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Introduction 
The cloud server continues to serve as the fundamental building block for the evolution of the cloud.  

The composition of the cloud server has evolved from traditional processor, memory, storage and 

network, to a powerful platform consisting of accelerators, offloads and smart IO devices, some more 

powerful than the host processors themselves.   The system has evolved from Central Processing Unit 

(CPU) being the core instruction execution endpoint, to a fabric of sophisticated devices optimized to 

accelerate workloads.   These accelerators and devices have independent processing units and 

controllers.  The firmware and bootstrap code for these accelerators has long moved from single BIOS 

containing multiple OptionROMs, to the devices themselves carrying mutable firmware.  Collectively the 

evaluation of the server architecture opens out new challenges to cloud hardware management and 

security, both during on-boarding as well as when in operation. In other words, if and when a bare-

metal system is provisioned or a cloud hardware system is repaved, one must ensure that the system is 

not compromised. This paper presents a vision for the inception of centralized cloud hardware 

management plane that extends control functions such as authentication, authorization, auditing, 

confidentiality, diagnostics, monitoring, system on-lining, system off-lining, debug etc.  

 

1.1 Hardware Management 
Infrastructure flexibility, scalability and reliability are core principles to operating cloud scale data 

centers.  The flexible hardware building blocks that underpins this cloud infrastructure comes in a 

variety of configurations and form factors.  To realize scalability in the cloud, manageability of cloud 

infrastructure is fundamental.  Manageability must be secure, reliable and rapidly deployable.  A unified 

approach to remote monitoring, diagnostics and hardware control is essential to rapid and repeatable 

deployments of modular cloud infrastructure. 

 

1.2 Security Challenges 
In a model whereby end users have Direct Access (DA) to the platform hardware or the host operating 

system, securing a multitude of device and operating system specific firmware interfaces becomes 

challenging.   The following lists some existing Cloud Security Challenges:  

Cloud servers have intricate boot flows that span multiple smart peripherals each containing an 

independent ASIC or microprocessor with disaggregated boot flows.   If these peripherals do not enforce 

firmware digital signature authentication, any unprotected firmware update interface could become an 

attack vector.  

Platform and peripheral firmware images are typically stored on internal flash or external NOR flash 

media.  The media is typically writable to allow for firmware updates, during runtime or during boot.  

Securing the media through state transitions is not always possible. 

Protection in transit across complex supply chains for Cloud infrastructure components is not easily 

enforced, there are multiple sources for various components comprising of cloud infrastructure. 
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The attack surface is expanding as coprocessors, SoC’s and offload engines are becoming more popular, 

and their need to interconnect with the platform host CPUs over low latency bus interfaces and have 

Direct Memory Access (DMA) to system memory expands the attack surface for these components. 

Establishing peripheral authenticity or genuine part identity at cloud scale can be a challenge.  

Sophisticated offloads like FPGAs and some ASICs can emulate other authentic hardware components. 

Standard hardware devices can be procured by other organizations and companies.  A malicious attack 

could occur whereby devices keyed for secure boot with another organizations asymmetric key, and 

made to emulate genuine part.   

Establishing a consistent root of trust on very different hardware configurations while maintaining 

configuration and deployment flexibility is challenging.  There is no uniform configuration in the cloud. 

Example:  A systems with a host processors, has very different firmware security measures to systems 

without head-nodes or host processors. 

 

2. Field Upgradeable Firmware Ingredients in Cloud 
Typical Cloud hardware comprises of a host of firmware elements such as UEFI, BMC, UCODE, NIC, M.2, 

Hard disk, EEPROM, TPM, Accelerators, FPGAs, GPU, CPLD, etc. All system firmware is potentially an attack 

surface, authenticity, integrity, and confidentiality is 

vital. For instance, a malware author can exploit 

firmware updates to inject vulnerabilities that can 

potentially compromise the integrity of overall Cloud 

solution.  Malware in firmware can survive system 

rebuilds, and firmware upgrades.  They can be 

difficult to detect even by commercial anti-virus and 

security software.  Having a secure firmware update 

solution that is of paramount importance.   This 

document describes the firmware components in 

Gen6 hardware and the security model.  

