
DrPython–WEB: a tool to help
teaching well-written Python programs

Tommaso Battistini1, Nicolò Isaia1,
Andrea Sterbini1[0000−0002−5361−2786], and

Marco Temperini2[0000−0002−8597−4634]

1 Computer Science Dept. - Sapienza University of Rome - Italy
sterbini@di.uniroma1.it

2 Dept. of Computer, Control and Management Engineering
Sapienza University of Rome - Italy

marte@diag.uniroma1.it

Abstract. A good percentage of students, while learning how to pro-
gram for the first time in a higher education course, often write very bad
code, i.e. code which is difficult to read, badly organized, not commented.
Writing inelegant code reduces the student’s professional opportunities.
In this paper we present DrPython–WEB, a web application capable
to automatically extract linguistic, structural and style-related features,
from students’ programs, and to grade them with respect to a teacher-
defined assessment rubric. The aim of DrPython–WEB is to make the
students accustomed to good coding practices, and stylistic features, and
make their code better. There are other systems able to perform code
analysis through quality measures: The novelty of DrPythonWEB, with
respect to such systems, is in that it analyzes also linguistic and stylistic
features.

Keywords: Teaching programming · Python · Feature extraction · Good
coding practices.

1 Introduction

One of the main tasks of a computer programming course is to allow the students
to reach an adequate level of skills, so to be able to produce good quality pro-
grams. The difficulty of accomplishing such a task is particularly felt in Higher
Education on Computer Science, as the students in that area will become, in
a relatively close future, professionals with important responsibilities in private
and public sectors [1–3].

Students’ skills, to produce programs showing good, or even high, “quality”,
are acquired through practice, and are applied to various aspects of program-
ming, ranging from the capability to define suitable algorithms to solve a given
problem, through the ability to design a program and the relevant data struc-
tures, to the practical coding abilities, that allow a student to produce a readable

rev
Evidenziato

rev
Nota
I'd say more than this: writing inelegant code is a symptom for unsystematic proramming methods, that lead to software that cannot be maintained in time, even by its own author.

2 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

program, i.e. a program whose instructions are 1) textually formatted in a read-
able fashion, 2) easy to interpret, as far as their purposes are concerned, and 3)
as clearly commented as possible.

Both Learning and Teaching of Computer Programming are challenging tasks,
when the traditional approach to education is used [4]. Hence, the availability
of a web-based, automated support can be of great value, especially in Higher
Education, where often direct interactions between a student who is solving a
programming task, and a teacher who could help, are not easily possible [5].

In this paper, we present a web-based system, DrPython–WEB, whose use
could help a student to improve her/his coding skills, by pointing out and rec-
ognizing the “elegance” of the student’s code, in an automated and real-time
fashion.

By “elegance” we mean a subset of the several qualities of a program, men-
tioned earlier, related to structure, readability and maintainability. On these
aspect DrPython–WEB focuses its program analysis, and evaluation. In partic-
ular, given a program, the analysis is performed on a set of features, extracted
from the program (see later), as well as on the good naming quality of the
identifiers (i.e., the names given by the programmer to certain structures of the
program, such as types, variables, and functions).

We developed DrPython–WEB based on a twofold aim: on the one hand we
would like to help encouraging students to practice and improve their coding
style; on the other hand we wanted to support both student’s awareness and
teacher’s assessment procedures, by providing them with visual summaries of
data, reporting the elements on which the overall evaluation of the code was
based.

DrPython–WEB is still undergoing a thorough experimentation, and we can-
not yet present a comprehensive analysis of the actual effects of its use for the
student and for the teacher. So, in this paper we present the system, and its
features, showing how we used it on a relatively large dataset of programs (pro-
duced by students during a recent edition of a course on Basics in Programming
held in our University). Such dataset is comprised of programs produced to solve
tasks related to the several mandatory homework requested during the course,
and the solutions submitted for final exams.

The main goals in this paper are then the following:

Goal 1: To show that DrPython–WEB can automatically extract the stylistic
features of a program, and assess their usage to push students towards a
better programming style.
We will see that DrPython–WEB is able to 1) perform an automatic check
of the hundreds of programs in our sample, 2) analyze, in such programs, the
coding qualities we associated above to “elegance”, and 3) express a quality
grade for each program.

