

Project Cerberus
Security Architecture

Overview Specification

Author:

Bryan Kelly, Principal Firmware Engineering Manager, Microsoft

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org ii

Revision History

Date Description

28-8-2017 Version 0.1 – Initial Draft

28-9-2017 Version 0.2 – Add References Section

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org iii

© 2017 Microsoft Corporation.

As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web

Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-

owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at

http://www.opencompute.org/participate/legal-documents/, which may also include additional parties to those listed

above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The

contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability,

non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or

otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE

LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS

GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE,

AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY

REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF

MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); I2C IS A TRADEMARK AND

TECHNOLOGY OF NXP SEMICONDUCTORS ; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.;

ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO

PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC;

WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON

SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL

SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY

ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION;

SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM

PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL

TERMS.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.opencompute.org/participate/legal-documents/

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 1

Table of Contents

1. Introduction .. 3

1.1 Hardware Management ... 3

1.2 Security Challenges .. 3

2. Field Upgradeable Firmware Ingredients in Cloud ... 4

2.3 System vs. Device Firmware .. 4

2.4 Firmware update Provisions .. 5

2.5 Root of Trust .. 5

2.6 Secure Boot .. 5

2.7 Flash Encryption ... 5

3. Cerberus – Hardware Enforced Platform Security .. 5

3.1 Power-on ... 6

3.2 Secure Boot .. 7

3.3 Attestation ... 7

3.4 Platform Firmware Manifest (PFM) ... 8

3.5 Recovery .. 9

3.6 Firmware Update ... 10

3.7 Authenticating Flash Writes... 11

3.8 Firmware Storage .. 11

3.9 OOB Reporting ... 11

4. References .. 13

4.1 DICE Architecture ... 13

4.2 RIoT .. 13

4.3 DICE and RIoT Keys and Certificates .. 13

2 September 28, 2017

List of Figures

Figure 1 Firmware Components.. 4

Figure 2 Physical Challenge Channels ... 8

Figure 3 Firmware Recovery of Active Area shifting ... 9

Figure 6 Flash Offset ... 11

Figure 5 RoT Interfaces ... 12

Figure 5 IB Interface .. 12

file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497727140
file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497727141
file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497727143
file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497727145

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 3

Introduction
The cloud server continues to serve as the fundamental building block for the evolution of the cloud.

The composition of the cloud server has evolved from traditional processor, memory, storage and

network, to a powerful platform consisting of accelerators, offloads and smart IO devices, some more

powerful than the host processors themselves. The system has evolved from Central Processing Unit

(CPU) being the core instruction execution endpoint, to a fabric of sophisticated devices optimized to

accelerate workloads. These accelerators and devices have independent processing units and

controllers. The firmware and bootstrap code for these accelerators has long moved from single BIOS

containing multiple OptionROMs, to the devices themselves carrying mutable firmware. Collectively the

evaluation of the server architecture opens out new challenges to cloud hardware management and

security, both during on-boarding as well as when in operation. In other words, if and when a bare-

metal system is provisioned or a cloud hardware system is repaved, one must ensure that the system is

not compromised. This paper presents a vision for the inception of centralized cloud hardware

management plane that extends control functions such as authentication, authorization, auditing,

confidentiality, diagnostics, monitoring, system on-lining, system off-lining, debug etc.

1.1 Hardware Management
Infrastructure flexibility, scalability and reliability are core principles to operating cloud scale data

centers. The flexible hardware building blocks that underpins this cloud infrastructure comes in a

variety of configurations and form factors. To realize scalability in the cloud, manageability of cloud

infrastructure is fundamental. Manageability must be secure, reliable and rapidly deployable. A unified

approach to remote monitoring, diagnostics and hardware control is essential to rapid and repeatable

deployments of modular cloud infrastructure.

1.2 Security Challenges
In a model whereby end users have Direct Access (DA) to the platform hardware or the host operating

system, securing a multitude of device and operating system specific firmware interfaces becomes

challenging. The following lists some existing Cloud Security Challenges:

Cloud servers have intricate boot flows that span multiple smart peripherals each containing an

independent ASIC or microprocessor with disaggregated boot flows. If these peripherals do not enforce

firmware digital signature authentication, any unprotected firmware update interface could become an

attack vector.

Platform and peripheral firmware images are typically stored on internal flash or external NOR flash

media. The media is typically writable to allow for firmware updates, during runtime or during boot.

Securing the media through state transitions is not always possible.

Protection in transit across complex supply chains for Cloud infrastructure components is not easily

enforced, there are multiple sources for various components comprising of cloud infrastructure.

