@ ’— Samsung
' \ SMART Home

Smart Home SDK

Development Guide

Version 1.0

October 31, 2014

Samsung Smart Home Partnership Program Proprietary

Copyright © 2014 Samsung Electronics Co., LTD.

@ N Samsung
‘ B SMART Home

Table of Contents

1.

INSTAITATION <.t b e s bt sttt e s bt e s bt e sae e st e b e e b e e be e be e et e et s 5
O I T <o LU] = P PPTPPPPPRS 5
1.2, JRE INSTAll@tioN...ciiiiieiie ettt ettt ettt st s e st e et e e s bt e e sabe e sre e e neeesreeesareenn 5

1.2.1. Verification of JRE INStallation..........coiieiiiiiiiiieiee et 5

1.2.20 INSTAITIRE ..ttt st st ettt e b e s h e st st e b e b b s ae e e s 6
0 T Yol o Y I 1 =1 | =Y o o SRR 6

1.3.1. Verification of Eclipse installationcocuueiiiiiiiiicec e 6

N T 1 15 - 1| I o o 1Y PSP UPR 6
1.4. Eclipse CDT Plug-in INSTallationcc.eeiiiiiiiii ettt e e ree e s s bae e e 7

1.4.1. Verification of Eclipse CDT Plug-in installationccccociiiiieiiiee et 7

1.4.2. InStall ECliPSE CDT PIUZ-IN .eeiiieiiiiieeiiee ettt ettt ettt e e te e e et e e e e nbe e e s enbae e s enraeaeennaeas 7
1.5. Compiler and Database INStallationcceeeieiiiiiiiiiie e 9

RS0 S 1 15 =1 | I Totoiole Yo oY o 11 1T g o T ol T 10 G PSPPI 9

1.5.2. INSTall SQLItE3 FOr LINUX...ciruiiiieiiieiieeniiesiieete ettt sttt s s st es 9
1.6. ‘SHP-SDK’ PlUgin INSTAllationccooiuiiiiiiiiiee ettt e et e e et e e e e bre e e e ebr e e e e ebreeeeeanes 10

JiVoT o [ToF 1 uToT oW BL=1V=] FoT o 2 0 =T o | AR 15
2.1, NEW SHP PrOJECE . iiiiiiieie ettt ettt e e sttt e e e s s s s st e e e e e e e s sasssbbtaaeeeesssnnsssaaeaessssssnnsnns 15

2.1.1. Creating @ SHP ProjJECT....cuuiiiiiiiiieeee ettt st e e e e s s s abbe e e e e e s s s s asebeaeeeeas 15

2.1.2. Configuring @ SHP PrOJECEoiiiiiiiee ettt e et e e e e ette e e e ebte e e s e bteeeeebeeeeeereaeaeennes 17

2.1.3. SElECtING RESOUICES.....uiiieeiiieeeetiieeeectteeeeette e e e etteeeeebteeeeesbteeeseasteeeeeseeeaesseasaeasssesesassenassnes 18
2.2. Import existing SHP Projects into the Eclipse Workspacecccueeeeciieiecciieec e 19
P20 TR V] o] [Tor- 14 o o T ad o =Yt b PSRN 21

23,1, SEIVET ClaSSES .. uiiiuiiitietieeite ettt ettt st sttt et e b e bt st st st b et s hee st e et e e reenneesree e 22
D S D ToAVZ-Y (oY o1 o T dr Y o] o] [ot o o SRRt 23

2.4.1. Initialization of SHP Framework for C++ Controlled APpcccecvveeeeciiee e 24

2.4.2. Creation, initialization, and setting of SHP Framework listeners..........ccccovveeiviviveeincineennns 33

2.4.3. Starting SHP FrameEWOrKcooiiiiiiiiciiie ettt et e e s etre e e s s bre e e s sbae e e s sraneeesanes 36

2.4.4. DiSCOVEING UBVICES ...uvviiiiiiiieeieiiie e ettt e e ettt e e estte e e e ette e e e s bteeeessbteeessbteeeesstesesssseesesaseneeesnnes 38

