

Project Cerberus
Firmware Challenge

Specification

Author:

Bryan Kelly, Principal Firmware Engineering Manager, Microsoft

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org ii

Revision History

Date Description

28-08-2017 V0.01 - Initial Draft

28-09-2017 V0.02 - Add References section

28-10-2017 V0.03 - Move message exchange from protocol to register based

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org iii

© 2017 Microsoft Corporation.

As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web

Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-

owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at

http://www.opencompute.org/participate/legal-documents/, which may also include additional parties to those listed

above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The

contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability,

non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or

otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE

LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS

GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE,

AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY

REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF

MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); I2C IS A TRADEMARK AND

TECHNOLOGY OF NXP SEMICONDUCTORS ; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.;

ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO

PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC;

WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON

SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL

SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY

ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION;

SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM

PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL

TERMS.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.opencompute.org/participate/legal-documents/

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 1

Table of Contents

Summary ... 5

1 Physical Communication Channel .. 5

1.1 Power Control ... 7

2 Communication ... 8

2.1 RSA Key Generation ... 8

2.2 Chained Measurements ... 9

2.1 Protocol and Hierarchy ... 10

3 Protocol Format .. 11

3.1 PEC Handling .. 11

3.2 Write Word Command... 11

3.3 Read Word Command.. 12

3.4 Write Block Command ... 12

3.5 Read Block Command .. 12

3.6 ... 13

3.7 Message Splitting ... 13

3.8 Payload Format .. 13

4 Sessions ... 14

4.1 Session establishment ... 15

4.2 Session TLS Setup ... 16

4.3 Session-less Setup .. 16

5 Register Format ... 17

5.1 Type Code .. 18

5.2 Active Component RoT Commands ... 18

5.3 Register Structures .. 19

5.4 Firmware Version ... 19

5.5 Capabilities ... 20

5.6 Device Id .. 20

5.7 Session Query .. 21

5.8 Session Activate ... 22

5.9 Challenge Certificate .. 23

5.10 Authentication Certificate ... 23

5.11 Session Key .. 24

5.12 Set Policy .. 24

5.13 Get Policy ... 25

5.14 Get Debug Log ... 26

5.15 Clear Debug Log ... 26

5.16 Get Tamper Log ... 26

5.17 Flash Descriptors .. 27

5.18 Signature Key ... 27

2 October 28, 2017

5.19 Signature Refresh ... 28

5.20 Retrieve Signature ... 28

5.21 Recover Firmware .. 28

5.22 Flash Checksum.. 28

5.23 Set Hash Key (PA-RoT) ... 29

5.24 Firmware Challenge (PA-RoT) .. 29

6 Platform Active RoT (PA-RoT) .. 30

6.1 Platform Firmware Manifest (PFM) ... 30

6.2 RoT External Communication interface ... 31

6.3 Host Interface .. 32

6.4 Out Of Band (OOB) Interface ... 32

7 References .. 33

7.1 DICE Architecture ... 33

7.2 RIoT .. 33

7.3 DICE and RIoT Keys and Certificates .. 33

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 3

List of Figures

Figure 1 Motherboard I2C lane diagram ... 6

Figure 2 Id Key Generation ... 9

Figure 3 Measurement Calculation ... 9

Figure 4 Root of Trust Hierarchy ... 10

Figure 5 Write Word Command .. 12

Figure 6 Read Word .. 12

Figure 7 Write Command .. 12

Figure 8 Block Read Command ... 12

Figure 9 Command Payload .. 13

Figure 10 Session Setup .. 15

Figure 11 Register Read Flow .. 17

Figure 12 External Communication Interface ... 31

Figure 13 Host Interface.. 32

List of Tables

Table 1 Command Types ... 18

Table 2 Register ... 18

Table 3 Firmware Version Write Request ... 19

Table 4 Get Firmware Version Response .. 19

Table 5 Device Capabilities ... 20

Table 6 Get Device Id Read Response ... 20

Table 7 Get Session Write Request ... 21

Table 8 Session Activate .. 22

Table 9 Get Session Certificate Register Space ... 23

Table 10 Session Certificate Authenticate .. 23

Table 11 Key Exchange Write .. 24

Table 12 Set Policy Request .. 24

Table 13 Get Policy Response ... 25

Table 14 Get Debug Log Response.. 26

Table 15 Clear Debug Log Request ... 26

Table 16 Get Tamper Log Register Space ... 26

Table 17 Signature Key .. 27

Table 18 Signature Refresh ... 28

Table 19 Signature Register .. 28

Table 20 Recover Firmware Request .. 28

Table 21 Write Flash Checksum offsets .. 28

file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497730201
file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497730209
file:///C:/Users/Bryankel/Downloads/Project_Olympus_StandAlone_Rack_Manager.docx%23_Toc497730212

4 October 28, 2017

Table 22 Read Flash Checksum ... 29

Table 23 Set Firmware Challenge ... 29

Table 24 Firmware Challenge ... 29

Table 25 PFM Attributes ... 30

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 5

Summary

Throughout this document, the term “Processor” refers to all Central Processing Unit (CPU), System On

Chip (SOC), Micro Control Unit (MCU), and Microprocessor architectures. The document details the

required challenge protocol required for Active Component and Platform RoTs. The Processor must

implement all required features to establish a hardware based Root of Trust. Processors that

intrinsically fail to meet these requirements must implement the flash protection Cerberus RoT

described Physical Flash Protection Requirements document.

