
10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 1/13

Scanned from P. Naur and B. Randell, "Software Engineering, Report on
a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968", Scientific Affairs Division, NATO,
Brussels, 1969, 138-155. Layout has not been preserved. Isolated
misprints in the original have been corrected, and a hodge-podge of
English and American spellings has been resolved in favor of American.
Scanning errors may remain.

- MDM, 15 October 1998
The entire report is at http://homepages.cs.ncl.ac.uk/brian.randell/NATO.

A photo taken at the lecture can be seen at
http://www.cs.ncl.ac.uk/old/people/brian.randell/home.formal/NATO/N1968/index.
html

8.2. MASS PRODUCED SOPTWARE COMPONENTS, BY M.D. McILROY

 ABSTRACT

 Software components (routines), to be widely applicable to
different machines and users, should be available in families arranged
according to precision, robustness, generality and time-space performance.
Existing sources of components - manufacturers, software houses, users'
groups and algorithm collections - lack the breadth of interest or
coherence of purpose to assemble more than one or two members of such
families, yet software production in the large would be enormously helped
by the availability of spectra of high quality routines, quite as
mechanical design is abetted by the existence of families of structural
shapes, screws or resistors. The talk will examine the kinds of
variability necessary in software components, ways of producing useful
inventories, types of components that are ripe for such standardization,
and methods of instituting pilot production.

 The Software Industry is Not Industrialized

 We undoubtedly produce software by backward techniques. We
undoubtedly get the short end of the stick in confrontations with hardware
people because they are the industrialists and we are the crofters.
Software production today appears in the scale of industrialization
somewhere below the more backward construction industries. I think its
proper place is considerably higher, and would like to investigate the
prospects for mass-production techniques in software.

 In the phrase `mass production techniques,' my emphasis is on
`techniques' and not on mass production plain. Of course mass production,
in the sense of limitless replication of a prototype, is trivial for
software. But certain ideas from industrial technique I claim are
relevant. The idea of subassemblies carries over directly and is well
exploited. The idea of interchangeable parts corresponds roughly to our
term `modularity,' and is fitfully respected. The idea of machine tools
has an analogue in assembly programs and compilers. Yet this fragile
analogy is belied when we seek for analogues of other tangible symbols of
mass production. There do not exist manufacturers of standard parts, much
less catalogues of standard parts. One may not order parts to individual
specifications of size, ruggedness, speed, capacity, precision or character

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 2/13

set.

 The pinnacle of software is systems - systems to the exclusion of
almost all other considerations. Components, dignified as a hardware
field, is unknown as a legitimate branch of software. When we undertake to
write a compiler, we begin by saying `What table mechanism shall we build.'
Not, `What mechanism shall we use?' but `What mechanism shall we build?'
I claim we have done enough of this to start taking such things off the
shelf.

 Software Components

 My thesis is that the software industry is weakly founded, and that
one aspect of this weakness is the absence of a software components
subindustry. We have enough experience to perceive the outline of such a
subindustry. I intend to elaborate this outline a little, but I suspect
that the very name `software components' has probably already conjured up
for you an idea of how the industry could operate. I shall also argue that
a components industry could be immensely useful, and suggest why it hasn't
materialized. Finally I shall raise the question of starting up a `pilot
plant' for software components.

 The most important characteristic of a software components industry
is that it will offer families of routines for any given job. No user of a
particular member of a family should pay a penalty, in unwanted generality,
for the fact that he is employing a standard model routine. In other
words, the purchaser of a component from a family will choose one tailored
to his exact needs. He will consult a catalogue offering routines in
varying degrees of precision, robustness, time-space performance, and
generality. He will be confident that each routine in the family is of
high quality - reliable and efficient. He will expect the routine to be
intelligible, doubtless expressed in a higher level language appropriate to
the purpose of the component, though not necessarily instantly compilable
in any processor he has for his machine. He will expect families of
routines to be constructed on rational principles so that families fit
together as building blocks. In short, he should be able safely to regard
components as black boxes.