2.4.5. Performing Resource Control / Monitor / Manipulationcccceeeeeeeeeeeeceeccee e 39

2.4.6. Stopping SHP FrameWOrK......ccc uuiiiiiiie ettt e e e e e e e e e e e e e e annraeaeeeas 40

2.4.7. Implementation of network resource handlercccccoeeciiiiiciiie e 41

‘ ~ SMART Home

2.4.8. Remote Access Configuration FileScouciiiiiiciiiiiiiiiee et eree e e 42
2.4.9. Setting of AULhOrIiZation Grant TYPEcceicciiiii ittt e e et e e e e e raeeeeeaees 43
2.4.10. Easy Setup, Registration and REMOTE ACCESS......cuueiiiiciiieeiciiie et 44
2.5, BUild and RUN SHP PrOJECE.....ciiiiciiiieiciiiie ettt ettt e et e e e sata e e e sata e e e sntaeeeentaneeeannnneenan 54
2.5.1. Execute the application........coiiiciiiiiiiiie e s 54
2.5.2. Fast ComMPilation iN ECIIPSE...uiiiiciiiiiieciiiie ittt eetieee ettt ettt stte e e s sbee e e s s bae e e s sbeeeessreneeesnnes 55
P T Y-T 0 Y o1 L=l Y o o] [or= Y 4 o o F U 55
2.6.1. FEATUIES .ottt ra e e s 55
2.6.2. Build and run sample appliCation......c..ceiiiciiiiiicciie e 56
2.6.3. Testing sample application with SIMUIGLOr.......c..ooiiiciiiiii e 56
T TS e Yo Y U LT - PRSPPIt 60
N R =T T Yo o 1Yo o | =T oY Y PP 60
3.2, CONErOllEr TESE TOO .. ittt ettt ettt et e b e s bt e saee s st e e beesbeesbeesaeenas 61
3.3, CONErOlEd TEST TOO! ..eiiiiieiiiieiieeriee ettt ettt ettt e sa e st e e st e s bt e e sbbeesbeeesabeesareesaseeesabeennns 63
3.4. Easy Setup, registration, and Remote Access TSt TOO!......cceeiiviciiiieeieieeeccireeeee e 64
3.4.2. Step 1- Enable Remote Access for Controller SImulatorcccceoecveeieciiee e 65
3.4.3. Step 2 — Launch/activate Controller SIMUIatorccceeiuieecieeeieccee et 66
3.4.4. Step 3 —Provide User CredentialS..........couciiieeeciiei ettt ettt e e e evae e e e eanes 66
3.4.5. Step 4 — Ensure that Controller simulator is registered successfullyccccccoecvviiiicieeennns 67
3.4.6. Step 5— Enable Remote Access for Controlled SImulator.........cccceevciviiieciiee e 67
3.4.7. Step 6 — Launch/activate Controlled (‘CoffeePot’) SIMUlatorccoeeeeveeecvieecieecree e, 68
3.4.8. Step 7 — Ensure that Controlled (‘CoffeePot’) simulator launched successfully but it is not
=4I =T o T PSR 69
3.4.9. Step 8 — Initiate Easy Setup process on Controlled (‘CoffeePot’) device simulator 69
3.4.10. Step 9 - Initiate Easy Setup process on Controller device simulatorcccceeveuvnnnnennnn. 71

3.4.11. Step 10 — Ensure that Easy Setup phase is completed on Controller device Simulator....73

3.4.12. Step 11 - Ensure that Easy Setup phase is completed on Controlled (‘CoffeePot’) device
Simulator 73

3.4.13. Step 12 - Initiate Registration phase on Controlled (‘CoffeePot’) device simulator 75
3.4.14. Step 13 - Initiate Registration phase on Controller device simulator.........cccccceeecvvrenennn.. 75
3.4.15. Step 14 — Ensure that Registration phase is completed on Controller device Simulator..76

3.4.16. Step 15— Ensure that Registration phase is completed on Controlled (‘CoffeePot’) device
Simulator 77

\ SMART Home
3.4.17. Step 16 — Ensure that Controlled (‘CoffeePot’) device Simulator has been successfully

ToT=d =4 Yo T Y o TY SR Y =Y VY PSR 78

3.4.18. Step 17 — Ensure that Controller device Simulator has been successfully logged into SCS
Server after helping Controlled device for ProviSioningccccveiiiiiieeiiiiiee e 79