Active Components are add-in cards and peripherals that contain Processors, Microcontrollers or

devices that run soft-logic.

This document describes the protocol used for attestation measurements of firmware for the Platform’s

Active RoT. The specification encompasses the pre-boot, boot and runtime challenge and verification of

platform firmware integrity. The hieratical architecture extends beyond the typically UEFI

measurements, to include integrity measurements of all Active Component firmware. The document

describes the APIs needed to support the attestation challenge for Project Cerberus.

1 Physical Communication Channel
The typically cloud server motherboard layout has I2C buses routed to all Active Components. These I2C

buses are typically used by the Baseboard Management Controller (BMC) for the thermal monitoring of

Active Components. In the Cerberus board layout, the I2C lanes are first used by the platform Cerberus

microcontroller during boot and pre-boot, then later mux switched back to the BMC for thermal

management. Cerberus can at any time request for the BMC to yield control for runtime challenge and

attestation. Cerberus controls the I2C mux position, and coordinates access during runtime. The

Cerberus microcontroller on the motherboard is referred to as the Platform Active Root-of-Trust (PA-

RoT). This microcontroller is head of the hierarchical root-of-trust platform design, and contains an

attestable hash of all platform firmware kept in the Platform Firmware Manifest (PFM).

Most cloud server motherboards route I2C to Active Components for thermal monitoring, the addition

of the mux logic is the only modification to the motherboard. An alternative to adding the additional

mux, is to tunnel a secure challenge channel through the BMC over I2C. Once the BMC has been loaded

and attested by Cerberus, it can act as an I2C proxy. This approach is less desirable, as it limits platform

attestation should the BMC ever fail attestation. In either approach, physical connectors to Active

Component interfaces do not need to change as they already have I2C.

Active Components with the intrinsic capabilities described in the “Processor Secure Boot

Requirements” document do not need to place the physical Cerberus microcontroller between their

Processor and Flash. Active Components that do not meet the requirements described in the

“Processor Secure Boot Requirements” document are required to implement the Cerberus micro-

6 October 28, 2017

controller between their Processor and Flash to establish the needed Root-of-Trust. Figure 1

Motherboard I2C lane diagram, represents the pre-boot and post-boot measurement challenge

channels between the motherboard PA-RoT and Active Component RoTs (AC-RoT).

Figure 1 Motherboard I2C lane diagram

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 7

The Project Cerberus enforced firmware integrity attestation is a hierarchical architecture. Most Active

Components in the modern server boot to an operational level before the platform’s host processors

complete their initialization and become capable of challenging the devices. In the Cerberus design, the

platform is kept in power-on reset, and Active Components must respond to challenges from the PA-RoT

confirming the integrity of their firmware before they receive full voltage to power their primary

functional interfaces such as PCIe.

In this version of the Cerberus platform design, the Platform Firmware Manifest (PFM) is static. The

manifest is programmable through the PA-RoT’s communication interface. Auto-detection of Active

Components and computation of the PFM maybe considered in future version of the specification.

The PA-RoT uses the manifest to challenge the Active Components and record their measurements. The

PA-RoT uses a digest of these measurements for the platform level measurement, creating a hierarchical

platform level digest that can attest the integrity of the platform and active component firmware.

The PA-RoT and all Active Components RoT’s (AC-RoT) will support Authentication, Confidentiality and

Integrity of message challenges. To facilitate this, AC-RoT are required to support certificate

authentication. Once a session is established, AES encryption can be used for confidentiality. The

Active Component will support a unique challenge certificate for authentication.

Note: I2C is a low speed link, there is a performance tradeoff between optimizing the protocol

messages and strong cryptographic hashing algorithms that carry higher bit counts. RoT’s that cannot

support certificate authentication are required to support hashing algorithms for HMAC of critical data.

1.1 Power Control
In the Cerberus motherboard design, power and reset sequencing is orchestrated by the Platform’s

Active RoT. When voltage is applied to motherboard, it passes through in-rush circuity to a CPLD that

performs time sensitive sequencing of power rails to ensure stabilization. Once power good level is

established, the platform is considered powered. Upon powering the platform in the Cerberus design,

the only active component powered-on is the Active RoT. The RoT first securely loads and

decompresses its internal firmware, then verifies the integrity of Baseboard Management Controller

(BMC) firmware by measuring the BMC flash. When the BMC firmware has been authenticated the

Active RoT enables power to be applied to the BMC. Once the BMC has been powered the Active RoT

authenticates the firmware for the platform UEFI, during which time the RoT sequences standby power

to the PCIe slots and begins Active Component RoT challenge. When the UEFI has been authenticated

the platform is held in system reset, the Active RoT will keep the system in reset until Active Component

RoT’s have responded to the measurement challenge. Any PCIe ports that do not respond to their

measurement challenge will be subsequently unpowered. Should any of the expected Active

Components fail to respond to the measurement challenge, Cerberus polices determine whether the

system should boot with the Active Component powered off, or the platform should remain on standby

8 October 28, 2017

power, while reporting the measurement failure to the Data Center Management Software through the

OOB path.

