
Towards a Web-based Tool to Support Research

Collaboration in Human-Computer Interaction

and Cognitive Science⋆

Antonio Cerone[0000−0003−2691−5279], Anel Mengdigali, Nuray Nabiyeva, and
Temirlan Nurbay

Department of Computer Science, School of Engineering and Digital Sciences,
Nazarbayev University, Nur-Sultan, Kazakhstan

{antonio.cerone,anel.mengdigali,nuray.nabiyeva,temirlan.nurbay}@nu.edu.kz

Abstract. Human-computer interaction and cognitive science are inter-
disciplinary areas in which computer scientists and mathematicians often
work together with social scientists, such as psychologists and sociolo-
gists, as well as with more focussed practitioners such as usability experts
and system analysts. In order to work effectively, interdisciplinary teams
need to agree on a common communication language as a compromise
between the computer scientists and mathematicians’ formal modelling
approach and the conceptual models normally used by social scientists
for describing their domain-related theories and frameworks. Moreover,
even when proper communication is established within a specific research
team, the next challenge is the presentation of the result to a heteroge-
neous international community, to allow for cross-fertilisation, exchanges
of ideas, work replication and review. This project paper presents the on-
going development of a web-based tool and portal for the modelling and
analysis of human cognition and behaviour as well as interactive systems.
The aim of the project is for researchers in human-computer interaction
and cognitive science to freely use the tool provided by the web portal in
order to run in silico experiments, compare the results of in silico experi-
ments and experiments with human beings, perform simulations, analyse
systems consisting of computer/physical components and human com-
ponents, as well as download and upload datasets and models. Domain
oriented modelling and visualisation interfaces will ease the modelling
and analysis processes by hiding the simulation and formal analysis en-
gines. Finally, the tool will facilitate discussion, review and collaboration.
An early prototype of the tool will be available by the end of November
2021.

Keywords: Tool development · Collaborative Research · Interdisciplinary
Research · Human-Computer Interaction · Cognitive Science

⋆ Work partly funded by Project SEDS2020004 “Analysis of cognitive properties
of interactive systems using model checking”, Nazarbayev University, Kazakhstan
(Award number: 240919FD3916).



2 A. Cerone et al.

1 Introduction

Research in cognitive science has resulted in the development of a large number
of cognitive architectures over the last decades [6, 11]. Cognitive architectures are
based on three different modelling approaches, symbolic (or cognitivist), such as
Soar [7], which are based on a set of predefined general rules to manipulate sym-
bols, connectionist (or emergent), such as DAC [13], which count on emergent
properties of connected processing components (e.g. nodes of a neural network),
and hybrid, such as CLARION [12], which combine the two previous approaches.

However, the complexity of these cognitive architectures makes it difficult
to fully understand their semantics and requires high expertise in programming
them. Moreover, Kotseruba and Tsotsos [6] note that most cognitive architec-
tures have been developed for research purposes rather than for real-life usage.
They are actually very specialised tools, each of them only usable within focussed
research communities and capable to address one of the following categories of
application [6]: psychological experiments, robotics, human performance mod-
elling, human-robot interaction, human-computer interaction, natural language
processing, categorisation and clustering, computer vision, games and puzzles,
and virtual agents. Finally, although cognitive architectures can mimic many as-
pects of human behaviour and learning, they never really managed to be easily
incorporated in the system and software verification process.

In our previous work, we proposed a notation, the Behaviour and Reasoning
Description Language (BRDL) [1], for describing human behaviour and reason-
ing. The semantics of the language is based on a basic model of human memory
and memory processes and is adaptable to different cognitive theories. This al-
lows us, on the one hand, to keep the syntax of the language to a minimum,
thus making it easy to learn and understand and, on the other hand, to use
alternative semantic variations to compare alternative theories of memory and
cognition. In our previous work we have implemented parts of BRDL [3, 2, 4]
using the Maude rewrite language and system [8, 9]. The automatic translation
from BRDL to Maude facilitate modelling, but the results are still the formal
textual output from Maude, which is difficult to interpret.