4 September 28, 2017

The attack surface is expanding as coprocessors, SoC’s and offload engines are becoming more popular,

and their need to interconnect with the platform host CPUs over low latency bus interfaces and have

Direct Memory Access (DMA) to system memory expands the attack surface for these components.

Establishing peripheral authenticity or genuine part identity at cloud scale can be a challenge.

Sophisticated offloads like FPGAs and some ASICs can emulate other authentic hardware components.

Standard hardware devices can be procured by other organizations and companies. A malicious attack

could occur whereby devices keyed for secure boot with another organizations asymmetric key, and

made to emulate genuine part.

Establishing a consistent root of trust on very different hardware configurations while maintaining

configuration and deployment flexibility is challenging. There is no uniform configuration in the cloud.

Example: A systems with a host processors, has very different firmware security measures to systems

without head-nodes or host processors.

2. Field Upgradeable Firmware Ingredients in Cloud
Typical Cloud hardware comprises of a host of firmware elements such as UEFI, BMC, UCODE, NIC, M.2,

Hard disk, EEPROM, TPM, Accelerators, FPGAs, GPU, CPLD, etc. All system firmware is potentially an attack

surface, authenticity, integrity, and confidentiality is

vital. For instance, a malware author can exploit

firmware updates to inject vulnerabilities that can

potentially compromise the integrity of overall Cloud

solution. Malware in firmware can survive system

rebuilds, and firmware upgrades. They can be

difficult to detect even by commercial anti-virus and

security software. Having a secure firmware update

solution that is of paramount importance. This

document describes the firmware components in

Gen6 hardware and the security model.

2.3 System vs. Device Firmware
As mentioned above, there are a plethora of

firmware ingredients. These can be categorized into

to two broad categories. Firmware elements that are

mandatory for system boot are typically referred to

as System Firmware, for e.g. UEFI, BMC, etc.

Firmware elements that are typically optional for Figure 1 Firmware Components

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 5

system boot are referred to as Device Firmware, for e.g. NIC Option ROM (although the name contains

ROM, these are often mutable), SSD Firmware etc.

2.4 Firmware update Provisions
All firmware updates on cloud platforms must be accomplished in a scale friendly manner. There are

two means through which firmware can be updated; inband refers to software that is executed by host

processor, and out-of-band through the Service Processor. The inband update can further be

categorized as preboot and OS runtime based updates. In cloud hosting models where a customer may

choose to boot to any operating system of their choice, any OS runtime based firmware update can

potentially be an attack vector. Thus, maintaining supervisory control over firmware update from an OS

context, prohibiting unsigned updates and detecting and remediating firmware exploits is critical.

2.5 Root of Trust
Establishing a core root of trust along with chain of trust is fundamental to overall platform security and

being able to attest to its integrity. However, most industry standard trust chains only comprehend the

platform BIOS and BIOS loaded peripheral Option ROMs, through to OS loader. These trust chains only

cover a small portion of the total firmware present in a modern cloud server.

2.6 Secure Boot
Secure boot adds cryptographic checks to the boot process. The purpose is to verify the integrity and

authenticity of firmware or firmware boot loaders that follow the primary ROM boot loader. This

firmware is typically mutable and referred to as the Second Stage boot loader.

Secure boot can help establishes a firmware trust chain, as the immutable first stage ROM bootloader

authenticates the mutable second stage loader, the second stage loader can authenticate subsequent

firmware components. The secure boot process typically uses asymmetric RSA public key signature

verification, whereby the ROM verifies the public key for the second stage bootloader against a hash of

the public key stored in nonvolatile One Time Programmable (OTP) memory. For information on the

secure boot process, refer to the document: Cerberus Security Firmware Cryptography Signatory.

2.7 Flash Encryption
Flash encryption adds confidentiality to firmware and the data stored within the flash media. Flash

encryption is separate from secure boot, but enhances security by obfuscating the data contain on

persistent media.

3. Cerberus – Hardware Enforced Platform Security
The Cerberus platform design is a hierarchical Root of Trust (RoT) architecture. All firmware is required

to be secure. Supported by requirements documents, processors, microcontrollers and active

6 September 28, 2017

components with firmware must adhere to the requirements security and attestation. If the

components do not intrinsically meet the requirements, they must either place a designated security

microcontroller that presents a SPI memory interface between their firmware load store and their

processing unit, or change their controller to one that meets the security requirements set forth in the

Cerberus design.