2.3 System vs. Device Firmware  
As mentioned above, there are a plethora of 

firmware ingredients. These can be categorized into 

to two broad categories. Firmware elements that are 

mandatory for system boot are typically referred to 

as System Firmware, for e.g. UEFI, BMC, etc. 

Firmware elements that are typically optional for Figure 1 Firmware Components 
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system boot are referred to as Device Firmware, for e.g. NIC Option ROM (although the name contains 

ROM, these are often mutable), SSD Firmware etc. 

 

2.4 Firmware update Provisions  
All firmware updates on cloud platforms must be accomplished in a scale friendly manner. There are 

two means through which firmware can be updated; inband refers to software that is executed by host 

processor, and out-of-band through the Service Processor. The inband update can further be 

categorized as preboot and OS runtime based updates. In cloud hosting models where a customer may 

choose to boot to any operating system of their choice, any OS runtime based firmware update can 

potentially be an attack vector. Thus, maintaining supervisory control over firmware update from an OS 

context, prohibiting unsigned updates and detecting and remediating firmware exploits is critical.  

2.5 Root of Trust 
Establishing a core root of trust along with chain of trust is fundamental to overall platform security and 

being able to attest to its integrity. However, most industry standard trust chains only comprehend the 

platform BIOS and BIOS loaded peripheral Option ROMs, through to OS loader.  These trust chains only    

cover a small portion of the total firmware present in a modern cloud server.  

2.6 Secure Boot 
Secure boot adds cryptographic checks to the boot process.  The purpose is to verify the integrity and 

authenticity of firmware or firmware boot loaders that follow the primary ROM boot loader.  This 

firmware is typically mutable and referred to as the Second Stage boot loader. 

Secure boot can help establishes a firmware trust chain, as the immutable first stage ROM bootloader 

authenticates the mutable second stage loader, the second stage loader can authenticate subsequent 

firmware components.   The secure boot process typically uses asymmetric RSA public key signature 

verification, whereby the ROM verifies the public key for the second stage bootloader against a hash of 

the public key stored in nonvolatile One Time Programmable (OTP) memory.   For information on the 

secure boot process, refer to the document: Cerberus Security Firmware Cryptography Signatory. 

  

2.7 Flash Encryption 
Flash encryption adds confidentiality to firmware and the data stored within the flash media.   Flash 

encryption is separate from secure boot, but enhances security by obfuscating the data contain on 

persistent media.   

 

3. Cerberus – Hardware Enforced Platform Security 
The Cerberus platform design is a hierarchical Root of Trust (RoT) architecture.  All firmware is required 

to be secure.  Supported by requirements documents, processors, microcontrollers and active 
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components with firmware must adhere to the requirements security and attestation.  If the 

components do not intrinsically meet the requirements, they must either place a designated security 

microcontroller that presents a SPI memory interface between their firmware load store and their 

processing unit, or change their controller to one that meets the security requirements set forth in the 

Cerberus design. 

All active components are required to support both hardware and firmware combined identify through 

the Device Identity Composition Engine (DICE).  The DICE Composite Device Identify (CDI) is a one-way 

hash of both the unique device hardware secret (identity) and the second stage boot loader digest, 

forming a single attestable measurement.  Combined with hardware enforced secure boot, this 

measurement forms the foundation on which trust is established.  The cryptographic device identity and 

attestation scheme for Cerberus is based on the TLS protocol and X.509 client certificates.  The 

implementation of the certificate and key chaining is described in documents referenced in the section: 

4.3 DICE and RIoT Keys and Certificates 

Each independent active component in the Cerberus platform design is a root of trust for its functional 

domain; reporting measurements to the challenges from the platform RoT. 

Active Components in the modern server boot to an operational level before the platform’s host 

processors complete their initialization and become capable of challenging the devices.  In the Cerberus 

design, the platform is held in power-on reset while Active Components are provided standby power for 

their RoT to must respond to challenges from the PA-RoT confirming the integrity of their firmware 

before they are released from Reset.  Components that fail their challenge will be powered-off and not 

receive voltage, additionally the platform may be held in a reset/powered off state. 