3.4.19. Monitor / Control / Access Remotely — Remote Access Feature (sending a GET request

through remote ChanNEl — SCS)ooi i e e e e e e e ab e e e e e nbae e e e eareeas 80
3.4.20. EQsy Setup Timer TIMEOUL.....ccoiiiiiiiiiieeee ettt et e e e e s ere e e e e s s s e saabeaeeeeeseenaas 80
3.5, DEVICE TOKEN ettt ettt ettt et e sa et e st e e st esbee e sa bt e sabeeeabeeesabeeeanbeesaseesareeesareenane 81
3.5.1. Device Token issuance during ‘Registration’ phase of Easy Setupccccecvvveeeecireeeccieeeeenns 81
3.5.2. Reissuance of Device Token upon ‘401 Unauthorized error’ — only for TV (only local) 83
3.5.3. Developer perspective of DeVICe TOKENccoccuiieiiiciiiee ettt e e evte e e e e evta e e e 84

NN S D T=\ViTor <N Ko =] o T =T) S o Yo] AP URR 85

\ ' SMART Home
1. Installation

1.1. Prerequisite
As of now, Smart Home SDK only supports Linux 32 bit development environment and Plug-in runs on Eclipse
platform.

1.2. JRE Installation

For Eclipse to work properly, it is mandatory to have installation of JRE (Java Runtime Environment).

1.2.1. Verification of JRE installation

Check whether JRE is installed on the system or not by running the below command on the command prompt on
terminal.

Test your environment by typing:

Sjava —version

The commands above will show the current installed version of Java on the system; if JRE is installed then the
sample output on Linux terminal would look similar to the following:

&S @ root@user: fusr/lib/jvm/java-7-openjdk-i386/bin

root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user:/usr/1lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user:/usr/1lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin#
root@user: fusr/lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/1lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/1lib/jvm/java-7-openjdk-1386/bin#
root@user: /usr/lib/jvm/java-7-openjdk-1386/bin# java -version
java version "1.8.0_05"

Java(TM) SE Runtime Environment (build 1.8.0_05-b13)
Java HotSpot(TM) Server VM (build 25.5-b02, mixed mode)
root@user: /usr/lib/jvm/java-7-openjdk-i386/bin# [

If JRE is installed then skip Section 1.2.2 and proceed to Section 1.3, otherwise continue with next section (Section
1.2.2).

@ ’— Samsung
‘ \ SMART Home
1.2.2. Install JRE

Java 1.6 JRE/JDK or above is recommended for Eclipse 4.3 installation, and Java 1.5 JRE/JDK or above is
recommended for Eclipse 3.5 installation.

Download the JRE/JIDK Installation executable based on platform form the link —
http:/ /www.java.com/en/download /manual.jsp, and follow installation instructions from the link —
http:/ /www.java.com/en/download/help/download options.xml.

Note: The default path should be like, $/usr/lib/jum/java-6-openjdk-i386/ jre

1.3. Eclipse Installation

SHP-SDK supports Eclipse installation of version 3.5 (code name: Galileo) onwards, however, take note that all the
screenshots and references used and/or mentioned in this manual are taken from Eclipse installation 4.3 (code name:
Kepler) and above.

1.3.1. Verification of Eclipse installation
There is no direct way to find whether Eclipse is installed on a system or not.

One of the possible ways to find out on a Linux system (it works only for the installation which comes with Linux)
is:

$ file /usr/bin/eclipse
eclipse: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/ Linux 2.2.5, not stripped

Note: Eclipse also allows more than one installation on same system

If Eclipse is already installed then proceed to Section 1.4, otherwise continue with Section 1.3.2

1.3.2. Install Eclipse

Download Eclipse from http://www.eclipse.org/downloads/ and unzip to a local directory.

Eclipse can be launched through the terminal from the downloaded folder.

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/help/download_options.xml
http://www.eclipse.org/downloads/

Samsung
SMART Home

I

1.4. Eclipse CDT Plug-in Installation

1.4.1. Verification of Eclipse CDT Plug-in installation

Check whether the CDT Plugin is installed on Eclipse installation or not. Go to Help = About Eclipse SDK
-> Installation Details = Features. In the ‘Feature Id’ column check whether ‘org.eclipse.cdt’ is present. If
present then it means CDT has already been installed, then skip Section 1.4.2 and proceed to Section 1.5,

otherwise continue with Section 1.4.2.

NOTE: Application development using Eclipse require presence of a compiler, for example, GCC compiler
for Linux. Instructions for respective compiler installation are provided in Section 1.5 (Compiler
Installation).