All active components are required to support both hardware and firmware combined identify through

the Device Identity Composition Engine (DICE). The DICE Composite Device Identify (CDI) is a one-way

hash of both the unique device hardware secret (identity) and the second stage boot loader digest,

forming a single attestable measurement. Combined with hardware enforced secure boot, this

measurement forms the foundation on which trust is established. The cryptographic device identity and

attestation scheme for Cerberus is based on the TLS protocol and X.509 client certificates. The

implementation of the certificate and key chaining is described in documents referenced in the section:

4.3 DICE and RIoT Keys and Certificates

Each independent active component in the Cerberus platform design is a root of trust for its functional

domain; reporting measurements to the challenges from the platform RoT.

Active Components in the modern server boot to an operational level before the platform’s host

processors complete their initialization and become capable of challenging the devices. In the Cerberus

design, the platform is held in power-on reset while Active Components are provided standby power for

their RoT to must respond to challenges from the PA-RoT confirming the integrity of their firmware

before they are released from Reset. Components that fail their challenge will be powered-off and not

receive voltage, additionally the platform may be held in a reset/powered off state.

3.1 Power-on
The Cerberus designed motherboard has a T-1 power-on state whereby the power good signal remains

negated after rails stabilize. The motherboard RoT microcontroller powers-on, decrypts, and

authenticates its firmware before decompression and loading its firmware into internal memory. Once

loaded the Cerberus microcontroller signals for the auxiliary power rail, allowing power to the BMC

while holding the BMC in reset. The Cerberus microcontroller verifies the integrity of the BMC NOR

Flash, verifying the digital signature and recalculating the BMC firmware digest. The RoT then pre-loads

the BMC boot blocks into internal memory, before releasing the BMC from reset. When released from

reset the BMC queries the RoT for its boot block, the RoT serves the content and pre-fetches the

firmware into its internal buffers as the buffer tail serves the BMC.

When the BMC has been loaded, the platform RoT signals power-good to the platform, while holding

the system in reset. This enables only standby power go to PCIe devices. The host CPUs and any

chipset components remain in reset. The RoT verifies the integrity of the host CPU NOR flash, verifying

the digital signature and recalculating the host firmware digest. At the same time, the RoT queries PCIe

devices in the Platform Firmware Manifest (PFM) over I2C. PCIe components in the Cerberus designed

motherboard are required to enable their RoT on standby power whereby the PCIe clock is off and reset

is asserted. The PCIe Component RoTs verify the integrity and authenticate their firmware while in this

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 7

powered but quarantined state. The platform RoT will challenge the component RoT’s for their

firmware measurements and a HMAC of their CDI chained measurements. For detailed information on

this exchange, refer to the Cerberus Challenge Protocol Specification.

After completing the component measurement challenge the Platform RoT will determine whether to

provide 12v to all or some PCIe slots, or whether to keep certain slots powered off or held in reset.

When the Platform RoT has completed the component challenge and determined the PCIe slots to

receive power, it pre-fetches the platform UEFI boot blocks into internal memory and releases platform

reset. The host CPUs and chipset read their firmware boot blocks from the RoT internal memory, as the

memory buffer tail is consumed the RoT continues to pre-fetch from secure flash. As the platform

firmware is loaded, the RoT muxes control of the I2C to the BMC for temperature monitoring of active

components. During runtime operation, the platform RoT can request the BMC yield control of the I2C,

repeating measurement challenge on demand or patrol schedule.

3.2 Secure Boot
The Platform RoT and Active Component RoTs use digital signature and an RSA public key stored in One

Time Programmable memory to authenticate their firmware, and calculate the digest of their firmware

to verify its integrity against the digital signature. After first verifying their own firmware, they use a

similar process of verifying the flash contents of the components they protect, calculating the digest and

comparing the signature against a key manifest stored in the RoT key vault. For details on the secure

boot process, review the document: Cerberus Security Firmware Cryptography Signatory specification.

3.3 Attestation
The Cerberus measurement challenge is a hierarchical attestation architecture. Firmware integrity

measurements are gathered locally by the Component RoTs and reported to the Platform Active RoT

(PA-RoT) during measurement challenge. The Platform uses the collected component measurements

combined with the platform measurements to create a platform measurement. The Datacenter

Management Software collects the platform measurement.

Active Components in a traditional server boot to an operational level before the platform’s host

processors complete their initialization and become capable of challenging the devices. This creates an

edge condition, whereby compromised component firmware could go undetected, or potentially spread

during boot and compromise other components. In the Cerberus design, the platform is kept in the

power-on reset stage, while the Active Components are challenged by the Platform Active RoT (PA-RoT).