2 Communication
The Cerberus platform Active RoT communicates with the Active Component RoT’s over I2C. The

protocol supports a challenge for key exchange and measurement channel. The Cerberus Platform

Active RoT has the intrinsic ability to generate a secure key pair unique to the microcontroller. The

private key is inaccessible outside of SRAM on the Cerberus RoT. Key generation and chaining follows

the RIoT specification, described in section: 7.3 DICE and RIoT Keys and Certificates. Derived platform

public keys are distributed to the Active Components RoT’s. This public key is used by the Active

Component RoT’s to sign the digest their firmware measurements and establish a symmetric key for

message encryption.

2.1 RSA Key Generation
The Cerberus platform Active RoT should support the Device Identifier Composition Engine (DICE)

architecture. In DICE, the Composite Device Identifier (CDI) is used as the foundation for device identity

and attestation. While keys derived from the device secret that generates the CDI is used for data

protection within the microcontroller. The Device Id key is derived cryptographically from the CDI, using

the UUID for personality. Furthermore, Cerberus implements RIoT architecture for certificate

generation and attestation. For details on key generation on DICE and RIoT review section: 7.3 DICE

and RIoT Keys and Certificates

Note: The CDI is a composite key based on the Device Secret (Device Unique), and seconds stage

bootloader (mutable). The second stage bootloader is mutable code, but not typically updated with

firmware updates. The second stage bootloader may change during device revocation. This will result

in a CDI change, which would cause boot time certificate chains to break. A change to the CDI would

result in different keys in derivation chain. Key revocation typically requires re-keying of the device.

The CDI key can generate an asymmetry Public/Private key pair with the device UUID and

deterministically regenerate the same key pair provided the CDI that derives does not change. The CDI

can only change if the mutable code of the second stage bootloader is changed. Proof-of-knowledge of

the CDI private key can be used as a building-blocks in a cryptographic protocol to identify the device.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 9

Each layer of the software can use its private key certificate to sign and issue a new certificate for the

next layer, each successive layer

continues this chain. The

certificate in the application layer

can be used to establish TLS style

session proving the device and

software authenticity. Non-

application layer private keys used

to sign certificates must be

accessible only to the layer they

are generated. The Public keys

are persisted or passed to upper

layers, and eventually exchanged

with upstream entities.

2.2 Chained Measurements
The Cerberus firmware measurements based on the Device Identifier Composition Engine (DICE)

architecture: https://trustedcomputinggroup.org/work-groups/dice-architectures

The first mutable code on the RoT is the Second Bootloader (SBL). The CDI is a measurement of the

HMAC(Device Secret Key, SHA2(SBL)). This measurement then passes to the second stage boot loader,

that calculates the digest of the Third Bootloader (TBL), on the Cerberus RoT this is the Application

Firmware: HMAC(CDI, SHA2(TBL)). The TBL will take additional area measurements of the QSPI flash it

protects, both active and inactive areas. At each stage, the measurement captured should be signed by

the attestation key for the firmware level calculating the measurement. The measurement and

signature should be made available for the measurement challenge.

Figure 3 Measurement Calculation

Figure 2 Id Key Generation

https://trustedcomputinggroup.org/work-groups/dice-architectures

10 October 28, 2017

2.1 Protocol and Hierarchy
The following section describes the capabilities and required protocol and Application Programming

Interface (API) of the motherboard’s Platform Active RoT (PA-RoT) and Active Component to establish a

platform level RoT. The Cerberus Active RoT and Active Component RoT’s are required to support the

following I2C protocol.

The protocol is derived from the SMBus protocol with similar START and STOP framing conditions. Unlike

SMBUS the Active Components are not restricted the 32 byte payload limitation. The Active Component

RoT’s with I2C FIFO limitations can advertise their maximum buffer limit. The master will query the

device capabilities and adhere to the buffer limitations. The Write Block command will increase its

offset after every incremental read until the total message length has been read from the register space.

The Platform Cerberus Active RoT is always the I2C master. Active Component RoT’s can be configured

as Slave, or Slave and Master. There is no requirement for bus arbitration as master and slave

definitions are hierarchically established. The only hierarchy whereby the Active Component RoT

becomes both Slave and Master is when there is a downstream sub-device, such as the Host Bus

Adapter (HBA) depicted in the following block diagram:

Figure 4 Root of Trust Hierarchy

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 11

In this diagram, the HBA RoT is a slave to the Platform Active RoT and Master to the downstream HBA

Expanders. To the Platform’s Active RoT the HBA is a Slave RoT. To the HBA Expanders, the HBA

Controller is a Master RoT.

The messaging protocol encompasses SMBus “Write Word”, “Read Word”, “Write Block” and “Read

Block” commands, whereby the Active Component RoT is always accessed as slave the Platform’s Active

RoT as master.

3 Protocol Format
This version of the specification encapsulates the protocol inside SMBus Write/Read Word and Block

commands. The interface is register based using similar read and write subroutines of I2C devices. A

future specification may consider other already established I2C protocols for transmitting the structures

described in this specification. The data transmit and receive requirements are 32 bytes or greater.

Large payloads can be truncated and retrieved recursively spanning multiple block read or write

commands.