 Thus the builder of an assembler will be able to say `I will use a
String Associates A4 symbol table, in size 500x8,' and therewith consider
it done. As a bonus he may later experiment with alternatives to this
choice, without incurring extreme costs.

 A Familiar Example

 Consider the lowly sine routine. How many should a standard
catalogue offer? Off hand one thinks of several dimensions along which we
wish to have variability:

 Precision, for which perhaps ten different approximating functions
 might suffice
 Floating-vs-fixed computation
 Argument ranges 0-pi/2, O-2pi, also -pi/2 to pi/2,
 -pi to pi, -big to +big
 Robustness - ranging from no argument validation through signaling

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 3/13

 of complete loss of significance, to signaling of specified
 range violations.

We have here 10 precisions, 2 scalings, 5 ranges and 3 robustnesses The
last range option and the last robustness option are actually arbitrary
parameters specifiable by the user. This gives us a basic inventory of 300
sine routines. In addition one might expect a complete catalogue to
include a measurement-standard sine routine, which would deliver (at a
price) a result of any accuracy specified at run time. Another dimension
of variability, which is perhaps difficult to implement, as it caters for
very detailed needs is

 Time-space tradeoff by table lookup, adjustable in several
 `subdimensions':
 (a) Table size
 (b) Quantization of inputs (e.g., the inputs are known to
 be integral numbers of degrees)
 Another possibility is
 (c) Taking advantage of known properties of expected input
 sequences, for example profiting from the occurrence of

 successive calls for sine and cosine of the same argument.

 A company setting out to write 300 sine routines one at a time and
hoping to recoup on volume sales would certainly go broke. I can't imagine
some of their catalogue items ever being ordered. Fortunately the cost of
offering such an `inventory' need not be nearly 300 times the cost of
keeping one routine. Automated techniques exist for generating
approximations of different degrees of precision. Various editing and
binding techniques are possible for inserting or deleting code pertinent to
each degree of robustness. Perhaps only the floating-vs-fixed dichotomy
would actually necessitate fundamentally different routines. Thus it seems
that the basic inventory would not be hard to create.

 The example of the sine routine re-emphasizes an interesting fact
about this business. It is safe to assert that almost all sines are
computed in floating point these days, yet that would not justify
discarding the fixed point option, for that could well throw away a large
part of the business in distinct tailor-made routines for myriads of small
process-control and other real-time applications on all sorts of different
hardware. `Mass production' of software means multiplicity of what
manufacturing industry would call `models,' or `sizes' rather than
multiplicity of replicates of each.

 Parameterized Families of Components

 One phrase contains much of the secret of making families of
software components: `binding time.' This is an `in' phrase this year,
but it is more popular in theory than in the field. Just about the only
applications of multiple binding times I can think of are sort generators
and the so-called `Sysgen' types of application: filling in parameters at
the time routines are compiled to control table sizes, and to some extent
to control choice among several bodies of code. The best known of these,
IBM's OS/360 Sysgen is indeed elaborate - software houses have set
themselves up as experts on this job. Sysgen differs, though, in a couple
of ways from what I have in mind as the way a software components industry

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 4/13

might operate.

 First, Sysgen creates systems not by construction, but rather by
excision, from an intentionally fat model. The types of adjustment in
Sysgen are fairly limited. For example it can allocate differing amounts
of space to a compiler, but it can't adjust the width of list link fields
in proportion to the size of the list space. A components industry on the
other hand, not producing components for application to one specific
system, would have to be flexible in more dimensions, and would have to
provide routines whose niches in a system were less clearly delineated.

 Second, Sysgen is not intended to reduce object code or running
time. Typically Sysgen provides for the presetting of defaults, such as
whether object code listings are or are not standard output from a
compiler. The entire run-time apparatus for interrogating and executing
options is still there, even though a customer might guarantee he'd never
use it were it indeed profitable to refrain. Going back to the sine
routine, this is somewhat like building a low precision routine by
computing in high precision and then carefully throwing away the less
significant bits.