1.4.2. Install Eclipse CDT Plug-in

Following are the sequence of steps for installation of Eclipse CDT plug-in:

Step 1: Launch Eclipse = Help = Install New Software

Java - Eclipse
File Edit Source Refactor Navigate Search Project Run Window Help
it O N H#EOGv H-0-Qv®™S Welcome
bAPER S [?5Resource <4~ Plug-in Development SHP Simulator
Search
[PackageExplorer 8| =% ¥ = O Dynamic Help = g

Key Assist... Shift+Ctri+L
Tips and Tricks...

Report Bug or Enhancement...

Cheat Sheets...

Eclipse Marketplace...
Check For Updates
| Install New Software... |

About Eclipse

& console ®

No consoles to display at this time.

Samsung
SMART Home

Step 2: In "Add", enter location as the CDT update site
http://download.eclipse.org/tools/cdt/releases/kepler (for Eclipse Kepler only) and enter a name (e.g., CDT 8.2.0)

NOTE: The link above will change based on the installation of Eclipse, for different versions of Eclipse installations,
the link will change with the release name at the last.

Available Software [
Select a site or enter the location of a site. 5

Work with: |type or select a site x

Find more software by working with the "Available Software Sites" preferences.

@

Name Version
@ Thereis no site selected.

Name: CDT8.2.0 Local...

Location: | lipse. 1 leases/kepler]||Archive..

2 O
SelectAll | | DeselectAll @ Cancel

Details

14 ly latest versions of Hide items that are already installed

Group items by category Whatis already installed?

Show only software applicable to target environment

& Contact all update sites during install to find required software

Step 3: Optional features of CDT can also be selected however, it is mandatory to select all main features of CDT,
(“CDT Main Features”).

Available Software
Check the items that you wish to install.)
Work with: |CDT8.2.0- eclipse.org/tool: /kepl v | Add..

Find more software by working with the "Available Software Sites” preferences.

@

Name Version
* & 1 CDT Main Features.
» & W CDT Optional Features

Select All DeselectAll | 25items selected
Details.
CDT Main Features 1.0.0.7V7A-CLSW_h7E7TAM7EAMEIT|

More.
& show only the latest versions of available software Hide items that are already installed
8 Group items by category What is already installed?
ly licable to target

& contact all update sites during install to find required software

http://download.eclipse.org/tools/cdt/releases/kepler

s N s
‘ & SMART Home
1.5. Compiler and Database Installation

1.5.1. Install gcc compiler for Linux
A) Download the ‘gcc-4.8.1.tar.gz’ for gee from ftp:/ftp.gnu.org/gnu/gec/gec-4.8.1/

B) Verify the gcc installation by listing the version of gec :

Sgcc —version

1.5.2. Install SQLite3 for Linux
Installation of SQLite3 onto respective development environment is essential for developing applications involving
database operations.

e If ‘sqlite3’ is not installed then install it in the following way:

root@sravana-VirtualBox: # sudo apt-get 1install sglite3
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
sqlite3-doc
The following NEW packages will be installed:
sqlite3
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
NMeed to get 0 B/26.2 kB of archives.
After this operation, 173 kB of additional disk space will be used.
Selecting previously unselected package sqglite3.
(Reading database ... 183500 files and directories currently installed.)
Unpacking sqlite3 (from .../sglite3_3.7.9-2ubuntul.l_i386.deb)
Processing triggers for man-db .
Setting up sglite3 (3.7.9-2ubuntul.l)

o If ‘libsqlite3-dev’ is not installed then install in the following way:

sravana@sravana-VirtualBox:-$ sudo apt-get install libsglite3-dev
[sudo] password for sravana:

Reading package lists... Done

Building dependency tree

Reading state information... Done

e Verify installation of ‘sqlite3” in the following way:

sravana@sravana-VirtualBox:-$ sqglite3
SQLite version 3.7.9 2011-11-01 00:52:41
Enter ".help" for instructions

Enter SQL statements terminated with a ";
sqlite> ||

ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.1/gcc-4.8.1.tar.gz
ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.1/

Samsung
, SMART Home

1.6. ‘SHP-SDK’ Plugin Installation

Step 1: Launch Eclipse, click on ‘Help’ - ‘Install New Software’

i welcome
Help Contents [&Resource <> Plug-in Development SHP Simulator
Search

[# PackageExplorer B = & ¥ = 0O Dynamic Help =g
Key Assist.. shiftsctrisL

Tips and Tricks...

Report Bug or Enhancement...
Cheat Sheets...

Eclipse Marketplace...

Check for Updates

I tall New Software.