The block read SMBUS command is specified in the SMBUS specification. Slave address write and

command code bytes are transmitted by the master, then a repeated start and finally a slave address

read. The master keeps clocking as the slaves responds with the selected data. The command code

byte can be considered register space.

3.1 PEC Handling
The SMBus protocol implementation leverages the 8bit SMBus Packet Error Check (PEC) for

transactional data integrity. The PEC is calculated by both the transmitter and receiver of each packet

using the 8-bit cyclic redundancy check (CRC-8) of both read or write bus transaction. The PEC

accumulates all bytes sent or received after the start condition.

An Active RoT that receives an invalid PEC can optionally NACK the byte that carried the incorrect PEC

value or drop the data for the transaction and any further transactions (read or write) until the next

valid read or write Start transaction is received.

3.2 Write Word Command
The first byte of the Write Word command is the command code, followed by the data to be written.

The following diagram demonstrates the master RoT sending the Component RoT a Write Word.

12 October 28, 2017

Figure 5 Write Word Command

3.3 Read Word Command
The first byte of the Write Word command is the command code. The following diagram demonstrates

the master RoT sending the Component RoT a Write Word.

Figure 6 Read Word

3.4 Write Block Command
The Write Block transaction transfers messages up to the N bytes in length. The length field provides

the count of data bytes in the payload. The block write begins with a slave address and write condition,

after the command code the byte count indicates the length of bytes to follow. The maximum packet

length per message determined by the session negotiated packet length.

Figure 7 Write Command

3.5 Read Block Command
The read command contains a response to the responder slave address. The length of each packet is

determined by packet length negotiated during session setup. The total length of a message can be

transferred over multiple packets. The Read Block begins with a slave address and a write condition.

After the command a byte count which describes how many more bytes will follow in the message

Figure 8 Block Read Command

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 13

3.6 Message Splitting
The protocol supports Write Block and Read Block commands. Standard SMbus transactions are limited

to 32 bytes of data. It is expected that some Active Component RoTs with intrinsic Cerberus capabilities

may have limited I2C message buffer designed around the Smbus protocol that limit them to 32 bytes.

To overcome hardware limitations in message lengths, the Capabilities register includes a buffer size for

determining the maximum packet size for messages. This allows the Platform’s Active RoT to send

messages larger than 32 bytes. If the Active Component RoT only permits 32 bytes of data, the

Platform’s Active RoT can segment the Read or Write Blocks into multiple packets totaling the entire

message. Each segment includes decrementing packet number that sequentially identifies the part of

the overall message. To stay within the protocol length each message segment must be no longer than

255 bytes.

3.7 Payload Format
The payload portions of the SMbus Write and Read blocks will encapsulate the protocol defined in this

specification. The SMBus START and STOP framing and ACK/NACK bit conditions are omitted from this

portion of the specification for simplification. To review the specifics of START and STOP packet framing

and ACK/NACK conditions refer to the SMBus specification.

Figure 9 Command Payload

The data blocks of the Write and Read commands will encapsulate the message payload. The

encapsulated payload includes a uint16 register offset, sequence number and command identification

byte in addition to the body of the command in the data section.

14 October 28, 2017

4 Sessions
A session in the context of this specification is the process of establishment of authentication, integrity

and confidentiality between the external data center software and the PA-RoT, or between the PA-RoT

and the AC-RoT. Since only a single session is supported on a given I2C channel, there are three types

of session supported by the Platform RoT, secured and authenticated, secured and unsecured. The

secured authenticated sessions will use certificate authentication.

Although I2C buses are internal to the system, in some circumstances cable routing to external chassis

can take these signals off the motherboard. In these instances, the AC-RoT should support secure

session adding additional encryption to deter physical the protocol snooping and replay. The secure

protocol requires a certificate and challenge between the PA-RoTs and the AC-RoT. This mechanism

provides authentication, confidentiality and data integrity.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 15

4.1 Session establishment
The initial session authentication uses certificate authentication that results in a secret being exchanged

that forms session keys for a MAC and confidentiality.

To establish a session over I2C, the sequence starts with the PA-RoT issuing a SMBUS Block Read to

Session Query Command. The AC-RoT responds with cipher capabilities and random number. The PA-

RoT then issues a Activate Session command contain a RN2.

Note: If the device signals, it does not support sessions the following public key exchange does not

occur. The command exchanges occur in a session less context, whereby the Platform RoT random

forms the session id for ensuring freshness of the measurement KDF.

The PA-RoT will challenge the AC-RoT for a

session by issuing a Challenge Certificate

block read command. The AC-RoT will

respond with a public certificate containing

a CA digitally signed signature.

The PA-RoT will verify the signed certificate

signature of the AC-RoT, if verification fails

or certificate has been revoked, the session

challenge will fail. The PA-RoT and AC-RoT

can be updated with revocation patches,

see firmware update specification for

further details.

If the certificate signature is valid, and the

AC-RoT supports authentication, the PA-RoT

will write its signed public certificate to the

AC-RoT. The AC-RoT will verify the integrity

of the certificate using the digital signature.

If the signature does not match or the

certificate has been revoked the challenge

will fail.

The PA-RoT will then write a random

number (pre-master) hashed with public key

of the certificate from the AC-RoT.