3.1 Power-on 
The Cerberus designed motherboard has a T-1 power-on state whereby the power good signal remains 

negated after rails stabilize.  The motherboard RoT microcontroller powers-on, decrypts, and 

authenticates its firmware before decompression and loading its firmware into internal memory.  Once 

loaded the Cerberus microcontroller signals for the auxiliary power rail, allowing power to the BMC 

while holding the BMC in reset.   The Cerberus microcontroller verifies the integrity of the BMC NOR 

Flash, verifying the digital signature and recalculating the BMC firmware digest.  The RoT then pre-loads 

the BMC boot blocks into internal memory, before releasing the BMC from reset.  When released from 

reset the BMC queries the RoT for its boot block, the RoT serves the content and pre-fetches the 

firmware into its internal buffers as the buffer tail serves the BMC. 

When the BMC has been loaded, the platform RoT signals power-good to the platform, while holding 

the system in reset.   This enables only standby power go to PCIe devices.   The host CPUs and any 

chipset components remain in reset.    The RoT verifies the integrity of the host CPU NOR flash, verifying 

the digital signature and recalculating the host firmware digest.   At the same time, the RoT queries PCIe 

devices in the Platform Firmware Manifest (PFM) over I2C.   PCIe components in the Cerberus designed 

motherboard are required to enable their RoT on standby power whereby the PCIe clock is off and reset 

is asserted.  The PCIe Component RoTs verify the integrity and authenticate their firmware while in this 
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powered but quarantined state.   The platform RoT will challenge the component RoT’s for their 

firmware measurements and a HMAC of their CDI chained measurements.  For detailed information on 

this exchange, refer to the Cerberus Challenge Protocol Specification.  

After completing the component measurement challenge the Platform RoT will determine whether to 

provide 12v to all or some PCIe slots, or whether to keep certain slots powered off or held in reset.   

When the Platform RoT has completed the component challenge and determined the PCIe slots to 

receive power, it pre-fetches the platform UEFI boot blocks into internal memory and releases platform 

reset.  The host CPUs and chipset read their firmware boot blocks from the RoT internal memory, as the 

memory buffer tail is consumed the RoT continues to pre-fetch from secure flash. As the platform 

firmware is loaded, the RoT muxes control of the I2C to the BMC for temperature monitoring of active 

components.   During runtime operation, the platform RoT can request the BMC yield control of the I2C, 

repeating measurement challenge on demand or patrol schedule. 

3.2 Secure Boot 
The Platform RoT and Active Component RoTs use digital signature and an RSA public key stored in One 

Time Programmable memory to authenticate their firmware, and calculate the digest of their firmware 

to verify its integrity against the digital signature.   After first verifying their own firmware, they use a 

similar process of verifying the flash contents of the components they protect, calculating the digest and 

comparing the signature against a key manifest stored in the RoT key vault.   For details on the secure 

boot process, review the document: Cerberus Security Firmware Cryptography Signatory specification.  

 

3.3 Attestation 
The Cerberus measurement challenge is a hierarchical attestation architecture.  Firmware integrity 

measurements are gathered locally by the Component RoTs and reported to the Platform Active RoT 

(PA-RoT) during measurement challenge.  The Platform uses the collected component measurements 

combined with the platform measurements to create a platform measurement.  The Datacenter 

Management Software collects the platform measurement. 

Active Components in a traditional server boot to an operational level before the platform’s host 

processors complete their initialization and become capable of challenging the devices.  This creates an 

edge condition, whereby compromised component firmware could go undetected, or potentially spread 

during boot and compromise other components.   In the Cerberus design, the platform is kept in the 

power-on reset stage, while the Active Components are challenged by the Platform Active RoT (PA-RoT).  

Upon verification of their firmware integrity, the PA-RoT releases full voltage to power their primary 

functional interfaces such as PCIe. 

The PA-RoT maintains a Platform Firmware Manifest (PFM).  The manifest is programmable through the 

PA-RoT’s communication interface, and updatable only through digitally signed and encrypted firmware 

capsule.  The capsule update does not require host update or reset. Auto-detection of Active 
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Components and computation of the PFM maybe considered in future version of the “Cerberus 

Challenge Protocol” Specification.  

The PA-RoT uses the manifest to challenge the Active Components and record their measurements.  The 

PA-RoT uses a digest of these measurements for the platform level measurement, creating a hierarchical 

platform level digest that can attest the integrity of the platform and active component firmware. 

