
TNL-9545 - Elasticsearch Usage and Replacement
Summary
Usages

Courseware Indexer
Index #1: courseware_content

Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Index #2: library_index
Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Index #3: course_info
Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Blockstore Library Content Indexer
Index #1: content_library_block_index

Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Index #2: content_library_index
Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Course Teams Indexer
Index: course_team_index

Document Structure
Queries Executed
Data Amounts

prod-edx
prod-edge

Raw Data
prod-edx
prod-edge
Script To Analyze

Other Findings
Abstraction Leakage
Learning MFE - course content search not enabled
http://edx.org and edge.edx.org - do not use course info search

Other Thoughts

Summary

As per this ticket:

 - TNL-9545 Getting issue details... STATUS

the TNL team is performing discovery into the parts of the platform which the team owns that uses Elasticsearch (ES). Specifically, we own:

edx-search usages within edx-platform
cms/djangoapps/contentstore - Courseware indexer
openedx/core/djangoapps/content_libraries - Blockstore-used library content indexer
lms/djangoapps/teams - Course teams indexer

edx-search provides a layer in front of ES which enables generic calls to be used when indexing content and querying that indexed content -
instead of making direct ES calls.

https://openedx.atlassian.net/browse/TNL-9545

Usages

Courseware Indexer

edx-platform code path: cms/djangoapps/contentstore/courseware_index.py

Index #1: courseware_content

Index used to search all the courseware content from all course blocks for all course runs.

Document Structure

{
 "course": <courserun ID>
 "org": <org from courserun ID above>
 "content_type": <block type such as Text, Sequence, etc.>
 "id": <usage ID>
 "start_date": <course start date>
 "content_groups": <content groups - dict of usage keys to group
names list values>
 "course_name": <course run ID>
 "location": <URL path to content>
 "content": <specific XBlock fields retrieved via block.
index_dictionary()>
}

Queries Executed

Arbitrary queries with filters:

(optional) string to use in full text search of all content fields
(optional) fields which must exist and must match a certain value
(optional) fields which, if they exist, must match a certain value
(optional) fields which, if they exist, must match a certain valuenot
(optional) terms used to aggregate results within ES

Data Amounts

This index holds the most data than any of the other indices.by far

prod-edx

For index courseware_content:
 Number of documents: 18,091,780
 Total size of all documents (bytes): 22,178,956,562 (20.66 GB)
 Average document size (bytes): 1226

prod-edge

For index courseware_content:
 Number of documents: 8,842,392
 Total size of all documents (bytes): 8,199,948,232 (7.64 GB)
 Average document size (bytes): 927

Index #2: library_index

Index used to search all the v1 content library content, which lives in the modulestore. This index has been replaced by the blockstore library’s
content indexer index.content_library_block_index

Document Structure

{
 library:
 content_type:
 problem_types:
 "content": <specific XBlock fields retrieved via block.
index_dictionary()>
}

Queries Executed

N/A

Data Amounts

prod-edx

This index does exist on prod-edx.not

prod-edge

This index exists on prod-edge - but there’s no documents stored in it.

For index library_index:
 Number of documents: 0
 Total size of all documents (bytes): 2,080 (2.03 KB)

Index #3: course_info

Index used to search all the course about blocks for all course runs.

Document Structure

{
 # non-'content' fields can filter by exact match only
 "course":
 "org":
 "advertised_start":
 "announcement":
 "start":
 "end":
 "effort":
 "title":
 "university":
 "number":
 "enrollment_start":
 "enrollment_end":
 "org":
 "modes":
 "language":
 "invitation_only":
 "catalog_visibility":
 # only 'content' field is analyzed by elasticsearch, and allows
text-search
 "content":
 "display_name":
 "overview":
 "title":
 "university":
 "number":
 "short_description":
 "description":
 "key_dates":
 "video":
 "course_staff_short":
 "course_staff_extended":
 "requirements":
 "syllabus":
 "textbook":
 "faq":
 "more_info":
 "ocw_links":
}

Queries Executed

Arbitrary queries with filters:

(optional) string to use in full text search of all content fields
(optional) fields which must exist and must match a certain value
(optional) fields which, if they exist, must match a certain value
(optional) fields which, if they exist, must match a certain valuenot
(optional) terms used to aggregate results within ES

Data Amounts

prod-edx

For index course_info:
 Number of documents: 38,160
 Total size of all documents (bytes): 58,415,823 (55.71 MB)
 Average document size (bytes): 1531

prod-edge

For index course_info:
 Number of documents: 25,154
 Total size of all documents (bytes): 38,727,052 (36.93 MB)
 Average document size (bytes): 1540

Blockstore Library Content Indexer

edx-platform code path: openedx/core/djangoapps/content_libraries/libraries_index.py

The blockstore repo itself does contain any code that interfaces with/uses Elasticsearch. The ES-interfacing code it uses is all in edx-not
platform at the path above.

This functionality was added with the development of Content Libraries v2, which has not launched yet in Open edX platform. Because of
this, no data exists in either of the indices below in the production environments.http://edx.org

Index #1: content_library_block_index

Index used to search all the v1 content library content, which lives in the modulestore (MongoDB).

Document Structure

http://edx.org

{
 "schema_version": <independent version number to bump when schema
changes>
 "id": <library ID>
 "library_key": <library usage key>
 "is_child": <true if block is a child of another block in the
library>
 "def_key": <definition key for the library>
 "display_name": <displayed name of the library block>
 "block_type": <type of the library block>
 "has_unpublished_changes": <true if library has unpublished changes>
 # only 'content' field is analyzed by elastisearch, and allows text-
search
 "content": {
 "id": str(item),
 "display_name": get_block_display_name(def_key),
 },
}

Queries Executed

The only query filters on:
a single library key
is_child=False (top-level blocks only)
(optional) one or more block types
(optional) full text search against id and display_name

Data Amounts

prod-edx

None - has not launched.

prod-edge

None - has not launched.

Index #2: content_library_index

Index used to search all the v2 content library content, which lives in the blockstore (MySQL).

Document Structure

{
 "schema_version": <independent version number to bump when schema
changes>
 "id": <library ID>
 "uuid": <library UUID>
 "title": <library title>
 "description": <library description>
 "num_blocks": <number of blocks in the library>
 "version": <latest library version>
 "last_published": <datetime when last published>
 "has_unpublished_changes": <true if any library blocks are changed
but unpublished>
 "has_unpublished_deletes": <true if any library blocks are deleted
but unpublished>
 # only 'content' field is analyzed by elasticsearch, and allows
text-search
 "content": {
 "id": <library ID>
 "title": <library title>
 "description": <library description>
 },
}

Queries Executed

The only query filters on:
one or more library keys
(optional) full text search against id, title, and description

Data Amounts

prod-edx

None - has not launched.

prod-edge

None - has not launched.

Course Teams Indexer

edx-platform code path: lms/djangoapps/teams/search_indexes.py

Index: course_team_index

Index used to search all the CourseTeams model instances.

Document Structure

{
 id:
 pk:
 discussion_topic_id:
 name:
 course_id:
 topic_id:
 date_created:
 description:
 country:
 language:
 last_activity_at:
 organization_protected:
 # only 'content' field is analyzed by elasticsearch, and allows
text-search
 content:
 {
 <course team name>
 <course team description>
 <course team country name>
 <course team language>
 }
}

Queries Executed

The only query filters on:
course run ID
(optional) specific username used to only search teams in which the username is a member
(optional) topic ID
(optional) whether an organization is protected
(optional) full text search on name, description, country name, & language

Data Amounts

prod-edx

For index course_team_index:
 Number of documents: 11,134
 Total size of all documents (bytes): 14,127,778 (13.47 MB)
 Average document size (bytes): 1269

prod-edge

For index course_team_index:
 Number of documents: 600
 Total size of all documents (bytes): 718,115 (701.28 KB)
 Average document size (bytes): 1197

