

Project Cerberus
Processor Cryptography

Specification

Author:

Bryan Kelly, Principal Firmware Engineering Manager, Microsoft

http://opencompute.org 1

Revision History

Date Description

08/28/2017 Version 1.0

2 August 28, 2017

© 2017 Microsoft Corporation.

As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web

Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-

owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at Project Olympus

License Agreements, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The

contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability,

non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or

otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE

LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS

GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE,

AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY

REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF

MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); I2C IS A TRADEMARK AND

TECHNOLOGY OF NXP SEMICONDUCTORS ; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.;

ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO

PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC;

WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON

SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL

SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY

ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION;

SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM

PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL

TERMS.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://files.opencompute.org/oc/public.php?service=files&t=aeee8027dc207b0432c3f7feea4ece7f
http://files.opencompute.org/oc/public.php?service=files&t=aeee8027dc207b0432c3f7feea4ece7f

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 3

Contents
1 Summary ... 5

2 Secure Boot, Confidentiality and Cryptography Signing Requirements .. 5

 Secure Boot .. 5

 Flash Encryption ... 6

 Project Cerberus Security Requirements ... 6

3 High Security (HS) Processor Requirements and Boot Flow: ... 7

 Boot Process: ... 8

4 OTP Programming Process ... 9

5 Signing Process ... 9

 Manifest Signature Process: .. 9

 Image Signature Process: ... 10

 Firmware Manifest Runtime Update Process: ... 11

 Firmware Image Runtime Update Process: ... 12

6 Key Revocation: .. 12

7 General Security (GS) SOC Requirements and Boot Flow: .. 14

4 August 28, 2017

Table of Figures
Figure 1 Firmware Boot Loader .. 5

Figure 2 Boot Process .. 8

Figure 3 Image Signature Preparation .. 10

Figure 4 Encrypted Firmware Image ... 10

Figure 5 Revocation Process ... 13

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 5

1 Summary

Throughout this document, the term “Processor” refers to any and all Central Processing Unit (CPU),

System On Chip (SOC), Micro Control Unit (MCU), and Microprocessor architectures. The document

details the required ROM boot loader Secure Boot and Flash integrity protection. The Processor must

implement all required features to establish a hardware based Root of Trust to authenticate and protect

code and data that executes within the Processor.

Processors that intrinsically fail to meet all of these requirements, must implement the interposed

Cerberus RoT described in this document.

2 Secure Boot, Confidentiality and Cryptography Signing

Requirements

 Secure Boot
Secure boot adds cryptographic checks to the boot process. The purpose is to verify the integrity and

authenticity of firmware or firmware boot loaders that follow the immutable first stage ROM boot

loader. This firmware is typically mutable and referred to as Second Stage boot loader. They

immediately follow the execution of the ROM boot loader, with a key manifest being the second stage

loader, followed by the third stage boot firmware

Figure 1 Firmware Boot Loader

Secure boot establishes a chain of trust for the boot process. Starting with the ROM as the root of trust,

all subsequent firmware components get authenticated. The secure boot process uses an RSA public

key signature algorithm whereby the private key is used to generate an image signature/digest and the

6 August 28, 2017

public key typically e-fused into the processor is used to verify the signature. The public key does not

need to be kept confidential, but the initial ROM bootloader public key should not be replicable.

 Flash Encryption
Flash encryption adds obfuscation and confidentiality to firmware and the data stored within the flash

media. Flash encryption is separate from secure boot, but enhances security by obfuscating the data

contained on persistent firmware load store. This additional mechanism is useful for added obfuscation

when the processor uses external flash storage.

 Project Cerberus Security Requirements
There are two Processor security models supported in Project Cerberus:

1. High Security (HS), which includes e-fused public key or hash of public key and fully encrypted

firmware images for secure boot and secure runtime firmware update. Authentication is

established through RSA public/private key pair digest comparison during boot, while

confidentiality is enforced through AES encryption of the entire firmware package.

HS processor should support ROM crypto for verification of a RSA digest of a key manifest

providing the keys to authenticate the secure first boot loader that subsequently

authentications and decrypts firmware into secure memory to ensure the integrity of the

execution environment. The ROM accessible RSA public key is fused into OTP memory.

The processor should support a minimum of two One Time Programmable (OTP) Memory e-

fuses. At a minimum: 1 x 256 bit hash of public key. 1 x 256 bit AES symmetric key.

The processor should support additional OTP memory for the revocation of the key manifest or

equivalent functionality.

2. General Security (GS), which includes encrypted hashed checksum signature.

 There are no requirements on the ROM boot loader and Hardware secure boot.

 Runtime updates are validated by Firmware without e-fuses.

Firmware is structured to have writable regions separate from the executable and code regions.

The executable and code regions should be structured to have a consistent digest.

These controllers is less secure than HS above. If external flash is involved, flash writes need

protection with an external controller that enforces HS compatibility on the GS level SoC. See

section on Cerberus RoT.

