
DrPython–WEB: a tool to help
teaching well-written Python programs

Tommaso Battistini1, Nicolò Isaia1,
Andrea Sterbini1[0000−0002−5361−2786], and

Marco Temperini2[0000−0002−8597−4634]

1 Computer Science Dept. - Sapienza University of Rome - Italy
sterbini@di.uniroma1.it

2 Dept. of Computer, Control and Management Engineering
Sapienza University of Rome - Italy

marte@diag.uniroma1.it

Abstract. A good percentage of students, while learning how to pro-
gram for the first time in a higher education course, often write very bad
code, i.e. code which is difficult to read, badly organized, not commented.
Writing inelegant code reduces the student’s professional opportunities,
and is an indication of a non-systematic programming style which makes
it very difficult to maintain (or even understand) the code later, even
by its own author. In this paper we present DrPython–WEB, a web
application capable to automatically extract linguistic, structural and
style-related features, from students’ programs and to grade them with
respect to a teacher-defined assessment rubric. The aim of DrPython–
WEB is to make the students accustomed to good coding practices, and
stylistic features, and make their code better. There are other systems
able to perform code analysis through quality measures: the novelty of
DrPythonWEB, with respect to such systems, is in that it analyzes also
linguistic and stylistic features.

Keywords: Teaching programming · Python · Feature extraction · Good
coding practices.

1 Introduction

One of the main tasks of a computer programming course is to allow the students
to reach an adequate level of skills, so to be able to produce good quality pro-
grams. The difficulty of accomplishing such a task is particularly felt in Higher
Education in Computer Science, as students in that area will become, in a rel-
atively close future, professionals with important responsibilities in private and
public sectors [1–3].

Students’ skills to produce programs showing good or even high “quality” are
acquired through practice and are applied to various aspects of programming,
ranging from the capability to define suitable algorithms to solve a given prob-
lem, through to the ability to design a program and the relevant data structures,



2 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

to practical coding abilities that allow a student to produce a readable program,
i.e. a program whose instructions are 1) textually formatted in a readable fash-
ion, 2) easy to interpret, as far as their purposes are concerned, and 3) as clearly
commented as possible.

Both learning and teaching of Computer Programming are challenging tasks,
when the traditional approach to education is used [4]. Hence, the availability
of web-based automated support can be of great value, especially in Higher
Education, where often direct interactions between a student who is solving a
programming task, and a teacher who could help, are not easily achievable [5],
especially in the case of Italian university courses where the student/tutor ratio
is very high.

In this paper, we present a web-based system, DrPython–WEB, whose use
could help a student improve her/his coding skills, by pointing out and rec-
ognizing the “elegance” of the student’s code in an automated and real-time
fashion.

By “elegance” we mean a subset of the several qualities of a program, men-
tioned earlier, related to structure, readability and maintainability. On these
aspects DrPython–WEB focuses its program analysis, and evaluation. In partic-
ular, given a program, the analysis is performed on a set of features, extracted
from the program (see later), as well as on the good naming quality of the
identifiers (i.e., the names given by the programmer to certain structures of the
program, such as types, variables, and functions).

We developed DrPython–WEB with a twofold aim: on the one hand we would
like to encourage students to practice and improve their coding style; on the other
hand we wanted to support both student’s awareness and teacher’s assessment
procedures, by providing them with visual summaries of data, reporting the
elements on which the overall evaluation of the code was based.

DrPython–WEB is still undergoing a thorough experimentation, and we can-
not yet present a comprehensive analysis of the actual effects of its use for the
students and teachers. So, in this paper we present the system, and its features,
showing how we used it on a relatively large dataset of programs (produced by
students during a recent edition of a course on Basics in Programming held at
our University). Such dataset is comprised of programs produced to solve tasks
related to the several mandatory homework requested during the course, and
the solutions submitted for final exams.

The main goals in this paper are then the following:

Goal 1: To show that DrPython–WEB can automatically extract the stylistic
features of a program, and assess their usage to push students towards a
better programming style.
We will see that DrPython–WEB is able to 1) perform an automatic check
of the hundreds of programs in our sample, 2) analyze, in such programs, the
coding qualities we associated above to “elegance”, and 3) express a quality
grade for each program.

Goal 2: To personalize the assessment depending on the teacher’s preferences,
each stage in the course, or just the specific assignment’s characteristics.