This paper describes a web-based portal and tool that we are developing to
address the widespread and heterogenous scientific community that interested
in the modelling and analysis of cognitive systems and interactive systems. The
portal will allow researchers to collaborate in modelling, compare each other’s
models, replicate in silico experiments and perform reviewing activities. We ex-
ploit BRDL flexibility and extensibility and we use a linguistic approach to define
the building blocks of our model, starting from basic entities, which are basically
names typed on (linguistic) syntactic categories with an associated descriptive
definition. Based on Chomsky’s concept of universal grammar [5], we then com-
bine basic entities using deep structure to produce phrases [10]. The resultant
structured entities are then equipped with a semantics that becomes operational
when such semantic entities are used as components of dynamic entities, which
are the rules used to model the system. Models are basically sets of dynamic
entities. The semantics embedded in the dynamic entities is reflected in the Java



Web-based Collaboration in HCI and Cognitive Science 3

functions that define the simulation engine and the Maude rewrite rules that
define the analysis engine.

All defined entities and models are collected in a shared database. The por-
tal allows researchers to access the database, create new entities and models as
well as reuse existing entities and reuse and expand existing models, use ex-
isting models to run experiments and review models. Our linguistic approach
to modelling supports the translation of models into natural language. In this
way the output of the simulation engine and the analysis engine become widely
understandable for the heterogeneous community of users.

Home ✲

❄ ❄

Reviews

Authentication

❄❄
Registration

❄
Projects

❄ ❄ ❄ ❄ ❄

Feature Prop. Discussion

Simulation Analysis Management

❄

Input/Output

❄

✻

Modelling

�
�

�

❄

WEB PORTAL

❄ ❄
Java-based Maude-based

engine engine

❅
❅
❅❘

�
�

�✠

DATABASEDataset

❄
✻

Experiments ✛ Projects ✛ Models

✻

Documentation Forum

Basic

Entities

Semantic

Entities

Structural

Entities

Semantics

✲

✲

✻

✲

✲ Dynamic

Entities

automatic rules

deliberate rules

inference rules

system transitions

Fig. 1. High-level description of the tool architecture.



4 A. Cerone et al.

The paper is structured as follows. Section 2 informally presents the ar-
chitecture and functionalities of the tool before delving into the description of
the entities that populate the tool database (Section 2.1), the various kinds of
models and how their version are managed and used to perform experiments
(Section 2.2), and the projects and the stages of their developments the vari-
ous kinds of models and how their version are managed and used to perform
experiments (Section 2.3). Section 3 briefly describes the Java-based simulation
engine and the Maude-based analysis engine. Section 4 illustrates the planned
web portal and describes its use while Section 4.1 delves into the conversion of a
BRDL representation into natural language. Finally, Section 5 presents the tool
implementation plan and discusses future work.

2 Architecture and Functionalities

The purpose of the portal and tool is to allow scientists from all over the world
to model cognitive and interactive systems, share their models with other re-
searchers and practitioners and collaborate with each other, both within the
modelling process itself and by providing feedback and reviews. The tool mod-
elling approach aims at addressing the knowledge domain of a variety of mod-
ellers, including computer scientists, interaction designers, usability analysts,
cognitive scientists, psychologists and linguists. The current version of the web
portal is described in Sect. 2.2. Fig 1 is an informal, high-level description of the
tool architecture.

Guests and registered users interact with a web portal that supports the
following functionalities:

– user’s registration and authentication;
– participation in discussion on the forum;
– management of projects;
– modelling of cognitive and interactive systems;
– model reviews and new feature proposals;
– input and visualisation of datasets;
– document upoload and download;
– experiments performing simulation and analysis of models.

Projects (see details in Sect. 2.3) may be public or private. Any user may access
public projects.

Registered users may post messages on the forum and create new projects,
within which they carry out the following activities:

1. define basic entities, organise them into structured entities, provide them
with a semantics and use them to define dynamic entities (see details in
Sect. 2.1), which are the basic components of models;

2. create a new model and become its owner (see details in Sect. 2.2);
3. input datasets;
4. upload documents.