Goal 2: To personalize the assessment depending on the teacher’s preferences,
the moment in the course, or just the specific assignment’s characteristics.
In this respect, we will see that the analysis performed by DrPython–WEB
can be configured by the teacher, who is able to finely-tune the assessment

rev
Nota
say the reasons (e.g. high student(teacher ratio).

DrPython–WEB: a tool to help teaching well-written Python programs 3

by specifying her/his preferences about the features to be taken into consid-
eration, and their weight in the computation of the overall quality grade.
In particular, the possibility to configure the assessment undertaken by
DrPython–WEB allows the teacher to adapt the analysis of a given batch of
programs, depending on the relevant characteristics of a given task, and/or
the aspects to be taken care of at a given point-in-time of the course.

In the following sections we will:

1. present the software library DrPython, which we developed to provide core
functionalities for the analysis of a program: On these functionalities DrPython–
WEB was developed.

2. present the use of DrPython–WEB on a set of sample programs, in order to
show the characteristics of the system and see its potential application on
the field.

3. present some conclusions, submitting that DrPython–WEB, although sub-
ject to further improvements, can be an effective means to persuade the
students to improve their coding style.

2 DrPython: feature extraction module

DrPython–WEB is based on the feature extraction library (named DrPython)
that we developed to analyze the student’s program and algorithm description
to recognize/extract three type of features:

– code syntax features: the number of specific language constructs in the
program: (functions, classes, super-classes of each class, methods, try-except,
list-comprehensions, if-then-else, generators, lambda, recursive functions, vari-
ables, arguments),

– code quality measures:
• McCabe’s cyclomatic complexity [6], that captures how much a function

control flow is intricate,
• Halstead’s measures [7], that captures a function’s conceptual complexity

from its vocabulary size and number of operators used
• code smells [8], i.e., code structures that often imply bad coding practices

– linguistic features:
• good identifiers, i.e., self-explanatory names that convey the meaning of

their function. This relieves the programmer from having to recall what
type of data is in a variable and its place in the algorithm, as well as the
action performed by a function/method,

• good documentation practices i.e. using comments and doc-strings to
describe the reason for particular programming choices. This helps the
reader to better understand the meaning of the algorithm implemented.

• the usage of pertinent keywords related to the exercise description both
in comments/doc-strings or in the algorithm description. This allows
DrPython to automatically check (roughly) if the documentation is ad-
equate to the task.

4 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

The code syntax features are extracted/counted by means of the redbaron3

source code analysis library that allows to easily query the code structure for
specific constructs. Redbaron queries use a syntax similar to CSS selectors (as
it’s done in jQuery w.r.t. the DOM of HTML pages). This in turn will allow us
to easily expand in future the set of code syntax features extracted.

The code quality measures are computed by means of the radon4 library.
Finally, to extract the linguistic features DrPython uses the automatic term

extraction module pyate [9] to select the 25 highest ranked keywords returned
by its Combo Basic algorithm [10], and the text analysis library spacy5 to an-
alyze the documentation/comments and the algorithm description. To decide if a
particular identifier used by a student is of good/medium/bad quality, DrPython
performs the following steps:

– it extracts the pertinent keywords with pyATE from the teacher’s exercise
task description

– it decomposes the identifier in its component words
– it compares the words (by means of Spacy semantic similarity and the Word-

Net semantic network) to grade their similarity to the pertinent keywords
– it classifies the identifier in the top/medium/bad group depending on having

its max similarity to a keyword above 90%, between 40% and 90% or lower
than 40%, respectively.

DrPython can be used both as a stand-alone program, to be run from the
command line, or integrated in the DrPython–WEB web-based application de-
scribed below.

For example, with DrPython one can analyze many student files and collect
all extracted features as a CSV file, and one can study, for example:

– how the extracted features correlate with each other or with other data
(exam grades or readability judgements manually collected)

– how different assessment templates will produce different grade distributions

To make the assessment templates more easy to use, and to automate the
submission and assessment of the programs, we have developed the web-based
application (DrPython–WEB).

3 Dr.Python-WEB: The System

The DrPython–WEB system allows the teacher to define one or more assess-
ment templates to grade the submitted programs/algorithms depending on the
features extracted, in order to encourage students to use more readable Python
constructs, a better linguistic style, and to better modularize their code.