DrPython–WEB: a tool to help teaching well-written Python programs 3

In this respect, we will see that the analysis performed by DrPython–WEB
can be configured by the teacher, who is able to finely-tune the assessment
by specifying her/his preferences about the features to be taken into consid-
eration, and their weight in the computation of the overall quality grade.
In particular, the possibility to configure the assessment undertaken by
DrPython–WEB allows the teacher to adapt the analysis of a given batch of
programs, depending on the relevant characteristics of a given task, and/or
the aspects to be taken care of at a given point-in-time of the course.

In the following sections we will:

1. present the software library DrPython, which we developed to provide core
functionalities for the analysis of a program: using these new functionalities
DrPython–WEB was developed.

2. present the use of DrPython–WEB on a set of sample programs, in order to
show the characteristics of the system and see its potential application on
the field.

3. present some conclusions, submitting that DrPython–WEB, although sub-
ject to further improvements, can be an effective means help the students to
improve their coding style.

2 DrPython: feature extraction module

DrPython–WEB is based on the feature extraction library (named DrPython)
that we developed to analyze the student’s program and algorithm description
to recognize/extract three type of features:

– code syntax features: the number of specific language constructs in the
program (functions, classes, super-classes of each class, methods, try-except,
list-comprehensions, if-then-else, generators, lambda, recursive functions, vari-
ables, arguments),

– code quality measures:
• McCabe’s cyclomatic complexity [6], that captures how much a function

control flow is intricate,
• Halstead’s measures [7], that captures a function’s conceptual complexity

from its vocabulary size and number of operators used,
• code smells [8], i.e., code structures that often imply bad coding prac-

tices.
– linguistic features:

• good identifiers, i.e., self-explanatory names that convey the meaning of
their function. This relieves the programmer from having to recall what
type of data is in a variable and its place in the algorithm, as well as the
action performed by a function/method,

• good documentation practices i.e., using comments and doc-strings to
describe the reason for particular programming choices. This helps the
reader to better understand the meaning of the algorithm implemented.



4 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

• the usage of pertinent keywords related to the exercise description both
in comments/doc-strings or in the algorithm description. This allows
DrPython to automatically check (roughly) if the documentation is ad-
equate to the task.

The code syntax features are extracted/counted by means of the redbaron3

source code analysis library that allows to easily query the code structure for
specific constructs. Redbaron queries use a syntax similar to CSS selectors (as
it’s done in jQuery w.r.t. the DOM of HTML pages). This in turn will allow us
to easily expand in future the set of code syntax features extracted.

The code quality measures are computed by means of the radon4 library.

Finally, to extract the linguistic features DrPython uses the automatic term
extraction module pyate [9] to select the 25 highest ranked keywords returned
by its Combo Basic algorithm [10], and the text analysis library spacy5 to an-
alyze the documentation/comments and the algorithm description. To decide if a
particular identifier used by a student is of good/medium/bad quality, DrPython
performs the following steps:

– it extracts the pertinent keywords with pyATE from the teacher’s exercise
task description

– it decomposes the identifier into its component words

– it compares the words (by means of spacy semantic similarity and the Word-
Net semantic network) to grade their similarity to the pertinent keywords

– it classifies the identifier in the top/medium/bad group depending on having
its max similarity to a keyword above 90%, between 40% and 90% or lower
than 40%, respectively. (these thresholds have been initially defined by hand
but we plan to deduce the best values from the data in future study)

DrPython can be used both as a stand-alone program, to be run from the
command line, or integrated in the DrPython–WEB web-based application de-
scribed below.

For example, with DrPython one can analyze many student files and collect
all extracted features as a CSV file, and one can study, for example:

– how the extracted features correlate with each other or with other data
(exam grades or readability judgements manually collected)

– how different assessment templates will produce different grade distributions

To make the assessment templates easier to use, and to automate the sub-
mission and assessment of the programs, we have developed the web-based ap-
plication (DrPython–WEB).

3 https://redbaron.readthedocs.io
4 https://radon.readthedocs.io
5 https://spacy.io



DrPython–WEB: a tool to help teaching well-written Python programs 5

3 Dr.Python-WEB: The System

The DrPython–WEB system allows the teacher to define one or more assess-
ment templates to grade the submitted programs/algorithms depending on the
features extracted, in order to encourage students to use more readable Python
constructs, a better linguistic style, and to better modularize their code.

Fig. 1. Assessment template that awards more points for lower cyclomatic complexity,
lower Halstead’s effort and high percentage of good identifiers

DrPython–WEB is a classic LAMP6 based web-application written in Python
where:

– the teacher defines assessment templates depending on the exercise and/or
the course phase

– the students submit their code to get the style assessment grade and compare
their results with each others’

Assessment templates are defined by the teacher by specifying what are the
features assessed and what is their weight for a given range of values.