Web-based Collaboration in HCI and Cognitive Science 5

5. modify models;

Registered users are the managers of the projects they create. The managers of a
project can admit other registered users as members of that project, assign model
ownership and tasks to project members and grant manager role for that project
to other members. All members of a project may also carry out activities 1–4
above. The outcomes of these are associated with the user’s profile and, if the
project is public, become publicly available in the global database and can be
used, tested and reviewed by any user. However, they are committed into the
project only after the approval of one of the project managers.

All members of a project may also modify models. However, only modifica-
tions by model owners or project managers are automatically committed into
the project. Modifications by other project members may be committed into
the project only after the approval of the model owner or one of the project
managers.

In addition all users may

– visualise datasets and view all data associated with public projects and
download models from such projects;

– view forum discussions, reviews and feature proposals, though only registered
users can post;

– carry out experiments that use models from public projects.

Experiments carried out by non registered users are stored in the database and
become publicly available if the user includes a contact email address and this
is correctly verified (see details at the end of Sect. 2.2).

2.1 Database Entities

We call entities the linguistic constructs that we use as the building blocks of
our modelling language and which are close to natural language.

Basic Entities A basic entity consists of

name one or more strings of characters, to be used in distinct contexts;
definition a string of characters that is not as general as a dictionary definition

but is specific to the abstraction level of the system under analysis and to
the world of entities considered;

type which is one of the following linguistic categories:

– Noun, consisting of two strings: singular and plural forms;
– Instantiation, consisting of a single string
– Auxiliary, consisting of a single string
– Verb, consisting of three strings: simple, completed and continuous forms;
– Attribute, consisting of two strings: adjective and adverb forms;
– Pronoun, consisting of a single string.



6 A. Cerone et al.

In the following we will use typewriting fonts to indicate names of basic entities
(e.g., animal/animals) and their structuring, and we will enclose definitions and
natural language representations of entities between double quotes. For example,
we may have the following basic entities:

– name animal/animals of type Noun, where animal is the singular form and
animals is the plural form, with definition: “a living organism that feeds on
organic matter and is able to respond to stimuli”;

– name is a of type Auxiliary, with definition: “belong to the upper level of
a hierarchy of concepts”;

– name can of type Auxiliary, with definition: “be able to do something”;
– name has of type Auxiliary, with definition: “have as components”;
– name move/moved/moving of type Verb, where move is the simple form,

moved is the completed form and moving is the continuous form, with defi-
nition (which refers to the simple form): “change position according to the
direction, speed and time that are provided as arguments”.

– name what of type Pronoun, with definition: “looking for all higher level in
the hierarchy”.

– name Lucky of type Instantiation, with definition: “proper name of an indi-
vidual animal”.

A basic entity is defined within a project and, if the project is public, it can
be reused by any other project. The same name may be used with different
definitions, the same definition may be used with different names, and the same
pair name-definition may have different types; each of such triples represents a
distinct basic entity.

Structured Entities A structured entity consists of a head, a number of ar-
guments and a kind. Head and arguments may be basic entities or structured
entities. The kind is one of the following:

– Noun phrase, with a Noun, a Pronoun, an Instantiation or a Noun phrase as
the head and either no arguments or one argument that may be an Attribute,
a Noun phrase or a value of any data type;

– Verb phrase, with either the simple form of a Verb or a Verb phrase as the
head and either no arguments or one argument that may be either the adverb
form of an Attribute or a Noun phrase;

– Participle phrase, with the completed or continuous form of a Verb or a
Participle phrase as the head and either no arguments or one argument that
is the adverb form of an Attribute or a Noun phrase.

– Adjective phrase, with either the adjective form of an Attribute or an Adjec-
tive phrase as the head and one argument that is a Noun phrase;

– Adverb phrase, with either the adverb form of an Attribute or an Adverb
phrase as the head and one argument that is a Participle phrase;

– Auxiliary phrase, which may be positive or negative, with an Auxiliary as the
head and two arguments: the first one, called subject, is a Noun phrase, the
second one, called object, may in general be a Noun phrase, a Verb phrase or



Web-based Collaboration in HCI and Cognitive Science 7

an Adjective phrase, although some semantic restrictions apply as explained
below.