The Active RoT and the Active Component

will use the random numbers and pre-

master key to generate session keys. These

will form a symmetric key for encryption for

Figure 10 Session Setup

16 October 28, 2017

the remainder of their communication. This sequence is a TLS handshake mechanism.

4.2 Session TLS Setup
1. PA-RoT: Session Query

- AC-RoT: provides max payload size, ciphers supported, session support
- AC-RoT: provides random number (RN1)

2. PA-RoT: Session Activate, specifying ciphers
- PA-RoT provides random number (RN2)

3. PA-RoT: Challenge Certificate, Public cert (pk1)
- PA-RoT, verifies Cert Signature of PK1

4. PA-RoT: If Session Query (1) indicates Authentication is supported.
- PA-RoT: Authentication Certificate, Public cert (PK2)
- AC-RoT: verifies Cert Signature of PK2

5. PA-RoT Session Key, pre session key(RN3) hashed with PK1
- Both sides generate session key, HMAC(RN3, RN2 | RN1)
- AC-RoT responds with AC.

6. Session Activation transmission AES encrypted
7. Session Sequence incrementally changes on message transactions.
8. Session sync for session state.

4.3 Session-less Setup
For Active Component RoT’s that do not support sessions, a derived session id is still required for

measurement freshness. The session handshake follows a subset of the exchanges for RoT’s supporting

sessions. The following differences occur:

1. Get Session, containing random number
- Response provides max payload size, *ciphers supported, *session support
- AC-RoT provides a random number(RN1)

2. Set Session, specifying ciphers none.
- PA-RoT provides random number (RN2)
- Both sides generate session key, HMAC(RN2, RN1)

3. Session Sequence incrementally changes on message transactions.
4. Session sync for session state.

Note: When session support signals the RoT does not support sessions, the RN1 is used as the key for
HMAC functions with algorithms defined in Session Challenge.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 17

5 Register Format
The following section describes the register format to support the challenge protocol. The SMBUS

command byte indexes the register, while additional writes offsets index inside the register space. The

offset and respective response is encapsulated into the data portions of I2C Write and Read Block

commands. The PA-RoT is always the I2C master, therefore Write and Read commands are described

from the perspective of the I2C master.

Certain registers may contain partial or temporary data while the register is being written across

multiple commands. The completion or sealing of register writes can be performed by writing the seal

register to the zero offset.

The following diagram depicts register read access flow for a large register space:

Figure 11 Register Read Flow

Cmd &
Offset

Read
Register

Increment
Offset

Length
Retrieved?

Finished

Yes

No

Cmd &
Offset

Read
Register

Increment
Offset

Length
Retrieved?

Finished

Yes

No

The following diagram depicts register write access flow for a large register space, with required seal

(update complete bit):

Write
Register

Increment
Offset

Set
Seal

Write
Complete?

Requires
Seal bit?

Finished

Yes

NoYes

No

Write
Register

Increment
Offset

Set
Seal

Write
Complete?

Requires
Seal bit?

Finished

Yes

NoYes

No

18 October 28, 2017

5.1 Type Code
The type codes associated with the commands determine whether the command can be executed

outside of an obfuscated session:

Table 1 Command Types

Type Description
1 Accepted inside or outside session. Typically pre-session

commands

2 Session setup commands

3 Session required commands, obfuscated by session encryption
or HMAC, register content is normally scrambled.

The protocol follows the typical I2C register based interface whereby given register offsets represent

write and read registers. The reserved register space should be sufficient to accommodate the data

described for the register.

5.2 Active Component RoT Commands
The following table describes the commands accepted by the Active Component RoT. All commands are

master initiated. The command number is not representative of a contiguous memory space, but an

index to the respective register

Table 2 Register

Register Name Type Command Length R/W Description

Firmware Version 01h 32h 16 R/W Retrieve firmware version information

Device Id 01h 33h 8 R Retrieves Device Id

Capabilities 01h 34h 9 R Retrieves Device Capabilities

Session Query 02h 3C 7 R PA-RoT retrieves session information

Session Activate 02h 3D
7

W
PA-RoT sets session variables based on Session
Query

Challenge
Certificate

02h 3Eh

R PA-RoT retrieves and verifies AC-RoT certificate

Authentication
Certificate

02h 3Fh

W PA-RoT sends session certificate

Session Key 02h 40h W Exchange pre-master session keys

Get Session Sync 02h 25h R Retrieve session state from RoT

Set Policy 03h 4Ah 5 W Set Firmware and recovery failure policy

Get Policy 03h 4Bh 5 R Get Firmware and recovery failure policy

Get Debug Log 03h 50h R Retrieve debug log

Clear Debug Log 03h 51h W Clear debug log

Get Tamper Log 03h 52h R Get FW change log

Flash Descriptors 03h 5Ah R Retrieve session challenge

Signature Key 03h 5Bh W Updates

Signature Refresh 03h 5Ch

W
Refreshes firmware measurement, calculated
with signature key.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 19

Retrieve Signature 03h 5Eh

R
Reads firmware measurement, calculated with
Signature key.

Recovery Firmware 03h 5Dh W Restore Firmware Index using backup.