 

The PA-RoT and all Active Components RoT’s (AC-RoT) will 

support Authentication, Confidentiality and Integrity of 

message challenges.   

The PA-RoT is responsible for challenging the AC-RoT’s and 

collecting their firmware measurements.  The PA-RoT 

retains a private manifest of active components that 

includes addresses, buses, firmware versions, digests and 

PK encrypted CDIs.   

The manifest informs the PA-RoT on all the Active 

Components in the system.  It provides their I2C 

addresses, and information on how to verify their 

measurements against a known or expected state.  Polices 

configured in the Platform RoT determine what action it 

should take should the measurements fail verification.    

In the Cerberus designed motherboard, the PA-RoT 

orchestrates power-on.   Only Active Components listed in 

the challenge manifest, that pass verification will be 

released from power-on reset. 

   

3.4 Platform Firmware Manifest (PFM) 
The PA-RoT contains a Platform Firmware Manifest (PFM) that describes the firmware permitted to run 

on Active Component in the system.  Note: The PFM is different from the boot key manifest described in 

the Processor Secure Boot Requirements specification.  The PFM describes firmware permitted to runin 

the system across all Active Components.  A complement to the PFM is generated by the PA-RoT for the 

measurement comparison of components in the system.  This complement is as the Reported Firmware 

Manifest (RFM).  The PFM and RFM are stored encrypted in the PA-RoT.  The symmetric encryption key 

for the PA-RoT is hardware generated and unique to each microcontroller.  The symmetric key is not 

exportable or firmware readable; and only accessible to the crypto engine for encryption/decryption.   

For further information on the PFM, RFM and measurement challenge review the “Cerberus Challenge 

Protocol” specification.  

Figure 2 Physical Challenge 
Channels 
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3.5 Recovery 
The RoT’s recover firmware to a known good state if for any reason the firmware integrity becomes 

corrupted.  Detection of corruption occurs through the verification of the signed digest compared with 

the actual or calculated digest.   The RoTs have a recovery region for their own firmware and the 

firmware of the component they protect.  By default, the firmware region groups are “A” (Active) and 

“B” (Backup).   The A and B firmware regions are updatable, but not be simultaneously updatable.  The 

“B” region is only updatable with a verified “A” region, and vice versa. 

The RoTs have multi-stage boot loaders and contain subareas within each firmware region.   The 

subareas containing the second stage bootloader (key manifest) is typically not updated, however 

updates are possible to this region.  There is very little execution code in the second stage boot loader 

area.  Changing the second stage boot loader key manifest would result in regeneration of the DICE CDI. 

The second stage bootloader area contains the boot verification public keys and third stage bootloader 

straps. This area is normally only updated during key revocation. 

As the RoT interposes between the component and SPI flash, it governs reads and writes to various flash 

regions.  The RoT has the ability to limit read and write access to different regions of flash for the 

component it protects, preventing corruption and ensuring firmware is written to the staging area, 

where verification is enforced before transitioning to the A or B regions.    

Figure 3 Firmware Recovery of Active Area shifting 
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The RoT prevents direct writes to A and B regions and preserves one region as a recovery, permitting a 

single region update at a time.   Key revocation triggers sequential updates following verification of 

integrity of a given region.  Refer the Cerberus Firmware Update Specification for additional details.  

Devices that have firmware regions containing changeable variables and temporal logs, should partition 

these regions separately from the firmware code.  These writable regions should have reportable digests 

separate to the digital signature for authenticating the firmware.  

Policies in the RoT determine which default recovery action should perform upon detection of 

corruption.  By default, the RoTs will recover firmware to a last known good state (restoring B to A).  This 

requires that B images are maintained current and unrevoked.   Refer to the Cerberus Firmware Update 

Specification for additional details. 

3.6 Firmware Update 
The RoT internal flash containing the firmware for the RoT is partitioned into three sections:  Active (A), 

Backup (B), and Staging (S).  The A partition contains the current firmware image being used by the 

processor.  The B partition maintains a known-good firmware image that can be used to restore the A 

partition in the event of corruption.  The S partition is a volatile storage location for staging new 

firmware updates before they have been fully authenticated.   