Example of structured entities are:

– Noun phrases : dog, what, Lucky, leg(long), leg(4), leg(long)(4) and
leg(dog);

– Verb phrases : move, move(quickly), move(direction(45))(speed(80));
– Participle phrases : moved, moving, moved(quickly), moving(quickly) and

moving(direction(45))(speed(80));
– Adjective phrases : heavy, empty, full, empty(box), empty(box(heavy))

and empty(heavy)(box);
– Adverb phrases : slowly, quickly, quickly(moved), quickly(moving) and

slowly(moving(direction(45));
– Auxiliary phrases : is a(dog, animal), can(animal(big), move(fast))

has(dog, leg(4)), is a(dog, what) and is a(what, animal) (positive)
and is not a(dog, bird, can not(tree, move(fast)), has not(dog,

leg(6)) (negative).

Our tool can present some structured entities using natural language. For exam-
ple:

– “long leg” for leg(long);
– “4 legs” for leg(4);
– “4 long legs” for leg(long)(4);
– “empty box that is heavy” for empty(box(heavy));
– “empty and heavy box” for empty(heavy)(box);

whereas some other structured entities, such as Auxiliary phrases, Verb phrases
and some Noun phrases require semantic information to be presented using nat-
ural language.

Semantics Entities A structured entity may be given a semantics thus yielding
a semantic entity. This will allow the Java engine to call specific functions and
the Maude engine to enable specific rewrite rules whenever the semantic entity
is used. For example, a Noun phrase may identify a modelled system component
and is a Auxiliary phrase my support the navigation of the hierarchy of con-
cepts and Verb phrases built using move may support the movement of system
components. We have the following kinds of semantic entities:

– Model Identifier built on a Noun phrase;
– Fact built on a Auxiliary phrase;
– Question built on a Auxiliary phrase;
– State built on a Participle phrase, an Adjective phrase or Adverb phrase;
– Action built on a Verb phrase.

Examples of semantic entities are:

– Model Identifiers dog, leg(dog), ball and John;



8 A. Cerone et al.

– State empty(box), which would change to State full(box) by performing
Action fill(box);

– Action pat(dog), which may yield State happy(dog);
– Action approach(dog(small)), which may yield State close(dog);
– Action move(direction(45))(speed(80))(time(10)), which may yield State

moving(home), moving(office), moved(home) or moved(office), depend-
ing on the initial state;

The given semantics should be documented in the basic entity definition, as it
happens for Actions that build on Verb move, which is defined as “change posi-
tion according the direction, speed and time that are provided as arguments”.

Our tool can present semantic entities using natural language. For example,
is a(dog, animal), and is a(dog, what) are presented in natural language
as

– “A dog is an animal.” for Fact is a(dog, animal);
– “A dog is not a bird.” for Fact is not a(dog, animal);
– “Is a dog an animal?”, for Question is a(dog, animal);
– “Is a dog not an animal?” for Question is not a(dog, animal);
– “What is dog?” for Question is a(dog, what);
– “What is not a dog?”,for Question is not a(dog, what).
– “Move quickly outdoors the big animal that is indoors” for

move(outdoors)(quickly)(animal(big)(indoors));
– “Throw the ball 45 degrees to your left at a speed of 80 km/h” for

throw(direction(45))(speed(80))(ball)

Semantic entities are associated with constraints in forming structured entities.
For example can may have as an object a Verb phrase but not a Noun phrase.
In fact, ‘an animal can move’ make sense, but ‘an animal can dog’ does not.

Dynamic Entities Dynamic Entities are the language constructs that describe
the dynamics of the modelled system. Human reasoning and behaviour are mod-
elled using

automatic rules info1 ↑ perception =⇒ action ↓ info2
where info1, info2 may be sets of Facts, Questions, States and Actions,
perception may be a set of Facts, Questions and States, and action is an
Action. Action action is triggered by perception and performed if info1 is
part of the mental state, thus removing info1 from the mental state and
adding info2 to it.

implicit attention rules ↑ perception =⇒ ↓ perception
where perception may be a set of Facts, Questions and States that is stored
as a mental representation.

deliberate rules goal : info1 ↑ =⇒ action ↓ info2
where info1 and info2 may be sets of Facts, Questions, Sttes and Actions,
info2 may also include Goals, and action is an Action. Action action is
triggered by goal and performed if info1 is part of the mental state, thus
removing info1 from the mental state and adding info2 to it.