Upon verification of their firmware integrity, the PA-RoT releases full voltage to power their primary

functional interfaces such as PCIe.

The PA-RoT maintains a Platform Firmware Manifest (PFM). The manifest is programmable through the

PA-RoT’s communication interface, and updatable only through digitally signed and encrypted firmware

capsule. The capsule update does not require host update or reset. Auto-detection of Active

8 September 28, 2017

Components and computation of the PFM maybe considered in future version of the “Cerberus

Challenge Protocol” Specification.

The PA-RoT uses the manifest to challenge the Active Components and record their measurements. The

PA-RoT uses a digest of these measurements for the platform level measurement, creating a hierarchical

platform level digest that can attest the integrity of the platform and active component firmware.

The PA-RoT and all Active Components RoT’s (AC-RoT) will

support Authentication, Confidentiality and Integrity of

message challenges.

The PA-RoT is responsible for challenging the AC-RoT’s and

collecting their firmware measurements. The PA-RoT

retains a private manifest of active components that

includes addresses, buses, firmware versions, digests and

PK encrypted CDIs.

The manifest informs the PA-RoT on all the Active

Components in the system. It provides their I2C

addresses, and information on how to verify their

measurements against a known or expected state. Polices

configured in the Platform RoT determine what action it

should take should the measurements fail verification.

In the Cerberus designed motherboard, the PA-RoT

orchestrates power-on. Only Active Components listed in

the challenge manifest, that pass verification will be

released from power-on reset.

3.4 Platform Firmware Manifest (PFM)
The PA-RoT contains a Platform Firmware Manifest (PFM) that describes the firmware permitted to run

on Active Component in the system. Note: The PFM is different from the boot key manifest described in

the Processor Secure Boot Requirements specification. The PFM describes firmware permitted to runin

the system across all Active Components. A complement to the PFM is generated by the PA-RoT for the

measurement comparison of components in the system. This complement is as the Reported Firmware

Manifest (RFM). The PFM and RFM are stored encrypted in the PA-RoT. The symmetric encryption key

for the PA-RoT is hardware generated and unique to each microcontroller. The symmetric key is not

exportable or firmware readable; and only accessible to the crypto engine for encryption/decryption.

For further information on the PFM, RFM and measurement challenge review the “Cerberus Challenge

Protocol” specification.

Figure 2 Physical Challenge
Channels

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 9

3.5 Recovery
The RoT’s recover firmware to a known good state if for any reason the firmware integrity becomes

corrupted. Detection of corruption occurs through the verification of the signed digest compared with

the actual or calculated digest. The RoTs have a recovery region for their own firmware and the

firmware of the component they protect. By default, the firmware region groups are “A” (Active) and

“B” (Backup). The A and B firmware regions are updatable, but not be simultaneously updatable. The

“B” region is only updatable with a verified “A” region, and vice versa.

The RoTs have multi-stage boot loaders and contain subareas within each firmware region. The

subareas containing the second stage bootloader (key manifest) is typically not updated, however

updates are possible to this region. There is very little execution code in the second stage boot loader

area. Changing the second stage boot loader key manifest would result in regeneration of the DICE CDI.

The second stage bootloader area contains the boot verification public keys and third stage bootloader

straps. This area is normally only updated during key revocation.

As the RoT interposes between the component and SPI flash, it governs reads and writes to various flash

regions. The RoT has the ability to limit read and write access to different regions of flash for the

component it protects, preventing corruption and ensuring firmware is written to the staging area,

where verification is enforced before transitioning to the A or B regions.

Figure 3 Firmware Recovery of Active Area shifting

10 September 28, 2017

The RoT prevents direct writes to A and B regions and preserves one region as a recovery, permitting a

single region update at a time. Key revocation triggers sequential updates following verification of

integrity of a given region. Refer the Cerberus Firmware Update Specification for additional details.

Devices that have firmware regions containing changeable variables and temporal logs, should partition

these regions separately from the firmware code. These writable regions should have reportable digests

separate to the digital signature for authenticating the firmware.

Policies in the RoT determine which default recovery action should perform upon detection of

corruption. By default, the RoTs will recover firmware to a last known good state (restoring B to A). This

requires that B images are maintained current and unrevoked. Refer to the Cerberus Firmware Update

Specification for additional details.

3.6 Firmware Update
The RoT internal flash containing the firmware for the RoT is partitioned into three sections: Active (A),

Backup (B), and Staging (S). The A partition contains the current firmware image being used by the

processor. The B partition maintains a known-good firmware image that can be used to restore the A

partition in the event of corruption. The S partition is a volatile storage location for staging new

firmware updates before they have been fully authenticated.

