Permalink
..
Failed to load latest commit information.
face_detector Update face detection network in samples Aug 14, 2018
CMakeLists.txt Install data for samples to correct directories, do not download face… Aug 2, 2018
README.md Merge remote-tracking branch 'upstream/3.4' into merge-3.4 Jun 4, 2018
classification.cpp Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
classification.py Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
colorization.cpp Make Intel's Inference Engine backend is default if no preferable bac… Jun 4, 2018
colorization.py Make Intel's Inference Engine backend is default if no preferable bac… Jun 4, 2018
common.hpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 Oct 13, 2018
common.py Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
custom_layers.hpp Merge pull request #12264 from dkurt:dnn_remove_forward_method Sep 6, 2018
edge_detection.py Custom deep learning layers in Python Apr 26, 2018
fast_neural_style.py Make Intel's Inference Engine backend is default if no preferable bac… Jun 4, 2018
js_face_recognition.html Update links to OpenCV's face detection network Apr 2, 2018
mask_rcnn.py Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn Aug 24, 2018
mobilenet_ssd_accuracy.py Make Intel's Inference Engine backend is default if no preferable bac… Jun 4, 2018
models.yml Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
object_detection.cpp Merge pull request #12641 from dkurt:dnn_samples_args_autofill Oct 13, 2018
object_detection.py Merge pull request #12641 from dkurt:dnn_samples_args_autofill Oct 13, 2018
openpose.cpp select the device (video capture) May 9, 2018
openpose.py Make Intel's Inference Engine backend is default if no preferable bac… Jun 4, 2018
segmentation.cpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 Oct 13, 2018
segmentation.py Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. Oct 8, 2017
text_detection.cpp core: repair CV_Assert() messages Aug 15, 2018
tf_text_graph_common.py Add a file with preprocessing parameters for deep learning networks Sep 25, 2018
tf_text_graph_faster_rcnn.py Import tensorflow to create text graphs if import cv is failed Sep 18, 2018
tf_text_graph_mask_rcnn.py Import tensorflow to create text graphs if import cv is failed Sep 18, 2018
tf_text_graph_ssd.py Import tensorflow to create text graphs if import cv is failed Sep 18, 2018

README.md

OpenCV deep learning module samples

Model Zoo

Object detection

Model Scale Size WxH Mean subtraction Channels order
MobileNet-SSD, Caffe 0.00784 (2/255) 300x300 127.5 127.5 127.5 BGR
OpenCV face detector 1.0 300x300 104 177 123 BGR
SSDs from TensorFlow 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB
YOLO 0.00392 (1/255) 416x416 0 0 0 RGB
VGG16-SSD 1.0 300x300 104 117 123 BGR
Faster-RCNN 1.0 800x600 102.9801 115.9465 122.7717 BGR
R-FCN 1.0 800x600 102.9801 115.9465 122.7717 BGR
Faster-RCNN, ResNet backbone 1.0 300x300 103.939 116.779 123.68 RGB
Faster-RCNN, InceptionV2 backbone 0.00784 (2/255) 300x300 127.5 127.5 127.5 RGB

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

Classification

Model Scale Size WxH Mean subtraction Channels order
GoogLeNet 1.0 224x224 104 117 123 BGR
SqueezeNet 1.0 227x227 0 0 0 BGR

Semantic segmentation

Model Scale Size WxH Mean subtraction Channels order
ENet 0.00392 (1/255) 1024x512 0 0 0 RGB
FCN8s 1.0 500x500 0 0 0 BGR

References