Flash Checksum 03h 5Fh R Get Flash area checksum

5.3 Register Structures
The following section describes the structures of registers. When written or read, the register content

exchange is encapsulated in the “data” field described in 3.7 Payload Format. The register offsets are

described in section: 5

5.4 Firmware Version
This command write command sets the target firmware block to retrieve the version.

Table 3 Firmware Version Write Request

Payload Description

1 Area Index:
00h = Entire Firmware
Additional indexes are firmware specific

The subsequent read to the Firmware Version registers, retrieves the version associated with the

previously written area index. Sixteen contiguous bytes should be provisioned in the register space for

firmware version. The data should be ASCII formatted and null terminated.

Table 4 Get Firmware Version Response

Register Description

1:15 Firmware Version Number ASCII Formatted

20 October 28, 2017

5.5 Capabilities
Eight bytes are reserved in the register space for the response.

Table 5 Device Capabilities

Payload Description

1 Payload Size:

2 Mode:
[7:6]

00 = AC-RoT
01 = PA-RoT

[5:4] Master/Slave
00 = Unknown
01 = Master
10 = Slave

[3] Reserved
[2:0] Security

0000 = None
0001 = Hash/KDF
0010 = TLS
0100 = Auth

5.6 Device Id
Eight bytes are reserved in the register space for the response.

Table 6 Get Device Id Read Response

Payload Description

1:2 Vendor ID; LSB

3:4 Device ID; LSB

5:6 Subsystem Vendor ID; LSB

7:8 Subsystem ID; LSB

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 21

5.7 Session Query
This register provides the RoT session capabilities. Seven bytes are reserved in the register space for

reading the response. The data is always unencrypted/unscrambled. The Random Number is

randomized on every read.

Table 7 Get Session Write Request

Payload Description

1 Bit [7] Session Supported:
01b = Session Supported
00b = Session not Supported

Bit [6] reserved
Bit [5:3] Session Type
 000 = unsecured
 001 = secured
 010 = secured and Authenticated
Bit [2:0] confidentiality ciphers supported

000 = None
001 = 128 AES CBC
010 = 256 AES CBC

2 Bit [7:5] Algorithm
000 = None
001 = SHA1
010 = SHA2
100 = SHA3

Bit [3:0] Hashing algorithms supported
000 = None
001 = SHA-128
010 = SHA-256
100 = SHA-512

3 Bit [7:4] Reserved
RSA Signature

0000 = None
0001 = 512
0010 = 1024
0100 = 2048
1000 = 4098

4:7 32-bit random number (RN1). LSB First.

22 October 28, 2017

5.8 Session Activate
Writing to this register initiates a session; the register can be written at any time. If a session was

previously established it will renegotiate/override the session. As devices only support a single session

over a given I2C channel, this effectively closes and restarts a new session on that channel. Registers

written on a given channel pertain to that channel only.

Table 8 Session Activate

Payload Description

1 Bit [7] Session Supported:
01b = Session Supported
00b = Session not Supported

Bit [6] reserved
Bit [5:3] Session Type
 000 = unsecured
 001 = secured
 010 = secured and Authenticated
Bit [2:0] confidentiality ciphers supported

000 = None
001 = 128 AES CBC
010 = 256 AES CBC

2 Bit [7:5] Algorithm
000 = None
001 = SHA1
010 = SHA2
100 = SHA3

Bit [3:0] Hashing algorithms supported
000 = None
001 = SHA-128
010 = SHA-256
100 = SHA-512

3:6 32-bit random number (RN2). LSB First.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 23

5.9 Challenge Certificate
This register space contains the public attestation certificate for the AC-RoT. If the Session Query

command byte 1, bit [7] indicates sessions are support the PA-RoT read this register space for the AC-

RoT’s public certificate.

Table 9 Get Session Certificate Register Space

Register Description

1:2 Certificate Length

3:N Certificate data (PK1)

The Challenge Certificate command/register will a zero offset will read the first N number of bytes.

Where N is the number of bytes to read. The first two bytes in the register contain the certificate

length. The PA-RoT will issue a Write Word or Block Write to offset into the register space.

Example:

 Master: Block Read: Cmd: = 21h

 Slave: 2 bytes Certificate Length + 30 bytes of Certificate data.

 Write Word: Cmd 21h, Offset: 2000h

5.10 Authentication Certificate
If the Session Query register indicates authentication is supported/required, the PA-RoT will write its

public certificate on the AC-RoT. If secure and authenticated session are supported, and the AC-RoT

certificate verifies successfully, then the PA-RoT will write this challenge certificate.

Table 10 Session Certificate Authenticate

Register Description

1 Register Seal:
00: Write Complete
01: Write in Progress

2:3 Length

4:N Certificate data (PK2)

The AC-RoT should verify the authenticity of the Authentication Certificate when the command is

complete.

24 October 28, 2017

5.11 Session Key
After verifying the Challenge Certificate authenticity, the PA-RoT will write a public key-hashed pre-

session key to the AC-RoT, using the PA-RoT’s public key.