About Eclipse

B console 2

No consoles to display at this time

Step 2: Click on ‘Add’

Available Software

Select a site or enter the location of a site. n

Work with: |type or select a site

&

Name Version
@ Thereis no site selected.

Select All Deselect All

Details
& Show only the latest versions of available software Hide items that are already installed
& Group items by category What is already installed?

Show only software applicable to target environment

& Contact all update sites during install to find required software

Samsung
SMART Home

Step 3: Select ‘Local’ and select SHP-SDK plugin folder (from the local location) and click on ‘OK’:

‘<Downloaded Location of Plugin>/EclipsePlugin’, on

Available S|

Select a site

Work with:

[
Name
@ There

| selectall

Details

& show only
Group ite
Show only

Contacta

#| |2 home | SHP_SDK | SHP_SDK_140901 | Eclipse Plugin

Places Name v Size Modified
ESesr(h [l Features . "1 5;; L
@ Recently Used i plugins 15:42

i root

& Desktop

L File System
i Documents
& Music

i Pictures

8 Videos

&3 Downloads

Select a repository root directory:

| Create Folder

(Add.. |

yreferences.

&

Step 4: Now select ‘SHP Eclipse Plugin’, unselect option ‘Group items by category’ under ‘Details’ section, and

click on ‘Next’

Available Software
Check the items that you wish to install|

Work with: \ file:/home/SHP_SDK/SHP_SDK_140901/Eclipse Plugin/ v

Find more software by working with the "Available Software Sites" preferences.

[

od

Add...

@|

Name

Version

l! “» SHP Eclipse Plugin |

Details
SHP Eclipse Plugin

Im Group items by categoryl

@ <Back

| Show only the latest versions of available software

SelectAll | | DeselectAll | 1item selected

1.0.0.201408201517

What is already installed?

["] show only software applicable to target environment

[Contact all update sites during install to find required software

Cancel

|

Finish

Hide items that are already installed

Samsung
y SMART Home

Step 5: Click ‘Next’ and ‘Finish’

Install Details
Review theitems to beinstalled. (

Name Version id
4 sHP Eclipse Plugin 1.0.0.201409012203 sec.shp.eclipse.plugin.feature.feature.group

size: Unknown
Details

V) <Back |[INextz] | cancel Finish

Step 6: This will install SHP-SDK-Plugin onto local system

Installing Software

o Installing Software

Downloading sec.shp.sdk.eclipse.plugin

1 [always run in background |

Cancel H Details >> ‘

Step 7: Approve all security warnings by clicking on ‘OK”:
Security Warning

authenticity or validity of this software cannot be established. Do you want to
continue with the installation?

o Warning: You are installing software that contains unsigned content. The

I Details >>] [Cancel

Samsung
SMART Home

Step 8: Click on “Yes’ on ‘Eclipse Restart’ confirmation window, close the Eclipse window, and proceed to next
step:

Software Updates

to restart now?

@ Youwill need to restart Eclipse fFor the changes to take effect. Would you like

_one e

Step 9: Once Eclipse has restarted successfully then we need to change SHP preferences, select ‘Window —=>
Preferences’:

Java - Eclipse

N 3l S Proje n Window Help
il O W # @ vi3 Newwindow e
Hide Toolbar !B Eic/Ce+ | & Javal [Resource 9> Plug-in Development /3 SHP Simulator
[PackageExplorer 8 = |& < = £ OpenPerspective » - 5
Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Navigation

Preferences

[2: Problems @ Javadoc (& Declaration 4’ Search & Console & e = A

No consoles to display at this time.

Samsung
SMART Home

Step 10: On this, we need to setup SHP preferences by setting ‘SDK Components directory path’ to ‘“<Downloaded
Location of SHP-SDK >/ Linux_32 Bit/ ’ location for SHP-SDK-Eclipse Plugin installation:

File Edit Source Refactor Navigate

il B]

[Project Explorer 52
B &
» /% NewTemplateVerifyPrj

@ SHP .
1" General General SHP Preferences
» Ant F——
v e SDK Components directory path: /home/SHP_SDK/0302_11h00m/Linux_32_Bit/Linux_32_Bit Browse...
++
ChangelLog Network Interface for Simulators: | 10.0.2.15 =
> Help Use Secure Communication
> Install/Update
o [Validate Client Certificate
> Java
» LibraryHover Enable Remote Access for simulator: | None

Man pages Note: This option will be enabled onlyiF there is no active simulator with remote support.