 Having shown that Sysgen isn't the exact pattern for a
components industry, I hasten to add that in spirit it is almost the only
way a successful components industry could operate. To purvey a rational
spectrum of high quality components a fabricator would have to systematize
his production. One could not stock 300 sine routines unless they were all
in some sense instances of just a few models, highly parameterized, in which
all but a few parameters were intended to be permanently bound before run
time. One might call these early-bound parameters `sale time' parameters.

 Many of the parameters of a basic software component will be
qualitatively different from the parameters of routines we know today.
There will be at least

 Choice of Precision. Taken in a generalized sense precision
includes things like width of characters, and size of address or pointer
fields.

 Choice of Robustness. The exact tradeoff between reliability and
compactness in space and time can strongly affect the performance of a
system. This aspect of parameterization and the next will probably rank
first in importance to customers.

 Choice of Generality. The degree to which parameters are left
adjustable at run time.

 Choice of Time-space behavior.

 Choice of Algorithm. In numerical routines, as exemplified by
those in the CACM, this choice is quite well catered for already. For
nonnumerical routines, however, this choice must usually be decided on the
basis of folklore. As some nonnumerical algorithms are often spectacularly
unsuitable for particular hardware, a wide choice is perhaps even more
imperative for them.

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 5/13

 Choice of Interfaces. Routines that use several inputs and yield
several outputs should come in a variety of interface styles. For example,
these different styles of communicating error outputs should be available:

 a. Alternate returns
 b. Error code return
 c. Call an error handler
 d. Signal (in the sense of PL/I)

Another example of interface variability is that the dimensions of matrix
parameters should be receivable in ways characteristic of several major
programming languages.

 Choice of Accessing method. Different storage accessing
disciplines should be supported, so that a customer could choose that best
fitting his requirements in speed and space, the addressing capabilities of
his hardware, or his taste in programming style.

 Choice of Data structures. Already touched upon under the topic of
interfaces, this delicate matter requires careful planning so that
algorithms be as insensitive to changes of data structure as possible.
When radically different structures are useful for similar problems (e.g.,
incidence matrix and list representations for graphs), several algorithms
may be required.

 Application Areas

 We have to begin thinking small. Despite advertisements to the
effect that whole compilers are available on a `virtually off-the-shelf'
basis, I don't think we are ready to make software subassemblies of that
size on a production basis. More promising components to begin with are
these:

 Numerical approximation routines. These are very well understood,
and the dimensions of variability for these routines are also quite clear.
Certain other numerical processes aren't such good candidates; root finders
and differential equation routines, for instance are still matters for
research, not mass production. Still other `numerical' processes, such as
matrix inversion routines, are simply logical patterns for sequencing that
are almost devoid of variability. These might be sold by a components
industry for completeness' sake, but they can be just as well taken from
the CACM.

 Input-output conversion. The basic pieces here are radix
conversion routines, some trivial scanning routines, and format crackers.
From a well-designed collection of families it should be possible to
fabricate anything from a simple on-line octal package for a small
laboratory computer to a Fortran IV conversion package. The variability
here, especially in the matter of accuracy and robustness is substantial.
Considerable planning will evidently be needed to get sufficient
flexibility without having too many basically different routines.

 Two and three dimensional geometry. Applications of this sort are
going on a very wide class of machines, and today are usually kept
proprietary. One can easily list a few dozen fundamental routines for

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 6/13

geometry. The sticky dimension of variability here is in data structures.
Depending on which aspect of geometrical figures is considered fundamental
- points, surfaces, topology, etc. - quite different routines will be
required. A complete line ought to cater for different abstract
structures, and also be insensitive to concrete structures.

 Text processing. Nobody uses anybody else's general parsers or
scanners today, partly because a routine general enough to fulfill any
particular individual needs probably has so much generality as to be
inefficient. The principle of variable binding times could be very
fruitfully exploited here. Among the corpus of routines in this area
would be dictionary builders and lookup routines, scanners, and output
synthesizers, all capable of working on continuous streams, on unit
records, and various linked list formats, and under access modes suitable
to various hardware.

 Storage management. Dynamic storage allocation is a popular topic
for publication, about which not enough real knowledge yet exists. Before
constructing a product line for this application, one ought to do
considerable comparison of known schemes working in practical environments.
Nevertheless storage management is so important, especially for text
manipulation, that it should be an early candidate.