Web-based Collaboration in HCI and Cognitive Science 9

explicit attention rules goal : ↑ perception =⇒ ↓ perception

where goal is a Goals, and perception is a set of Facts, Questions and States
that is stored as a mental representationt.

inference rules info1 ↑ =⇒ ↓ info2
where info1 and info2. If info1 is part of the mental state then the inference
of info2 from info1 removes info1 from the mental state and adds info2
to it.

System behaviour is modelled using

transition rules state1
action
−→ state2

where state1 and state2 are sets of States and action is a set of Actions. If
the system state contains state1 then the system environment may perform
all Actions in action and adds state2 to the system state.

2.2 Models and Version Control

There are three kinds of models: cognitive models, system models, overall models.
Cognitive models and system models are generally called component models.

Cognitive Models Cognitive models consist of human memory components
and use automatic, deliberate and inference rules to describe human behaviour,
reasoning and problem solving. These rules change the mental state defined by
the information stored in human memory. How this is achieved is beyond the
scope of this paper and can be found in our previous work [1, 3, 2, 4].

System Models System models are essentially described as transition systems.
Their evolution is determined by transition rules, which have been introduced
at the end of Sect. 2.1.

Overall Models An overall model is the composition of a number of cognitive
models and system models. The rules introduced at the end of Sect. 2.1 support
the interaction of these models thus yielding the global behaviour of the overall
model.

Note that a human being may be modelled by a number of cognitive models
that describe responses, mediated by cognition, to mental and physical inputs,
and one or more system models, which describe the physical effect of external
physical actions. For example, the action of patting the dog and the action of
screaming when being hit by a car are produced by the cooperation of cognitive
models, whereas the action of falling down when being hit by a car is produced
by a system model.



10 A. Cerone et al.

Version Control Each model has a version which is defined using the usual
numbering M.m, where M indicates major changes and m a minor changes.
Versions 0.m refer to the requirement analysis and informal specification, before
a working models has been built. Models are further categorised into stable and
unstable. Moreover, they may branch out and retain common previous versions,
and they may then merge again at some point. For example version 3.7 may
branch out as 3.7.a.1.0 and 3.7.b.1.0, and then versions 3.7.a.3.2 and 3.9.b.4.1
may merge as version 3.8 or 4.0, if there are no other branches, or as version
3.7.ab.1.0, if there are other branches. Branching out and merging may also
result in a new model, which starts as version 1.0.

Since overall models consist of several component models, every time a new
version of a component model is created, the managers of the projects using
it are alerted and prompted to create a new version or a new branch for each
overall model in order to use the new component model. The managers may do
this, or skip this and continue using only the previous version of the component
model. The managers may also disable these alerts for a specific component
model, possibly enabling them again at some point in the future.

Datasets and Experiments Overall models are used to perform in silico
experiments on given datasets and produce new datasets. Experiments may be

– simulation carried out using the Java-based engine;
– model-checking using the Maude-based engine

The experiment setup involves the selection of a specific version of an overall
model, possibly the selection of the component models (and their versions) that
the selected overall model uses, and a number of quantitative parameters, some
cognitive, such as human memory load, human memory access time, cognitive
processing times, information decay time, reaction times, and others associated
with the performance of computer and physical systems.

The fact that an overall model may be parametric with respect to the com-
ponent models it uses is an important feature of our tool. It allows researchers
to define an overall model of an observable phenomenon and then design exper-
iments referring to alternative theories that explain such a phenomenon. Each
theory can be tested by a specific instantiation of the overall model.

Experiments are recorded together with their outcomes and the links to the
datasets they used, the versions of the models they used and all related documen-
tation. The tool also aims at providing functionalities that support visualisation
of experiment outcomes and statistical information to be used in the comparison
of different models.