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 7

3 High Security (HS) Processor Requirements and Boot Flow:
The following section describes the Processor requirements and boot flow for the HS classification

Processor in Project Cerberus. The Processor ROM boot loader should support the following

capabilities:

1. Support flash encryption and secure boot

2. One-Time Programmable (OTP) Memory for key storage in non-volatile memory.

a. Minimum of 256-bit OTP memory for public key SHA2 hash.

b. Minimum of 256-bit OTP memory for AES key.

c. Keys must be inaccessible outside of secure memory.

3. Support minimum SHA2 2048 bit public key authentication

4. Support AES 256 bit encryption/decryption

5. Support additional OTP memory for revocation of key chain manifests or digests.

6. Support Device Identifier Composition Engine (DICE)

a. Measurement of first mutable (BL after ROM).

b. HW protected Unique Device Secret (UDS)

c. Compound Device Identifier (CDI)

i. HMAC of UDS and first mutable code (CDI)

7. Support FIPS 140-2 compliant tamper protection.

8. Support Power on Self-Test.

9. Source Code and utility for programming memory and sealing (blowing) e-fuses.

10. Source Code and utility for signing and encrypting firmware images.

11. ROM has native ability to calculate digest of key manifest, revoke key manifest and authenticate

additional boot loaders against a key manifest.

12. ROM level asymmetric public key verification and symmetric crypto for firmware decryption

OTP memory consumes considerable silicon area. The HS Processor OTP memory area is required to

have support for key revocation, typically a cryptographic hash public key manifest or numeric version in

the manifests header that is compared against the revocation area in OTP memory.

The e-fused initial public key hash is used for the authentication of the key manifest and revocation of

manifests. This public key or hash of the public key should not be accessible outside the secure

bootloader environment. In the hashed initial public key mode, the key should not be revocable, if a

digest of multiple public keys is stored in OTP, individual key digests represented by the OTP digest may

be revocable.

8 August 28, 2017

 Boot Process:
 ROM initialization code in secure execution mode

 Decompress first boot loader code (ROM)

 Decrypts second stage key manifest, authenticates with OTP key, moves flash into secure on-

chip SRAM

 Verifies image digest signature with e-fused public key

 Verifies authorizes digest against revocation e-fuses.

 Extracts third-stage public key from key manifest

 Authenticates third-stage boot loader.

 Secure third-stage boot loader initialization from SRAM.

 Decrypts/Authenticates other firmware components using key manifest.

Figure 2 Boot Process

Note: The initial image is a key manifest of hashes of public keys uses to verify subsequent firmware

images.

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 9

4 OTP Programming Process
 Microsoft RSA Public and AES key programmed into e-fuses.

 Keys are sealed/blown. [Process reviewed]

o Component design should permit sealing e-fuses.

 There are two processes for fusing the key:

o OTP Memory programmed at dock in Microsoft or Integration facility, [*] after firmware

repaving has secured the platform.

o OTP Memory programmed at manufacturer, whereby the part is fused with the

Microsoft public key by the manufacturer. This creates a Microsoft specific part number

for the device.

[*] Keys fused at Microsoft facility by provisioning software. Until Microsoft provisions the devices,

they are untrusted. Negative and Positive testing is performed to verify the fusing process.

5 Signing Process
Microsoft uses RSA asymmetric keys (public/private) for signing and symmetric AES keys for encryption.

Multiple keys maybe required to support different boot stages device firmware. The third-stage boot

loader, or “firmware block” should be protected by the public key in the key manifest (second-stage),

subsequent keys can be stored in the firmware image, provided they are part of the key verified digest.

 Manifest Signature Process:
The integrity of the key manifest is verified by the ROM boot loader using the public key fused in OTP

memory. The manifest header contains version identification information which is verified against the

revocation area of OTP memory.

- OTP memory is fused to a Microsoft public key.

- Key manifest is generated containing hashes of firmware authentication public keys and

manifest identification.

- The keys contained in the manifest have designated purposes and unique Ids. The key id and

firmware region/area are coupled in multi-stage firmware boot loaders.

- Manifest signature is generated with the private key corresponding to the public key in device

OTP memory.

- The manifest is stored on the device internal memory and is verified by the ROM boot loader

during boot.

- Upon manifest signature version, the manifest identification stored in the manifest header is

compared against the revocation e-fuses. Revoked manifests fail integrity verification and

prevent boot.

10 August 28, 2017

 Image Signature Process:
 Microsoft reviews code, compiles code and generates a digest signature checksum of signed

binary image using RSA private key for the corresponding image component.

 The public key for the firmware image, must match the key stored in the key manifest on the

device. The key manifest is protected by the OTP memory e-fused key.

 The signature digest, public key and key identify are combined with image in a special image

format.

 Entire firmware image, header and signature can be optionally encrypted with AES 256 bit

symmetric key for additional obfuscation.

 Signed/Encrypted firmware copied to processor firmware load store through firmware update

application interfaces.

Figure 3 Image Signature Preparation

Figure 4 Encrypted Firmware Image

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 11

Figure 4 Secure Boot

 Firmware Manifest Runtime Update Process:
The firmware manifest can optionally be updated as part of a firmware update, or independently

updated as a separate firmware update. In both instances the upgrade process has similarity.