 The Market

 Coming from one of the larger sophisticated users of machines, I
have ample opportunity to see the tragic waste of current software writing
techniques. At Bell Telephone Laboratories we have about 100 general
purpose machines from a dozen manufacturers. Even though many are
dedicated to special applications, a tremendous amount of similar software
must be written for each. All need input-output conversion, sometimes only
single alphabetic characters and octal numbers, some full-blown Fortran
style I/O. All need assemblers and could use macroprocessors, though not
necessarily compiling on the same hardware. Many need basic numerical
routines or sequence generators. Most want speed at all costs, a few want
considerable robustness.

 Needless to say much of this support programming is done
suboptimally, and at a severe scientific penalty of diverting the machine's
owners from their central investigations. To construct these systems of
high-class componentry we would have to surround each of some 50 machines
with a permanent coterie of software specialists. Were it possible quickly
and confidently to avail ourselves of the best there is in support
algorithms, a team of software consultants would be able to guide
scientists towards rapid and improved solutions to the more mundane support
problems of their personal systems.

 In describing the way Bell laboratories might use software
components, I have intended to described the market in microcosm. Bell
laboratories is not typical of computer users. As a research and
development establishment, it must perforce spend more of its time
sharpening its tools, and less using them than does a production computing
shop. But it is exactly such a systems-oriented market toward which a
components industry would be directed.

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 7/13

 The market would consist of specialists in system building, who
would be able to use tried parts for all the more commonplace parts of
their systems. The biggest customers of all would be the manufacturers.
(Were they not it would be a sure sign that the offered products weren't
good enough.) The ultimate consumer of systems based on components ought
to see considerably improved reliability and performance, as it would
become possible to expend proportionally more effort on critical parts of
systems, and also to avoid the now prevalent failings of the more mundane
parts of systems, which have been specified by experts, and have then been
written by hacks.

 Present Day Suppliers

 You may ask, well don't we have exactly what I've been calling for
already in several places? What about the CACM collected algorithms? What
about users groups? What about software houses? And what about
manufacturers' enormous software packages?

 None of these sources caters exactly for the purpose I have in
mind, nor do I think it likely that any of them will actually evolve to
fill the need.

 The CACM algorithms, in a limited field, perhaps come closer to
being a generally available off-the-shelf product than do the commercial
products, but they suffer some strong deficiencies. First they are an
ingathering of personal contributions, often stylistically varied. They
fit into no plan, for the editor can only publish that which the authors
volunteer. Second, by being effectively bound to a single compilable
language, they achieve refereeability but must perforce completely avoid
algorithms for which Algol is unsuited or else use circumlocutions so
abominable that the product can only be regarded as a toy. Third, as an
adjunct of a learned society, the CACM algorithms section can not deal in
large numbers of variants of the same algorithm. Variability can only be
provided by expensive run time parameters

 User's groups I think can be dismissed summarily, and I will spare
you a harangue on their deficiencies.

 Software houses generally do not have the resources to develop
their own product lines; their work must be financed, and large financing
can usually only be obtained for large products. So we see the software
houses purveying systems, or very big programs, such as Fortran compilers,
linear programming packages or flowcharters. I do not expect to see any
software house advertising a family of Bessel functions or symbol tabling
routines in the predictable future.

 The manufacturers produce unbelievable amounts of software.
Generally, as this is the stuff that gets used most heavily it is all
pretty reliable, a good conservative grey, that doesn't include the best
routine for anything, but that is better than the average programmer is
likely to make. As we heard yesterday manufacturers tend to be rather
pragmatic in their choice of methods. They strike largely reasonable
balances between generality and specificity and seldom use absolutely
inappropriate approaches in any individual software component. But the
profit motive wherefrom springs these virtues also begets their prime

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 8/13

hangup - systems now. The system comes first; components are merely
annoying incidentals. Out of these treadmills I don't expect to see high
class components of general utility appear.

 A Components Factory

 Having shown that it is unlikely to be born among the traditional
suppliers of software I turn now to the question of just how a components
industry might get started.