2.3 Projects and Stages of the Development Process

A project represents the development history of one or more overall models and
collects all their versions, documentation and associated experiments. Projects
may have various purposes, aiming at collaborative efforts and objectives, such
as



Web-based Collaboration in HCI and Cognitive Science 11

– build one specific overall model, which may be used in research or system
verification by all users;

– build a number of overall models and compare them with each other and
with overall models built within other projects, where the comparison may
be carried out in many possible respects, such as the overall model properties
or the way it matches real-word data;

– build model components (cognitive models and/or system models) for the
benefit of other projects and use the overall models to test such components;

– build overall models to test model components (cognitive models and/or
system models) built within other project.

Projects are categorised according to their development stages, inspired by
the development stages normally used for open source software products:

Pre-model It is a planning stage and comprises design documents, discussion
threads but no models, although models may be under construction at this
stage.

Pre-alpha This stage is entered when at least one model is created. During this
phase some tentative overall models may also be created and tested. Models
as well as the design documents are mostly unstable and subject to frequent
changes. In general, models are tested using simple experiments and toy case
studies.

Alpha Some models have reached a significant maturity level and may be used
in real-world case studies with real datasets. The system architecture may
still be changed and details and functionalities are added incrementally.
High-level system properties may be verified using model checking.

Beta The system architecture is now stable and includes all major functional-
ities. Most models are extensively used in real-world case studies with real
datasets. The results of in silico experiments and simulations are compared
with the results of real-world experiments and the outcome is used to cali-
brate component models and/or the overall model.

Stable All models are stable and can be now used as research tools to analyse
cognitive science theories and to carry out system verification using model
checking.

Re-beta Stable overall models are reworked by changing the component models
or starting the development or new models. The system architecture is not
modified. Testing and using are the same as for the Beta stage

Re-alpha It builds up on a stable version but modifies the system architecture.
Testing and usage are the same as for the Alpha stage

The project may go back to the Pre-alpha stage if both system architecture and
component models are heavily changed. Versions and development stages are
more dynamic and fluid than in software development. It is expected that for a
number of projects their stages are continuously ‘oscillating’ between Stable and
Re-alpha/Re-beta. This would be a typical situation when research outcomes
are the main goals of the project.

As explained in Sect. 2, models are created within a project. The project owns
the model but, if the project is public, any other project may use its models.



12 A. Cerone et al.

This is especially true for component models, whereas overall models tend to be
specific to the project and they are only reused in comparative studies. Besides
the created models, a project normally includes

– a list of reviews, with links to the specific version reviewed;
– a list of proposed features and extensions to be incorporated in the existing

models, with a link to the specific version considered, or to be implemented
in a new overall model;

– the experiments performed within the project.

Although these are all visible to guest users, who can also perform experiments,
only registered users may write a review or propose features or extensions.

Shared among all public projects are

– a discussion forum, on which any user, guest or registered users, can make
comments;

– public datasets, which are initially created by a project but, in terms of
usage, may be shared by different projects.

– documentation, which may refer to specific projects, model components, as
well as specific datasets or experiments.

Posts and documents are labelled in various ways, depending on their nature,
and are linked to projects or model components to which they refer. Private
dataset and documentation may be created within private projects and become
public if the project is changed to public. Discussions and public datasets and
documentation are visible to any user. However, registered users can post on the
forum or upload datasets and documentation.

Any project may be deleted by one of its project managers, though the
deletion is completed upon the approval of all other managers. Models that
are created within the deleted project are preserved only if they are used by
other projects. The system administrators will discuss with the manager of such
project in order to grant a new ownership.

All uploaded documents will be licensed under one of the Creative Commons
(CC) licenses and all models will be licensed under one of the open source li-
censes. It is still to be decided whether projects will be able to choose specific
copyleft licenses.

3 Simulation and Analysis Engines Engines

3.1 Java-based Simulation Engine

Purpose of the Java-based engine is to provide system simulation and presenta-
tion of the results. This simulation engine will be integrated into the server-side,
which is a Spring Boot project using Java 11 and the Maven framework.