Table 11 Key Exchange Write

Register Description

1 Register Seal:
00: Write Complete
01: Write in Progress

2:3 Length

4:N (PK1)Hash of pre-session key (RN3)

5.12 Set Policy
Set the policy to use for slave attestation or firmware recovery failures. The policy actions occur in

series, for triggering multiple actions

Table 12 Set Policy Request

Register Description

1 Device Id: 00 for AC-RoT, component index for PA-RoT

2 Area Index: Offset to firmware region

3 Policy Id

4 [7:5] Policy Type:
01h = Boot Firmware recovery failure
02h = Runtime Firmware recovery failure
03h = Boot Attestation failure
04h = Runtime Attestation failure

[4] Threshold Counter, 00b = Enabled 01b = Disabled

[3:0] Threshold Count

5 [7:4] First Action:
00h: Warning Log
01h: Error Log
02h: Reset
03h: Power off Device
04h: Restore active image
05h: Restore default image

[3:0] Second Action:

00h: Warning Log
01h: Error Log
02h: ACPI Shutdown/Reset
03h: Power off Device
04h: Restore active image
05h: Restore default image

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 25

5.13 Get Policy
Get the current policy for handling firmware recovery or attestation failures.

Table 13 Get Policy Response

Register Description

1 Device Id: 00 for AC-RoT, component index for PA-RoT

2 Area Index: Offset to firmware region

2 Policy Id

4 [7:5] Policy Type:
01h = Boot Firmware recovery failure
02h = Runtime Firmware recovery failure
03h = Boot Attestation failure
04h = Runtime Attestation failure

[4] Threshold Counter
00b = Enabled
01b = Disabled

[3:0] Threshold Count

5 [7:4] First Action:
00h: Warning Log
01h: Error Log
02h: Reset
03h: Power off Device
04h: Restore active image
05h: Restore default image

[3:0] Second Action:

00h: Warning Log
01h: Error Log
02h: Reset
03h: Power off Device
04h: Restore active image
05h: Restore default image

26 October 28, 2017

5.14 Get Debug Log
Get the internal log for the RoT.

Table 14 Get Debug Log Response

Register
Offset

Description

1:2 Length in bytes

3:N The contents of the log

5.15 Clear Debug Log
Clear the log in the RoT.

Table 15 Clear Debug Log Request

Register
Offset

Description

5.16 Get Tamper Log
Get the change history of critical RoT components.

Table 16 Get Tamper Log Register Space

Payload Description

1:2 Length in bytes

3:N The contents of the log

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 27

5.17 Flash Descriptors
The flash descriptor structure describes the regions of flash for the device.

Payload Description

1 Area Count. Each following 2 byte increments describe an Area in indexed
order:

2:N Byte 1: Index Number
[7] Reserved
[6:0]

Index Number
Byte 2: Identifier

 [7]
 00: Read-Only
 01: Writable
 [6]
 00: Primary
 01: Backup
 [5:4]
 Area:
 00: Signature
 01: Metadata

 02: Boot Loader
 03: Application Firmware

 3:0
 Instance Id

5.18 Signature Key
This register sets a key for the HMAC of the public key signed FW image. The Key is used in

recalculation of the firmware digest. Writing to the register triggers the Active Component to re-

calculate signatures

Table 17 Signature Key

Payload Description

1 Nonce [7]
00b No KDF, ignore nonce in bytes 3-6
01b KDF with nonce in bytes 3-6
[6]
 Index Number

2:6 Nonce for signature KDF

28 October 28, 2017

5.19 Signature Refresh
Triggers the Active Component to re-calculate signatures against the attestation freshness seed. The
command is not intended to reload the component and calculate the hash chain that forms the
measurement, it is intended to ready the measurement for exchange performing a KDF with the
freshness signature key This command may be send ahead of the Read signature challenges.

Table 18 Signature Refresh

Payload Description

5.20 Retrieve Signature
The Signature registers contain the corresponding signature written in the 5.17 Flash Descriptors

Table 19 Signature Register

Payload Description

1:2 Length in bytes

3:N Chained digest of firmware region, with KDF of the signature using nonce in
5.18 Signature Key

5.21 Recover Firmware
Start the firmware recovery process for the device. Not all devices will support all types of recovery.

Table 20 Recover Firmware Request

Register
Offset

Description

1 Firmware image to use for recovery:
0: Index

5.22 Flash Checksum
This command returns a CRC-32 checksum of the flash block.

Table 21 Write Flash Checksum offsets

Register Description

1:3 Start Address LSB first.

4:7 End Address LSB First.

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 29

Table 22 Read Flash Checksum

Register Description

 1 [3:0] Status:
0. Complete
1. In-progress
2. Error

[7:4] Sub Status

2:3 Time in seconds to complete

4:7 CRC-32 Checksum of flash block

5.23 Set Hash Key (PA-RoT)
This register is only used on the PA-RoT, it sets a key for the HMAC of the public key signed FW image,

used in recalculation of the firmware digest.

Table 23 Set Firmware Challenge

Payload Description

1 Device Id

2 Area Index, offset to firmware region

3:6 HMAC Key

5.24 Firmware Challenge (PA-RoT)
This register returns HMAC of the public key signed FW image digest with the HMAC salt.

Table 24 Firmware Challenge

Payload Description

1:2 Length in bytes

3:N HMAC(Key, SGN(pk)(FW))

30 October 28, 2017

6 Platform Active RoT (PA-RoT)
The PA-RoT is responsible for challenging the AC-RoT’s and collecting their firmware measurements.