 There is some critical size to which the industry must attain
before it becomes useful. Our purveyor of 300 sine routines would probably
go broke waiting for customers if that's all he offered, just as an
electronics firm selling circuit modules for only one purpose would have
trouble in the market.

 It will take some time to develop a useful inventory, and during
that time money and talent will be needed. The first source of support
that comes to mind is governmental, perhaps channeled through
semi-independent research corporations. It seems that the fact that
government is the biggest user and owner of machines should provide
sufficient incentive for such an undertaking that has promise for making an
across-the-board improvement in systems development.

 Even before founding a pilot plant, one would be wise to have
demonstrated techniques for creating a parameterized family of routines for
a couple of familiar purposes, say a sine routine and a Fortran I/O module.
These routines should be shown to be usable as replacements in a number of
radically different environments. This demonstration could be undertaken
by a governmental agency, a research contractor, or by a big user, but
certainly without expectation of immediate payoff.

 The industrial orientation of a pilot plant must be constantly
borne in mind. I think that the whole project is an improbable one for
university research. Research-caliber talent will be needed to do the job
with satisfactory economy and reliability, but the guiding spirit of the
undertaking must be production oriented. The ability to produce members of
a family is not enough. Distribution, cataloguing, and rational planning
of the mix of product families will in the long run be more important to
the success of the venture than will be the purely technical achievement.

 The personnel of a pilot plant should look like the personnel on
many big software projects, with the masses of coders removed. Very good
planning, and strongly product-minded supervision will be needed. There
will be perhaps more research flavor included than might be on an ordinary
software project, because the level of programming here will be more
abstract: Much of the work will be in creating generators of routines
rather than in making the routines themselves.

 Testing will have to be done in several ways. Each member of a
family will doubtless be tested against some very general model to assure
that sale-time binding causes no degradation over runtime binding. Product
test will involve transliterating the routines to fit in representative
hardware. By monitoring the ease with which fairly junior people do
product test, managers could estimate the clarity of the product, which is

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 9/13

important in predicting customer acceptance.

 Distribution will be a ticklish problem. Quick delivery may well
be a components purveyor's most valuable sales stimulant. One instantly
thinks of distribution by communication link. Then even very small
components might be profitably marketed. The catalogue will be equally
important. A comprehensive and physically condensed document like the
Sears-Roebuck catalogue is what I would like to have for my own were I
purchasing components.

 Once a corpus of product lines became established and profit
potential demonstrated, I would expect software houses to take over the
industry. Indeed, were outside support long needed, I would say the
venture had failed (and try to forget I had ever proposed it).

 Touching on Standards

 I don't think a components industry can be standardized into
existence. As is usual with standards, it would be rash to standardize
before we have the models. Language standards, provided they are loose
enough not to prevent useful modes of computation, will of course be
helpful. Quite soon one would expect a components industry to converge on
a few standard types of interface. Experience will doubtless reveal other
standards to be helpful, for example popular word sizes and character sets,
but again unless the standards encompass the bulk of software systems (as
distinguished from users), the components industry will die for lack of
market.

 Summary

 I would like to see components become a dignified branch of
software engineering. I would like to see standard catalogues of routines,
classified by precision, robustness, time-space performance, size limits,
and binding time of parameters. I would like to apply routines in the
catalogue to any one of a large class of often quite different machines,
without too much pain. I do not insist that I be able to compile a
particular routine directly, but I do insist that transliteration be
essentially direct. I do not want the routine to be inherently inefficient
due to being expressed in machine independent terms. I want to have
confidence in the quality of the routines. I want the different types of
routine in the catalogue that are similar in purpose to be engineered
uniformly, so that two similar routines should be available with similar
options and two options of the same routine should be interchangeable in
situations indifferent to that option.

 What I have just asked for is simply industrialism, with
programming terms substituted for some of the more mechanically oriented
terms appropriate to mass production. I think there are considerable areas
of software ready, if not overdue, for this approach.