@ @ home | SHP_SDK | Linux_32_Bit

Places

Q search

@ Recently Used
8 root

& Desktop
I File system
[Documents
& Music

@ Pictures
(@ videos

i@ Downloads

/A Nev

Create Folder
Name v Size Modified
[certificates 14:47
i config 14:47
i ayp 14:47
[l scripts 14:47
[sdk 14:47
[l templates 14:47

Cancel OK

g 47 search 2 = Call Hierarch

Cancel oK

Restore Defaults Apply

Step 11: This finishes ‘SHP-SDK-Eclipse plugin’ installation, now launch ‘Eclipse’, and we shall be able to create
new SHP Projects, try to create new SHP project (File > New = Other), and shall see that options to create SHP
projects are available as below:

Select a wizard

Wizards:

[

¥ = Jdvd RUlyuebuy
B = JUnit
> (= Plug-in Development
» (= Remote System Explorer
» = RPM
¥ & SHP
/% New SHP Project
/N New SHP Resource Controller Class
/N New SHP Resource Handler Class
¥ (= Systemtap
> = Tasks
» (= Tracing

@ Samsung
- SMART Home
2. Application Development

2.1. New SHP Project

2.1.1. Creating a SHP Project

e Select ‘File > New - Project’

File Edit Source

Makefile Project with Existing Code
OpenfFile... C++ Project

Close Ctrl+w Cerojeck

Close All shiftscerlsw |__Project... I
Convert to a C/C++ Autotools Project

Convert to a C/C++ Project (Adds C/C++ Nature)
Source Folder

Folder

Source File

Header File

File from Template

Class

Task

2 e
Refresh F5
Convert Line Delimiters To ’

Other... Ctrl+N

e Select ‘SHP - New SHP Project’

New Project

Select a wizard p—>

Wizards:
| ®

> = General

> & C/CH+

> & CVS

> (= Java

» (= Plug-in Development
» & RPM

v & SHP

/ New SHP Project

> & Tracing

® <Back ﬁ [cancel Finish

, SMART Home

e Select type of project which needs to be created (C++), SHP project wizard will invoke selected
project wizard.
e Create a new project by giving a name to the project and select appropriate tool chain.

New SHP Project

Create SHP Project
Select project type

v EC*—{—

@‘ C++ Project

@ <Back -F1 Cancel Finish

C++ Project p—<>
Create C++ project of selected type r

Project name: [|]

& Use default location
Location: Browse...

Choose file system: | default

Project type: Toolchains:
> (= GNU Autotools Cross GCC
¥ & Executable Linux GCC

® Empty Project

® Hello World C++ Project
> (= Shared Library
> (= Static Library
> = Makefile project

[show project types and toolchains only if they are supported on the platform

@ <Back Next > Cancel | Finish

Samsung
SMART Home

I

2.1.2. Configuring a SHP project

‘Configuration SHP Project’ enables SHP-Application developers to configure (type of device, Server/Client
connectors to be used) SHP-Framework (their projects) based on their needs.

Following are different configuration options provided by SHP-SDK for application development:
™ New SHP Project

Configure SHP Framework

Select SHP Modules which needs to be configured with SHP

| Framework
ApplicationType [ontrolled| v
DeviceType Thermostat | v

Configure Server Connector

@ Use Internal Server Connector
) Use FCGI Server Connector

) Use Custom Server Connector

Configure Client Connector

@ Use Internal Client Connector

) Use Custom Client Connector

Configure Subscription Database
@® Use SQLite Based Subscription Manager

) Use File Based Database Subscription Manager

) Use External Subscription Implementation

[Use Remote Connector

@ [<Back ‘ Next > [| Cancel ‘ [Finish J

Respective explanation for each Configuration option is as follows:

e Application Type: Using this, developers can select type of application to be created, select ‘Controlled’
from the drop down

e Controlled: Controlled by other devices (e.g. Washer, Refrigerator, Thermostat, LED, Smart Plug)

e Device Type: Using this, developers can select the type of device for which the application is being
created, developers can select any one of the device types supported by SHP

e Based on selected device type SHP-SDK makes some automatic suggestion of Resources (Section
2.1.3) to be Controlled

e Configure Server Connector: Using this, developers can select kind of Server Connector to be used for
the application being created.