The RoT extents the A, B, S firmware update methodology to all platform firmware components.

Similar to the RoT’s update and authentication mechanism, the RoT extends the staging first update

mechanism to the flash it protects. The RoT does not permit the A or B firmware code areas of the

component flash get updated directly. Instead, the staging area receives the update and only after

firmware is fully authenticated does the S area get transferred to the A area. In this model the S area

provides the added benefit of first validating firmware before committing to flash and reloading or

rolling back the firmware. From a resilience perspective, there is a window whereby A area is updated,

should a power loss even occur it’s possible that B recovery would be needed. Therefore, verifying B

before writing S to A is required.

The authentication of firmware updates verifies the digital signature of the firmware image against the

corresponding public key in the key manifest, and ensuring the firmware exists in the Platform Firmware

Manifest (PFM). Cryptograph signatures generated with a valid private key corresponding to the public

key in the Platform Key Manifest, are required for all firmware updates. Additionally, the firmware

attributes should exist in the Platform Firmware Manifest. Firmware update procedures include

Platform Firmware Manifest update and verification.

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 11

3.7 Authenticating Flash Writes
Regions in the firmware image are separated into read-only and read-write areas. For example, in an

embedded Linux kernel firmware base such as the BMC; uboot, the kernel and Root File System are

read-only, while the overlay directories are for configuration and log files

are stored in a different region that is write permitted. Similarly, in

UEFI it may be desirable to have certain variables writable while

maintaining integrity on the boot block and code regions of the

firmware. The secure RoT enforces security on flash-based boot

devices by maintaining updatable, writable and read-only areas,

with integrity digests with RSA authentication.

The RoT is required to have knowledge of the flash layout for each

of the protected components, for the PA-RoT this would include the

CPU chipset or BMC. The RoT maintains the secure encrypted flash

with RSA key based authentication for images for both the CPU and

BMC. The firmware images for the CPU and BMC can be

maintained on the same physical medium, while the RoT maintains

two separate SPI interfaces to the CPU and BMC. The RoT will

offset the read/write requests to different locations on the physical

flash based on the SPI interface the commands is received.

3.8 Firmware Storage
The RoT internal flash supports encryption with a device unique secret Physical Unclonable Function

(PUF) key, or secret derived key. This special key provides AES encryption of the flash unique to the

device creating a device specific vault for storying device measurements and challenge verification keys.

The encrypted flash area is device specific, and decrypted only by the physical RoT with the unique PUF.

3.9 OOB Reporting
The initial RoT firmware authentication and platform challenge occurs pre-platform power-on. Should

verification and recovery fail for any reason, RoT platform policies may determine the platform needs to

stay powered off. Datacenter Management Software responsible for Out-Of-Band (OOB) management

of the server fleet obtains the failure log and encrypted challenge measurements. The failure log

triggers remediation actions in fabric, with results in the node been kept offline until the issue has been

resolved.

The platform RoT is accessible to the Data Center Management Software through an encrypted channel

tunneled through the Rack Manager and BMC. The Rack Manager interfaces with the Datacenter

Management Software over the manageability LAN. The Rack Manager interfaces with both the

Management LAN and the Baseboard Management Controller (BMC). The BMC interfaces with the RoT

Figure 4 Flash Offset

12 September 28, 2017

over I2C, offering an Ethernet to I2C tunnel. The channel enables the Datacenter Management

Software control hardware and apply firmware polices that persist on systems where the host operating

system is unmanaged or inaccessible.

Figure 5 RoT Interfaces

Servers with host CPUs and Microsoft hosted operating systems have the option for communicating

with the RoT via a secondary BMC tunnel through the in-

band KCS interface to the BMC. This interface is physically

I2C, LPC or eSPI to the BMC. The SSIF or KCS protocol from

the host to the BMC can create a secure virtual tunnel and

enable the host CPU to authenticate with the RoT and

retrieve firmware measurements.

Figure 6 IB Interface

Open Compute Project • Project Cerberus Security Architecture Overview

http://opencompute.org 13

4. References

4.1 DICE Architecture
https://trustedcomputinggroup.org/work-groups/dice-architectures

4.2 RIoT
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-

things

4.3 DICE and RIoT Keys and Certificates
https://www.microsoft.com/en-us/research/publication/device-identity-dice-riot-keys-certificates

https://trustedcomputinggroup.org/work-groups/dice-architectures
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things
https://www.microsoft.com/en-us/research/publication/device-identity-dice-riot-keys-certificates