8.2.1. DISCUSSION

Ross: What Mcllroy has been talking about are things we have been playing
with. For example, in the AED system we have the so-called
feature-feature. This enables us to get round the problem of loaders. We

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 10/13

can always embed our system in whatever loader system is available. The
problem of binding is very much interlocked there, so we are at the mercy
of the environment. An example is a generalized alarm reporting system in
which you can either report things on the fly, or put out all kinds of
dynamic information. The same system gives 14 different versions of the
alarm handling. Macro-expansion seems to me to be the starting place for
some of the technical problems that have to be solved in order to put these
very important ideas into practice.

McIlroy: It seems that you have automated some of types variability that I
thought were more speculative.

Opler: The TOOL system produced six years ago for Honeywell was
complementary to the one McIlroy described. It has facilities for putting
things together, but it did not provide the components. The difficulty we
had was that we produced rudimentary components to see how the system would
work, but the people for whom we developed the system did not understand
that they were to provide their own components, so they just complained
that the system was not good. But I am very enthusiastic about what you
suggest.

Perlis: The GP system of the first Univac was a system for developing
personalized software as long as you stayed on that machine. The authors
of this system asked me: how would one generalize this to other computers?
They did not know how to do it at the time, and I suppose it has not been
done. I have a question for Mcllroy. I did not hear you mention what to
me is the most obvious of parameterizations, namely to build generalized
business data file handling systems. I understand that Informatics has one
out which everybody says is OK, but - . This seems to be a typical
attitude to parameterized systems.

McIlroy: My reason for leaving that out is that this is an area that I
don't know about.

Perlis: Probably it would be one of the easiest areas, and one with the
most customers. Before d'Agapeyeff talks I have another comment.
[Laughter]. Specialists in every part of software have a curious vision of
the world: All parts of software but his are simple and easily
parameterized; his is totally variable.

d'Agapeyeff: There is no package which has received more attention from
manufacturers than file handling. Yet there is hardly a major system that
I know of that is relying solely on the standard system produced by the
manufacturer. It is extremely difficult to construct this software in a
way that is efficient, reliable, and convenient for all systems and where
the nature of the package does not impose itself upon the user. The reason
is that you cannot atomize it. Where work has been successful it tends to
be concerned with packages that have some structure. When you get down to
small units it is not economic to make them applicable to a large set of
users, using different machines with different languages, and to do all the
binding work, such that it doesn't take twice as long to find out how to
load it. The problems with Sysgen are not to be dispensed with, they are
inherent. But why do we need to take atoms down from the shelf? What you
want is a description which you can understand, because the time taken to
code it into your own system is really very small. In that way you can

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 11/13

insert your own nuances. The first step in your direction should be better
descriptions.

Endres: Two notes of caution: You discarded the algorithms in the Comm.
ACM in part because they are written in high-level language, so I
understand that you refer to routines written in a more machine oriented
language. I think you oversimplify the problem of transliteration. Or do
you assume a de facto machine standard? Second question: You refer to the
problems of Sysgen, where you cut out pieces from a large collection. If
instead you want to put together systems, I think the problems of Sysgen
become a dimension larger. Who will bear this cost, and maintain the
system?

McIlroy: The algorithms in the Comm. ACM effectively use one language,
which is suitable for a particular class of applications. This may not be
the right one for things like input/output packages. On the second
question: I am convinced, with you, that at first it will be harder to
build systems by accretion, rather than by excision. The people who build
components will have to be skilled systems builders, not run of the mill
users.

Kjeldaas: I strongly favor this idea. I think the examples mentioned are
within the state of the art. However, later we will want macros needing
parameters having more intricate relations, for instance if you want some
functional relationship between the parameters. We will need some language
for describing the parameters. Another point: documentation can also be
included in this. When you have given the parameters to the program, you
can give the same parameters to the documentation, and the documentation
for the particular use can be produced automatically. Catering for
different machines will raise big problems, needing research.

Kolence: May I stress one point: Mcllroy stated that the
industrialization is concerned with the design, not the replication
process. We are concerned with a mass design problem. In talking about
the implementation of software components, the whole concept of how one
designs software is ignored. Yet this is a key thing.