The PA-RoT retains a private manifest of active components that includes addresses, buses, firmware

versions, digests and firmware topologies.

The manifest informs the PA-RoT on all the Active Components in the system. It provides their I2C

addresses, and information on how to verify their measurements against a known or expected state.

Polices configured in the Platform RoT determine what action it should take should the measurements

fail verification.

In the Cerberus designed motherboard, the PA-RoT orchestrates power-on. Only Active Components

listed in the challenge manifest, that pass verification will be released from power-on reset.

6.1 Platform Firmware Manifest (PFM)
The PA-RoT contains a Platform Firmware Manifest (PFM) that describes the firmware permitted on

Active Component in the system. Note: The PFM is different from the boot key manifest described in

the Processor Secure Boot Requirements specification. The PFM describes firmware permitted to run in

the system across all Active Components. A complement to the PFM is generated by the PA-RoT for the

measurement comparison of components in the system. This complement is as the Reported Firmware

Manifest (RFM). The PFM and RFM are stored encrypted in the PA-RoT. The symmetric encryption key

for the PA-RoT is hardware generated and unique to each microcontroller. The symmetric key is not

exportable or firmware readable; and only accessible to the crypto engine for encryption/decryption.

The AES Galois/Counter Mode (GCM) encryption a unique auditable tag to any changes to the manifest

at both an application level and persistent storage level.

The following table lists the attributes stored in the PFM for each Active component:

Table 25 PFM Attributes

Attribute Description

Device UUID Globally Unique Id for the AC-RoT

Device Address I2C address and bus

Device Part# Device Part Number

Device Type Underlying Device Type of AC-RoT

Device ID CDI derived MFG Certificate

Device Support Device Session Support

Remediation Policy Policy(s) defining default remediation
actions for integrity failure.

Firmware Version List of firmware versions

Firmware Approved List of approved versions

Flash Areas List of offset and CRCs, used and unused

Public Key Public keys in the key manifest

Approved Public Key List of approved keys

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 31

Signature Firmware signature(s)

Digest Algorithm Algorithm used to calculate

Firmware Digest Digest of firmware image

Tamper logs GMC of tamper log

The PA-RoT maintains the original and copy of the PFM date. When the PA-RoT collects data in from the

AC-RoTs it compares values in the PRM, while constructing the RFM. A digest of the original PFM is

generated and compared to a digest of the RFM. Should a mismatch occur, the PA-RoT would raise an

event log and invoke the policy action defined for the AC-RoT. A variety of actions can be automated

for a PFM challenge failure. The actions are defined by the Active Component and Platform policies.

Note: The PA-RoT and AC-RoT enforce secure boot and only permit the download of digitally signed and

unrevoked firmware. A PFM mismatch can only occur if updates are not performed correctly, whereby

the PFM is notified of legitimate firmware change.

6.2 RoT External Communication interface
The PA-RoT connects to the platform through, either SPI, eSPI or QSPI depending on the motherboard.

Although the PA-RoT physically connects to the SPI bus, the microprocessor appears transparent to the

host as it presents only a flash interface. The management interface into the PA-RoT and AC-RoTs is an

I2C bus channeled through the Baseboard Management Controller (BMC). The BMC can reach all AC-

RoTs in the platform. The BMC bridges the PA-RoT to the Rack Manager, which in-turn bridges the rack

to the Datacenter management network. The interface into the PA-RoT is as follows:

Figure 12 External Communication Interface

The Datacenter Management (DCM) software can communicate with the PA-RoT Out-Of-Band (OOB)

through the Rack Manager. The Rack Manager allows tunneling through to the Baseboard Management

Controller, which connects to the PA-RoT over I2C. This channel is assumed insecure, which is why all

communicates are authenticated and encrypted. The Datacenter Management Software can collect the

32 October 28, 2017

RFM measurements and other challenge data over this secure channel. Secure updates are also

possible over this channel.

6.3 Host Interface
The host can communicate with the PA-RoT and AC-RoTs

through the BMC host interface. Similar to the OOB path, the

BMC bridges the host-side LPC/eSPI interface to the I2C

interface on the RoT. The host through BMC is an unsecure

channel, and therefore requires authentication and

confidentiality.

6.4 Out Of Band (OOB) Interface
The OOB interface is essential for reporting potential firmware compromises during power-on. Should

firmware corruption occur during power-on, the OOB channel can communicate with the DCM software

while the CPU is held in reset. If the recovery policy determines the system should remain powered off,

it’s still possible for the DCM software to interrogate the PA-RoT for detailed status and make a

determination on the remediation.

The OOB communication to Cerberus requires TLS and Certificate Authentication.

Figure 13 Host Interface

Open Compute Project • Project Cerberus Firmware Challenge Specification

http://opencompute.org 33

7 References

7.1 DICE Architecture
https://trustedcomputinggroup.org/work-groups/dice-architectures

7.2 RIoT
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-

things

7.3 DICE and RIoT Keys and Certificates
https://www.microsoft.com/en-us/research/publication/device-identity-dice-riot-keys-certificates

https://trustedcomputinggroup.org/work-groups/dice-architectures
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things
https://www.microsoft.com/en-us/research/publication/device-identity-dice-riot-keys-certificates