Since an overall system will in general produce a non-deterministic behaviour,
it will be possible to run the simulation in several modes: making the choices
randomly, stopping at every choice and make the user resolve non-determinism,



Web-based Collaboration in HCI and Cognitive Science 13

use additional models that implement choice strategies and compose them with
the overall model. It will also be possible to backtrack to a previous choice and
rerun the simulation from there.

3.2 Maude-based Analysis Engine

Real-Time Maude [8, 9] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. Purpose
of the Maude-based engine is to provide system analysis using model checking.
Models are translated into Real-Time Maude and the rules associated with dy-
namic entities support the exploration of the state space in order to check system
properties.

This approach builds on our previous work [3, 2, 4]. System properties may be
expressed either in terms of pattern matching of states to search or in the form of
temporal logic properties. The project aims at defining property templates that
use natural language to express typical properties of the application domain
in order to automatically build the formal specification of the property from
standard natural language descriptions.

The Maude code will run in parallel to the backend code on a Linux virtual
machine. In this way the web application will have access to the Maude system
through bash scripts to ensure consistency of simulation results.

4 Description and Use of the Planned Web Portal

The Home page of the portal shows a description of the portal and tool, a list
of news, direct links to some top projects and a link to the Projects page

The current version of the Projects page is illustrated in Fig. 2. Each project
is represented by a card showing title, development stage, an illustrative picture
and a brief textual description. The card links to the Specific Project Page.

The top menu bar allows users to register, login and logout using the Access
link and to browse the entire database for Models, Entities, Dataset, Documen-
tation and Forum posts. If a project is selected the Specific Project Page is
visualised and the top menu bar does not change visually but now refers to
Models, Entities, Dataset, Documentation and Forum posts.

The Specific Project Page shows a detailed description of the project, the
list of project managers and other members and links to the list of reviews, the
list of proposed features and extensions and the experiments performed within
the project. Any user may view this information and perform experiments, but
only registered users may post reviews and propose features and extensions.
Moreover, using the top menu bar any user may access the information related
to the project. There is also a link to the Task Assignment Page where any
registered user can see the task assignment (including model ownership) and
project managers can manage tasks.

The Entities link opens a page listing all entities used within the project. The
Models link opens a page listing the models used within the project with links



14 A. Cerone et al.

Fig. 2. Project main page.

to the actual versions used within the project by opening a Specific Model Page.
From here other versions are also accessible. A Specific Model Page allows any
user to view the model either in BRDL-like form or, as we will see in Sect. 4.1,
using natural language.

As we discussed in Sect. 2 project members may also define new entities create
new models and edit the existing models using the BRDL-like representation of
the model but the changes but only modifications by model owners or project
managers are automatically committed into the project.

Domain oriented modelling and visualisation interfaces will be defined to
ease the modelling and analysis processes by hiding the simulation and formal
analysis engines. In terms of presentation, model and results can be presented to
the user in tabular form and, concerning the modification to declarative memory
induced by learning processes, also in natural language.

4.1 Presentation in Natural Language

The conversion of a BRDL representation to natural language is driven by the
semantics associated with entities and how semantics is realised in dynamic enti-
ties. We illustrate presentation in natural language by considering the following
example of a cognitive model of a task, in which the subject, who is called John,
is willing to pat a dog. The task describes the content of John’s declarative
memory and is expressed in BRDL as follows:

1. will(pat(dog)): ↑ wagging(dog) =⇒ ↓ wagging(dog)

2. will(pat(dog)): wagging(dog) ↑ =⇒ ↓ friendly(dog)

3. will(pat(dog)): friendly(dog) ↑ approach(dog) =⇒ ↓ friendly(dog)



Web-based Collaboration in HCI and Cognitive Science 15

4. will(pat(dog)): ↑ close(enough)(dog) =⇒ ↓ close(enough)(dog)

5. will(pat(dog)): friendly(dog), close(enough)(dog) ↑ pat(dog) =⇒ ↓ happy(dog)

Note that sets are represented by separating their elements with commas, but
without curly brackets.