- An image containing the manifest with a header checksum is MD5 integrity verified by the

update utility.

- The header includes the public key, image signature and firmware image identification

metadata.

- Processor receives an update initiate request, if updates are permitted to the region (unlocked),

bytes are received by the processor and held in the firmware staging area.

- Once the manifest header is received and AES decrypted, the image identification metadata are

used to identify the type of firmware update and region offset.

- The manifest identification is extracted from the header and compared against the revocation

list in OTP memory. If the manifest identification is older than the latest e-fused revoked id, the

update is not permitted.

- If the manifest is not revoked, the public key in the header is hashed in secure SDRAM and

compared against the hashed OTP key.

- Upon matching the Public key hash, a digest of the firmware image is generated.

- The firmware signature is decrypted with the public key, and the newly generated digest is then

compared against the decrypted digest of the firmware image.

- Upon matching the digest, the firmware metadata informs the move from staging memory/flash

to the active area on non-volatile storage.

Note: Manifest revocation requires that recovery areas in firmware updated with the unrevoked

manifest. This is discussed in the revocation process.

12 August 28, 2017

 Firmware Image Runtime Update Process:
- An image containing the firmware image with a header checksum is MD5 integrity verified by

the update utility.

 Processor receives an update request, if updates are permitted to the region (unlocked), bytes

are received by the processor and held in firmware staging area.

 Once the header is received and AES decrypted, the image identification metadata are used to

identify the type of firmware update and region offset.

 The public key and key id are extracted from the header

 The key id must correspond to the firmware region being flashed. Multi-stage boot loaders have

multiple keys in the manifest. The key Id must correspond to the firmware region.

 The Public key is then hashed and verified against the key manifest corresponding to the key Id.

 Upon matching the Public key hash, a digest of the remaining firmware image area is generated.

 The firmware signature is decrypted with the Public key, and the newly generated digest is then

compared against the decrypted digest of the firmware image.

 Upon matching the digest, the firmware metadata informs the move from staging memory/flash

to the active area on non-volatile storage.

Note: If the Processor supports only a signal stage boot loader, it is still recommended the firmware

manifest for revocation.

6 Key Revocation:
The key manifest contains a numeric identification in its metadata that during boot is compared against

dedicated OTP memory fuses for revocation. The public key that verifies the authenticity of the key

manifest cannot itself be revoked, but authenticate manifests containing compromised keys can

themselves be revoked based upon enforcement of the ROM boot loaders verification of the manifest

identification against the OTP memory fuses reserved for revocation.

OTP memory consumes considerable silicon area and there is a limitation on the amount of revocations

that can be securely fused into the Processor. When the revocation OTP area has become exhausted, it

is required that the part permit the last fused manifest id.

This specification requires the ability to revoke key manifests a minimum of 8 times, including the final

revocation. If using single byte of OTP memory, 8 revocations should be possible.

Key revocation is performed by setting the key manifest revocation bits in the metadata of key manifest

header. Upon boot if the if the key manifest id is incrementally higher than the latest OTP memory

fused area, then the next OTP memory area is programmed one increment higher. To load a key

manifest on the Processor, the manifest must be digitally signed by the private key corresponding to the

Open Compute Project Project Olympus Server Motherboard Specification

http://opencompute.org 13

fused pubic key. Revocation can only be achieved with a valid manifest id, one increment higher than

the current manifest id, with renovation bits set in the header manifest.

Figure 5 Revocation Process

When the manifest Id is incremented and revocation bits set in a correctly signed manaifest, upon

signature verification of the key manifest, the boot loader will compare the manifest id with the

revocation OTP memory fuses. If the key manifest id is an increment higher than OTP memory, and OTP

memory has not been exhausted, the new manifest id get’s fused into OTP memory. If all reservation

OTP memory has been fused no further revocation beyond the last valid (e-fused) are permitted. If the

manifest id is valid, boot proceeds to verification of the third stage boot loader. If the manifest Id not

the current permitted version, boot will halt.

14 August 28, 2017

7 General Security (GS) SOC Requirements and Boot Flow:
In Project Cerberus, Processors that do not enforce firmware authentication or have a ROM supporting

Secure Boot, must implement the Cerberus RoT between the Processor and the Processors firmware

load store. Processors that do not support secure boot with firmware integrity checks, cannot

authenticate their first stage boot loader independently and therefore require auxiliary hardware to

enforce this minimum level of firmware protection. These Processors should support the following

capabilities in firmware:

1. A soft runtime Firmware update mode with public key digest verification.

2. Firmware structure that separates readonly and executable code regions of firmware from

mutable regions for logs.

3. Source Code to utility for calculating digest and framing firmware images with signature.

In addition, the Cerberus RoT will sit between the Process and its firmware load store (typically NOR SPI

flash) and enforce boot and runtime firmware authentication and signature integrity checks on behalf of

the GS Processor. The Cerberus RoT will prevent runtime flash access to regions of firmware deemed

locked for runtime access.