Raw Data

SRE recently executed this REST API call against the prod-edx and prod-edge ES clusters (with the correct host/port):

curl -X GET "localhost:9200/_stats?pretty"

These stats provided the numbers about data storage above. I’ll include the raw files below.

prod-edx

prod-edge

Script To Analyze

I analyzed the JSON using the following Python script. Feel free to modify it for your own needs!

import io
import json
import logging
import pprint
import sys

import click

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
LOGGER = logging.getLogger(__name__)

def humanbytes(B):
 """Return the given bytes as a human friendly KB, MB, GB, or TB
string."""
 B = float(B)
 KB = float(1024)

 MB = float(KB ** 2) # 1,048,576
 GB = float(KB ** 3) # 1,073,741,824
 TB = float(KB ** 4) # 1,099,511,627,776

 if B < KB:
 return '{0} {1}'.format(B,'Bytes' if 0 == B > 1 else 'Byte')
 elif KB <= B < MB:
 return '{0:.2f} KB'.format(B / KB)
 elif MB <= B < GB:
 return '{0:.2f} MB'.format(B / MB)
 elif GB <= B < TB:
 return '{0:.2f} GB'.format(B / GB)
 elif TB <= B:
 return '{0:.2f} TB'.format(B / TB)

@click.command()
@click.option(
 '--stats_path', '-s',
 required=True,
 help='Path to stats file output from Elasticsearch'
)
@click.option(
 '--es_index', '-i',
 multiple=True,
 help='Index name for which to get stats'
)
def extract_es_stats(stats_path, es_index):

 with open(stats_path, 'r') as stats_file:
 stats = json.load(stats_file)

 # stats_str = json.dumps(stats, indent=4)
 # LOGGER.info(stats_str)

 for index in es_index:
 try:
 index_data = stats['indices'][index]
 except:
 LOGGER.error("Index %s not found", index)
 continue
 print(f"For index {index}:")

 index_data_totals = index_data["total"]
 num_docs = index_data_totals["docs"]["count"]
 docs_size = index_data_totals["store"]["size_in_bytes"]

 print(f" Number of documents: {num_docs:,}")
 print(f" Total size of all documents (bytes): {docs_size:,}
({humanbytes(docs_size)})")

 if num_docs > 0:
 print(f" Average document size (bytes): {docs_size /
num_docs:.0f}")
 print("\n")

if __name__ == "__main__":
 extract_es_stats() #pylint: disable=no-value-for-parameter
 sys.exit(0)

Other Findings

Abstraction Leakage

In , is used several times. That member cms/djangoapps/contentstore/management/commands/reindex_course.py searcher._es
is the Elasticsearch implementation itself. edx-search provides an abstraction - a wrapper - around Elasticsearch for most usages but the
abstraction leaks at this point. Whatever the eventual ES replacement is decided to be, the abstraction should be fixed in this file.

Learning MFE - course content search enablednot

The legacy LMS courseware offered the ES-backed feature to search the courseware index. However, this search was added to the new not
learning MFE - and it still hasn’t been added as a learning MFE feature as of March 2022. So - the existing prod-edx courseware_content
index isn’t currently being queried/used.

http://edx.org - do use course info searchand edge.edx.org not

http://edx.org uses its own custom course discovery application. prod-edge uses the new course home page MFE which does include course not
info search. So - the index is used for course discovery on Open edX installations only.course_info

Other Thoughts

I did perform an analysis of all the data that is stored in Elasticsearch in each index. It’s entirely possible that some large percentage not
of it doesn’t need to be searched. For example, does the index contain content from the blocks of archived courseware_content
courses? Is a lot of the block content actually duplicated content from courses that were re-run?

General point: The amount of data stored in each index be the amount that would really need to be stored in a might not
different text-searching data store. It’d be worth investigating that aspect.

With the size of data stored in the courseware index (~20 GB) alone (not counting forums search and other usages), I’d be wary of using
the MySQL full text and intermingling that data with the transactional data in our production MySQL instance.

http://edx.org
http://edge.edx.org
http://edx.org

	TNL-9545 - Elasticsearch Usage and Replacement