DrPython–WEB is a classic LAMP based web-application written in Python
where:
3 https://redbaron.readthedocs.io
4 https://radon.readthedocs.io
5 https://spacy.io

rev
Evidenziato

rev
Nota
easier

rev
Evidenziato

rev
Nota
add footnote to explain LAMP=Linux, Apache, MySQL, PHP/Perl/Python

DrPython–WEB: a tool to help teaching well-written Python programs 5

Fig. 1. Assessment template that awards more points for lower cyclomatic complexity,
lower Halstead’s effort and high percentage of good identifiers

– the teacher defines assessment templates depending on the exercise and/or
the course phase

– the students submit their code to get the style assessment grade and compare
their results with each other’s

Assessment templates are defined by the teacher by specifying what are the
features assessed and what is their weight for a given range of values.

In figure 1 we show an assessment template that awards more points to a
lower Halstead’s effort, to a lower cyclomatic complexity, and to a high percentage
of good identifiers depending on the range of values observed.

A template like this one, for example, is built to convince a student to mod-
ularize her program into smaller less complex functions (with lower cyclomatic
complexity), to write more readable code (using mainly self-explanatory identi-
fiers) and with a less complex algorithm (with lower Halstead’s effort).

Notice that an assessment template can assign different weights to different
range of feature values extracted, as shown in the figure, where we show three
different ranges for the Halstead’s effort measured. This way, the teacher could
associate to each feature a weight function with complex shape.

After assessment the students’ results are shown in the DrPython–WEB
leaderboard, so that each student can compare her program style with others,
as shown in fig. 2

Notice that the only features shown are those included in the assessment
template.

6 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

Fig. 2. Leaderboard example, showing the features checked for this exercise and the
points assigned as defined in the previous assessment template.

4 Conclusions and future work

We have shown a novel library (DrPython) which extracts structural, quality and
linguistic features from the programs and documentation submitted by students.
DrPython is used within the novel DrPython–WEB application, that allows the
teacher to build assessment templates specific both to the point in time during
the course and/or to the specific exercise.

We plan to use the DrPython–WEB system on our next courses to collect
data on the student’s submissions and check that its usage improves the student’s
program quality.

Moreover, we plan to collect readability assessments from the students during
the course to study both how the exercise readability improves with time and how
the code readability perception of the students changes while they are learning.

From the collected data we intend to study if we can define a program read-
ability measure that takes into consideration the linguistic features also.

Finally, we intend to study how the readability of a program is related to its
grade, and/or to the grade received in the final lab-based exam.

References

1. Breuker D M, Derriks J, Brunekreef J. Measuring static quality of student code. In:
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in

rev
Nota
is "cheating" possible? I mean, can students find a way to increase their points, without really improving the software readability? Maybe you can add a sentence concerning whether in this case you can exclude this frequent undesirable effect of leaderboards like these...

rev
Nota
you mean you intend to have students carry out a peer review and compare the automatic assessment with peers' assessment? In any case, may I suggest this could be an interesting way to validate your work?

DrPython–WEB: a tool to help teaching well-written Python programs 7

Computer Science Education. 2011, 13–17
2. Yao LU, Xinjun MAO, Tao WANG1, Gang YIN, Zude LI. Improving students’ pro-

gramming quality with the continuous inspection process: a social coding perspective
Front. Comput. Sci., 2020, 14(5): 145205 https://doi.org/10.1007/s11704-019-9023-
2

3. Radermacher A, Walia G, Knudson D. Investigating the skill gap between gradu-
ating students and industry expectations. In: Proceedings of the 36th International
Conference on Software Engineering Companion. 2014, 291–300

4. Feldman Y A. Teaching quality object-oriented programming. Technology on Edu-
cational Resources in Computing, 2005, 5(1): 1

5. Chen W K, Tu P Y. Grading code quality of programming assignments based on bad
smells. In: Proceedings of the 24th IEEE-CS Conference on Software Engineering
Education and Training. 2011, 559

6. McCabe (December 1976). ”A Complexity Measure”. IEEE Transactions on Soft-
ware Engineering (4): 308–320. https://doi.org/10.1109/tse.1976.233837

7. Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier
North-Holland, Inc. ISBN 0-444-00205-7.

8. https://wiki.c2.com/?CodeSmell
9. Lu, Kevin. (2021, June 28). kevinlu1248/pyate: Python Automated Term Extraction

(Version v0.5.3). Zenodo. http://doi.org/10.5281/zenodo.5039289
10. Astrakhantsev, N.: Methods and software for terminology extraction from domain-

specific text collection. Ph.D. thesis, Institute for System Programming of Russian
Academy of Sciences (2015)