The RoT extents the A, B, S firmware update methodology to all platform firmware components.   

Similar to the RoT’s update and authentication mechanism, the RoT extends the staging first update 

mechanism to the flash it protects.   The RoT does not permit the A or B firmware code areas of the 

component flash get updated directly.  Instead, the staging area receives the update and only after 

firmware is fully authenticated does the S area get transferred to the A area.  In this model the S area 

provides the added benefit of first validating firmware before committing to flash and reloading or 

rolling back the firmware.   From a resilience perspective, there is a window whereby A area is updated, 

should a power loss even occur it’s possible that B recovery would be needed.  Therefore, verifying B 

before writing S to A is required. 

The authentication of firmware updates verifies the digital signature of the firmware image against the 

corresponding public key in the key manifest, and ensuring the firmware exists in the Platform Firmware 

Manifest (PFM).   Cryptograph signatures generated with a valid private key corresponding to the public 

key in the Platform Key Manifest, are required for all firmware updates.   Additionally, the firmware 

attributes should exist in the Platform Firmware Manifest.   Firmware update procedures include 

Platform Firmware Manifest update and verification.  
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3.7 Authenticating Flash Writes 
Regions in the firmware image are separated into read-only and read-write areas.  For example, in an 

embedded Linux kernel firmware base such as the BMC; uboot, the kernel and Root File System are 

read-only, while the overlay directories are for configuration and log files 

are stored in a different region that is write permitted.  Similarly, in 

UEFI it may be desirable to have certain variables writable while 

maintaining integrity on the boot block and code regions of the 

firmware.  The secure RoT enforces security on flash-based boot 

devices by maintaining updatable, writable and read-only areas, 

with integrity digests with RSA authentication. 

The RoT is required to have knowledge of the flash layout for each 

of the protected components, for the PA-RoT this would include the 

CPU chipset or BMC.  The RoT maintains the secure encrypted flash 

with RSA key based authentication for images for both the CPU and 

BMC.   The firmware images for the CPU and BMC can be 

maintained on the same physical medium, while the RoT maintains 

two separate SPI interfaces to the CPU and BMC.   The RoT will 

offset the read/write requests to different locations on the physical 

flash based on the SPI interface the commands is received. 

 

3.8 Firmware Storage 
The RoT internal flash supports encryption with a device unique secret Physical Unclonable Function 

(PUF) key, or secret derived key.   This special key provides AES encryption of the flash unique to the 

device creating a device specific vault for storying device measurements and challenge verification keys.   

The encrypted flash area is device specific, and decrypted only by the physical RoT with the unique PUF.  

 

3.9 OOB Reporting 
The initial RoT firmware authentication and platform challenge occurs pre-platform power-on.  Should 

verification and recovery fail for any reason, RoT platform policies may determine the platform needs to 

stay powered off.   Datacenter Management Software responsible for Out-Of-Band (OOB) management 

of the server fleet obtains the failure log and encrypted challenge measurements.   The failure log 

triggers remediation actions in fabric, with results in the node been kept offline until the issue has been 

resolved. 

The platform RoT is accessible to the Data Center Management Software through an encrypted channel 

tunneled through the Rack Manager and BMC.  The Rack Manager interfaces with the Datacenter 

Management Software over the manageability LAN.   The Rack Manager interfaces with both the 

Management LAN and the Baseboard Management Controller (BMC).   The BMC interfaces with the RoT  

Figure 4 Flash Offset 
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over I2C, offering an Ethernet to I2C tunnel.   The channel enables the Datacenter Management 

Software control hardware and apply firmware polices that persist on systems where the host operating 

system is unmanaged or inaccessible. 

Figure 5 RoT Interfaces 

 

 

 

Servers with host CPUs and Microsoft hosted operating systems have the option for communicating 

with the RoT via a secondary BMC tunnel through the in-

band KCS interface to the BMC.   This interface is physically 

I2C, LPC or eSPI to the BMC.   The SSIF or KCS protocol from 

the host to the BMC can create a secure virtual tunnel and 

enable the host CPU to authenticate with the RoT and 

retrieve firmware measurements. 

 

 

 

 

 

 

 

Figure 6 IB Interface 
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