existing features rather than creating new ones. Mature
projects could be a good option for experienced developers, while young projects
are better suited for beginners.

To sum up, we faced a number of challenges connected with the lack of knowl-
edge, hesitancy to contribute, difficulty in getting feedback from the community,
convincing its members, issues connected with the code design and its read-
ability, etc. We discussed these issues with other members of the OSS course,
a large amount of them faced similar problems. From one of them, we have
discovered the excellent OSS project Gatsby [12], which has a very active and
friendly community. This motivated us to not give up after failures and keep
trying. Therefore, the last lesson learned and which could be suggested to a new
OSS contributor: share the unsuccessful experience with the community, as well
as, successful. In the first case, someone could help you to overcome challenges.
At the same time, your failure would prevent others to make the same mis-
take. While in the second case, your success could encourage other community
members and it could be a source for important lessons.

Finally, the only suggestion for instructors is in organizing classroom practice
sessions for the first project contribution. It would substantially enhance the
overall students’ experience during course connected with open-source software.
At the same time, these sessions could be also beneficial for different projects
which have easy-to-solve questions but lack of people who would work on them.

According to the categorization offered by Steinmacher et al. [16] the chal-
lenges described above cover 4 out of 5 barrier classes:

– Social Interaction
– Technical Hurdles
– Finding a Way to Start
– Newcomers’ Previous Knowledge

This clearly indicates that the challenges described by Steinmacher et al. [16]
still remain prevalent in the field of OSS. Despite the growth of open source
movement, the quality of its organization stays the same, so that contributors
face the same issues again and again. This leads to the idea that the organization
of OSS should be enhanced in order to overcome the barriers. For example, by
creating some common organizational criteria which are mandatory in order to a
project be part of the OSS community, for instance, pair programming sessions
as in case of Gatsby [12].

5 Conclusion

To conclude, in the paper we described our experience, as a new open source
software programmer, about the entrance to the world of OSS development.



D. Issa

According to the evidence given above, it could be said that contributing to
OSS, especially for the first time, is a tricky procedure. However, it could be
clearly seen, that a successful contribution motivates the contributor to con-
tribute more. Therefore, the first experience is very significant during the de-
velopment of open source software. The experience with Jarvis motivated us to
continue contributing to OSS projects in the future. We plan to enter Gatsby’s
community suggested by one of the members of the OSS course.

Acknowledgement

Thanks to Professor Antonio Cerone from the Department of Computer Science
in Nazarbayev University for valuable discussions.

References

1. Androutsellis-Theotokis, S., Spinellis, D., Kechagia, M., Gousios, G., et al.: Open
source software: A survey from 10,000 feet. Foundations and Trends R© in Technol-
ogy, Information and Operations Management 4(3–4), 187–347 (2011)

2. Ben, X., Beijun, S., Weicheng, Y.: Mining developer contribution in open source
software using visualization techniques. In: 2013 Third International Conference
on Intelligent System Design and Engineering Applications. pp. 934–937. IEEE
(2013)

3. Capiluppi, A., Michlmayr, M.: From the cathedral to the bazaar: An empirical
study of the lifecycle of volunteer community projects. In: IFIP International Con-
ference on Open Source Systems. pp. 31–44. Springer (2007)

4. Choudhary, A.: appi147 - overview (Apr 2019), https://github.com/appi147

5. Developers, T.C.: Coala github (Apr 2019), https://github.com/coala/coala

6. Developers, T.C.: Coala newcomers’ guide (Apr 2019),
https://api.coala.io/en/latest/Developers/Newcomers Guide.html

7. Developers, T.C.: Coala website (Apr 2019), https://coala.io/

8. Issa, D.: New feature - game, https://github.com/sukeesh/Jarvis/issues/448

9. Issa, D.: New feature - image search using captions,
https://github.com/sukeesh/Jarvis/issues/438

10. Issa, D.: Solution for two broken methods in movie.py,
https://github.com/sukeesh/Jarvis/pull/447

11. Jensen, C., King, S., Kuechler, V.: Joining free/open source software communities:
An analysis of newbies’ first interactions on project mailing lists. In: 2011 44th
Hawaii international conference on system sciences. pp. 1–10. IEEE (2011)

12. Mathews, K., Mathews, S.: gatsbyjs/gatsby (Apr 2019),
https://github.com/gatsbyjs/gatsby

13. Moreno, M.: Open source: A multidisciplinary approach, vol. 10. World Scientific
(2006)

14. Park, Y., Jensen, C.: Beyond pretty pictures: Examining the benefits of code vi-
sualization for open source newcomers. In: 2009 5th IEEE International Workshop
on Visualizing Software for Understanding and Analysis. pp. 3–10. IEEE (2009)

15. Schuirmann, L.: sils - overview (Apr 2019), https://github.com/sils



Challenges faced by students in an OSS UG Course

16. Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F.: A systematic liter-
ature review on the barriers faced by newcomers to open source software projects.
Information and Software Technology 59, 67–85 (2015)

17. Sukeesh: sukeesh/jarvis (Apr 2019), https://github.com/sukeesh/Jarvis
18. Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance network

programs. IEEE Internet Computing 14(6), 80–83 (2010)
19. Vandenberg, J.: jayvdb - overview (Apr 2019), https://github.com/jayvdb
20. Von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization

in open source software innovation: a case study. Research policy 32(7), 1217–1241
(2003)

21. Wubben, M., Sorhus, S., Demedes, V.: Avajs/ava (Apr 2019),
https://github.com/avajs/ava