In figure 1 we show an assessment template that awards more points to a
lower Halstead’s effort, to a lower cyclomatic complexity, and to a high percentage
of good identifiers depending on the range of values observed.

A template like this one, for example, is built to convince a student to mod-
ularize their program into smaller less complex functions (with lower cyclomatic

6 LAMP=Linux, Apache, MySQL, PHP/Perl/Python



6 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

complexity), to write more readable code (using mainly self-explanatory identi-
fiers) and with a less complex algorithm (with lower Halstead’s effort).

Notice that an assessment template can assign different weights to different
ranges of feature values extracted, as shown in the figure, where we show three
different ranges for the Halstead’s effort measured. This way, the teacher could
associate to each feature a weight function with complex shape.

After assessment the students’ results are shown in the DrPython–WEB
leaderboard, so that each student can compare their program style with oth-
ers, as shown in fig. 2

Fig. 2. Leaderboard example, showing the features checked for this exercise and the
points assigned as defined in the previous assessment template.

Notice that the only features shown are those included in the assessment
template.

4 Conclusions and future work

We have shown a novel library (DrPython) which extracts structural, quality and
linguistic features from the programs and documentation submitted by students.
DrPython is used within the novel DrPython-WEB application, that allows the
teacher to build assessment templates specific both to the point in time during
the course and/or to the specific exercise.



DrPython–WEB: a tool to help teaching well-written Python programs 7

We plan to use the DrPython–WEB system on our next courses to collect
data on the student’s submissions and check that its usage improves the student’s
program quality.

This will allow us to see if the correlation between features and grades will
improve (and in what shape) when the system is in-place, with respect to the
data collected in earlier courses.

We will try to detect cheating patterns (i.e., when students try to gain points
with simple strategies without actually improving their programming style) and
to make the feature extraction more robust/precise with respect to cheating.
Yet, we are convinced that the effort to ”fool the teacher” could, in any case,
increase their technical programming skills.

Moreover, we plan to collect readability assessments from the students during
the course to study both how the exercise readability improves with time and how
the code readability perception of the students changes while they are learning.

From the collected data we intend to study if we can define a program read-
ability measure that takes into consideration the linguistic features also.

Finally, we intend to study how the readability of a program is related to its
grade, and/or to the grade received in the final lab-based exam. From our initial
analysis, it seems that a simple linear (or monotonic) relation between features
and grades is not evident. Thus, we are widening the number of processed pro-
grams to apply also clustering and/or ML approaches (which need more data
and time).

References

1. Breuker D M, Derriks J, Brunekreef J. Measuring static quality of student code. In:
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education. 2011, 13–17

2. Yao LU, Xinjun MAO, Tao WANG1, Gang YIN, Zude LI. Improving students’ pro-
gramming quality with the continuous inspection process: a social coding perspective
Front. Comput. Sci., 2020, 14(5): 145205 https://doi.org/10.1007/s11704-019-9023-
2

3. Radermacher A, Walia G, Knudson D. Investigating the skill gap between gradu-
ating students and industry expectations. In: Proceedings of the 36th International
Conference on Software Engineering Companion. 2014, 291–300

4. Feldman Y A. Teaching quality object-oriented programming. Technology on Edu-
cational Resources in Computing, 2005, 5(1): 1

5. Chen W K, Tu P Y. Grading code quality of programming assignments based on bad
smells. In: Proceedings of the 24th IEEE-CS Conference on Software Engineering
Education and Training. 2011, 559

6. McCabe (December 1976). ”A Complexity Measure”. IEEE Transactions on Soft-
ware Engineering (4): 308–320. https://doi.org/10.1109/tse.1976.233837

7. Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier
North-Holland, Inc. ISBN 0-444-00205-7.

8. https://wiki.c2.com/?CodeSmell
9. Lu, Kevin. (2021, June 28). kevinlu1248/pyate: Python Automated Term Extraction

(Version v0.5.3). Zenodo. http://doi.org/10.5281/zenodo.5039289



8 Tommaso Battistini, Nicolò Isaia, Andrea Sterbini, and Marco Temperini

10. Astrakhantsev, N.: Methods and software for terminology extraction from domain-
specific text collection. Ph.D. thesis, Institute for System Programming of Russian
Academy of Sciences (2015)