The task is presented by the tool in natural language, using templates from
the cognitive psychology domain, as follows:

“Patting the dog is John’s goal.
1. John’s explicit attention focuses on the perception that the dog is

wagging.
2. From the fact that the dog is wagging John infers that the dog is

friendly.
3. Since the dog is friendly, John approaches the dog.
4. John’s explicit attention focuses on the perception that the dog is

close enough.
5. Since the dog is friendly and close enough, John pat the dog and

realizes that the dog is happy.”

5 Conclusion and Future Work

We have presented a project that aims at the development of a web portal
that allows various categories of scientists and practitioners, including computer
scientists, interaction designers, usability analysts, cognitive scientists, psycholo-
gists and linguists, to carry out collaborative research in human-computer inter-
action and cognitive science. Collaboration involves both the modelling process
itself and testing and review activities. Cognitive scientists and psychologists
may carry out in silico simulations to mimic and accelerate experiments with
human subjects as well as long-term learning processes, linguists can perform
in silico experiments to emulate human processing of texts and language learn-
ing processes, computer scientists may automatically generate formal models
and analyses them using the embedded Maude model-checker or exporting them
to other analysis tools, interaction designers may model together human tasks
and supporting technology and verify properties of the overall model, usability
analysts may focus on the verification of usability properties.

An early prototype of the tool will be available by the end of November 2021
It will use the web portal illustrated in Sect. 4 and shown in Fig. 2 and will
include the database, the Java-based engine for simulation and the presentation
of the results in tabular form as well as natural language. The Maude-based
engine and the analysis functionalities will be developed during the first half of
2022. Other functionalities scheduled for 2022 are property templates, graphical
and domain-specific visualisation of results and model comparison.

Although our web-based tool address research collaboration in human-computer
interaction and cognitive science, the same approach may be used in other ap-
plication domains. Other possible application domains are coordination model,
socio-technical system, systems biology and ecology.



16 A. Cerone et al.

References

1. Cerone, A.: Behaviour and reasoning description language (BRDL). In: SEFM 2019
Collocated Workshops (CIFMA), Lecture Notes in Computer Science, vol. 12226,
pp. 137–153. Springer (2020)

2. Cerone, A., Murzagaliyeva, D.: Information retrieval from semantic memory:
BRDL-based knowledge representation and Maude-based computer emulation. In:
SEFM 2020 Collocated Workshops (CIFMA), Lecture Notes in Computer Science,
vol. 12524, pp. 150–165. Springer (2021)

3. Cerone, A., Ölveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using Real-Time Maude. In: FM’19 Collocated Workshops - Part I
(FMIS), Lecture Notes in Computer Science, vol. 12232, pp. 424–442. Springer
(2020)

4. Cerone, A., Pluck, G.: A formal model for emulating the generation of human
knowledge in semantic memory. In: Proc. of DataMod 2020, Lecture Notes in
Computer Science, vol. 12611, pp. 104–122. Springer (2021)

5. Chomsky, N.: Language and Mind. Cambridge University Press (2006)
6. Kotseruba, I., Tsotsos, J.K.: 40 years of cognitive architectures: core

cognitive abilities and practical applications. Artificial Intelligence Review
https://doi.org/10.1007/s10462-018-9646-y (2018)

7. Laird, J.A.: The Soar Cognitive Architecture. MIT Press (2012)
8. Ölveczky, P.C.: Real-time maude and its applications. In: Proc. of WRLA 2014,

Lecture Notes in Computer Science, vol. 8663, pp. 42–79. Springer (2001)
9. Ölveczky, P.C.: Designing Reliable Distributed Systems. Undergraduate Topics in

Computer Science, Springer (2017)
10. Pinker, S.: The Language Instinct. William Morrow (1994)
11. Samsonovich, A.V.: Towards a unified catalog of implemented cognitive architec-

tures. In: Biologically Inspired Cognitive Architectures (BICA 2010), pp. 195–244.
IOS Press (2010)

12. Sun, R., Slusarz, P., Terry, C.: The interaction of the explicit and implicit in skill
learning: A dual-process approach. Psychological Review 112, 159–192 (2005)

13. Verschure, P.: Distributed adaptive control: A theory of the mind, brain, body
nexus. Biologically Inspired Cognitive Architectures 1, 55–72 (2012)