Naur: What I like about this is the stress on basic building principles,
and on the fact that big systems are made from smaller components. This
has a strong bearing on education. What we want in education, particularly
at the more elementary level, is to start indoctrinating the knowledge of
the components of our systems. A comparison with our hardware colleagues
is relevant. Why are they so much more successful than we are? I believe
that one strong reason is that there is a well established field of
electronic engineering, that the young people start learning about Ohm's
Law at the age of fourteen or thereabouts, and that resistors and the like
are known components with characteristics which have been expounded at
length at the early level of education. The component principles of our
systems must be sorted out in such a form that they can be put into
elementary education.

Gill: Two points: first on the catalogue question. I hope we can do
better than the Sears-Roebuck catalogue. Surely what we want is a
computerized conversational catalogue. Second point: what is it that you
actually sell when you sell a piece of software, what exactly does a

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 12/13

software contract look like?

Barton: Mcllroy's talk was so well done that it took me about three
minutes to realize what is wrong with this idea. Another compliment: If I
were running Intergalactic Software, I would hire Mcllroy for a manager.
Now the serious point: Over the last few years I have taught the ACM
Course `Information Structures' and used the game not to let anyone code or
write anything in any programming language at all. We have just thought
about data representations. If in this way you get people over the habit
of writing code right away, of thinking procedurally, then some very
different views on information representations come to view. In McIlroy's
talk about standard components having to do with data structures I have the
feeling that this is not a problem to take out of the universities yet.
Now a heretical view: I don't think we have softened up enough things in
machines yet. I don't think we will get anywhere trying to quantify the
space-time trade-off unless we discard fixed word sizes, fixed character
sizes, fixed numerical representations, altogether in machines. Without
these, the thing proposed by Mcllroy will prove to be just not quite
practical.

Fraser: I wish to take issue with d'Agapeyeff. I think it will be
possible to parameterize data representation and file management. From a
particular file system experience I learned two lessons: first, there are
a large number of parameters, to be selected in a non-mutually-exclusive
manner. The selection of the parameters is so complicated that it is
appropriate to put a compiler on the front end of the software distribution
mechanism. Perhaps we are talking more about compilers than we realize.
Concerning catalogues: in England a catalogue of building materials is a
very ad hoc catalogue, you have left hand flanges to go with left hand
gates, etc. I think the catalogue is likely to be ad hoc in that nature,
rather than like an electronics catalogue where the components are more
interchangeable.

 The second issue is the question of writing this compiler. Our
file management generator effectively would generate a large number of
different file management systems, very considerably in excess of the 500
that Mcllroy mentioned. There was no question of testing all of these. We
produced an ad hoc solution to this problem, but until more research is
done on this problem I don't think McIlroy's suggestion is realistic.

Graham: I will speak of an adjunct to this idea. In Multics we used a
subset of PL/I, although PL/I is quite inadequate, in that the primitive
operations of the language are not really suited for system design. In
Multics you do a lot of directory management, simple operations like adding
and deleting entries, but in a complicated directory. With a higher-level
language with these operations as primitives one could easily write a new
system. By simulating the primitives one could test the performance of the
system before actually building it. If one had Mcllroy's catalogue stored
in the system, with the timings of a lot of routines, then the simulation
backing up this higher-level language could in fact refer to the catalogue
and use the actual timings for a new machine that this company offered and
get realistic timings. Another point, I wish to rebutt McIlroy's suggestion
that this is not for universities; I think it is. There are very difficult
problems in this area, such as parameterizing more sophisticated routines,
in particular those in the compiler area. These are fit for universities.

10/5/23, 10:09 PM cs.dartmouth.edu/~doug/components.txt

https://www.cs.dartmouth.edu/~doug/components.txt 13/13

Bemer: I agree that the catalogue method is not a suitable one. We don't
have the descriptors to go searching. There is nothing so poorly described
as data formats, there are no standards, and no sign that they are being
developed. Before we have these we won't have the components.

McIlroy: It is for that reason that I suggest the Sears-Roebuck type now.
On-line searching may not be the right answer yet.