e SHP-Framework provides two types of server connectors, one is ‘Internal Server Connector’
which is in-house implementation (this is the default selection — ‘Use Internal Server Connector’),
and the other one is FCGI based (for this select ‘Use FCGI Server Connector’) server connector

» Developers can also develop their own (custom) Server Connector by implementing
Sec: :Shp::Connector: :Server: :IServerConnector interface

I

Note:

Samsung
SMART Home

Configure Client Connector: Using this, developers can select kind of Client Connector to be used for
the application being created.

e SHP-Framework provides, one ‘Internal Client Connector’ which is in-house implementation
(this is the default selection — ‘Use Internal Client Connector’)

» Developers can also develop their own (custom) Client Connectors by implementing
Sec::Shp::Connector::Client::IClientConnector interface
Configure Subscription Database (subscription implementation): Using this, developers can select kind
of Subscription feature implementation.

e SHP-Framework provides two types of subscription implementations, one is using ‘SQLite
database’ (this is the default selection — ‘Use SQLite Subscription Manager’), and the other one is
file based (for this select “Use File Based Database Subscription Manager’) implementation

» Developers can also develop their own (custom) subscription implementation by
implementing Sec: :Shp: :Notification: :ISubscriptionManager interface
Use Remote Connector: Developers needs to select (by default selected) this feature if the application
being developed needs to have Remote Access feature of SHP, otherwise, they are expected to unselect
this option

Selection of custom connectors (Server/Client) expects application developers to have their own

implementation for REST message handling (construction and parsing)

2.1.3.

Selecting Resources

Selection of Controlled application type, leads to ‘Selection of Server Resources’ (resources to be handled by the
Controlled application) screen. Mandatory Resources are selected automatically. Mandatory Resources cannot be

removed

On Selecting a Device Type, the suggested Resources are automatically selected (will be automatically
moved) to ‘Selected List of Resources:’

Other Resources can be added or removed as per requirement by selecting (click) from ‘Optional
Resources to be Controlled:’

Remove unwanted resources (non-mandatory) by clicking on them in the Selected Resources List.

Note: These resources are characteristic of a controlled device, which acts as a server and responds to the requests it

receives.

€ New SHP Project

Select Server Resources

Please select server resources which will be implemented by this
device. Project Wizard generates REST Handler Stub classes which

Optional Resources to be Controlled: Selected List of Resources:

AVSource
AVSources

AccessPoint
AccessPoints

Audio Action
Camera Actions
Capture Alarm

Captures Alarms

CustomRecipe
CustomRecipes
DRLC
DefrostReservati

DefrostReservati| |~

Select All

Capability
Configuration
Device
Devices
Energy

Clear All

Cancel Finish

Samsung
SMART Home

2.2. Import existing SHP Projects into the Eclipse workspace

1. Select ‘File = Import’

C/C++- Eclipse
File Edit Source Rel

New shift+AlesN + B Y [y @ i v O v & v QA YIS E P

OpenfFile... e
Q B = | Bic/c++| & sava BResource

r Navigate Search Project Run Window

= 8

Refresh F5
Convert Line Delimiters To v

Switch Workspace 3
Restart

Import... |
Export...

Properties Alt+Enter

Exit
[&l Proble 2 i Tasks E consol Proper ¥ callGr @) ErrorL 47 Search 3*CallHie #Remot = O

Oitems
Dgscription i) =

0Oitems selected

2. Select ‘Select an import source - SHP - Import SHP Projects = Next’

Select \
-
Import existing SHP Projects into Workspace. H

Select animport source:
| ®

» & General

B CfCH++

=g arid

» = Git

> & Install

» & Plug-in Development
® = Remote Systems

* & RPM

» = Run/Debug

¥ & SHP

| /% Import SHP Projects |
> &= Tasks

> = Team

* = Tracing

@ <Back cancel Finish

3.

Samsung
SMART Home

Select “Select root directory(Where source code locates) = Browse... = Finish’

Import Projects

Select a directory to search For existing Eclipse projects.

-

@ Selectroot directory:I[/home/SHP_SDK/SampleApp/c++fThermostat/RAjSourceCode

[v] Browse... |

() Select archive File:

Projects:

@ Thermostat-RA (fhome/SHP_SDK/SampleApp/C++/Thermostat/RA/SourceCode)

Options

["] search for nested projects

["] Copy projects into workspace
Working sets

"] Add project to working sets

Working sets:

<Back Nexkt >

Cancel

Browse...

Select All
Deselect All
Refresh

Select...

@ Samsung
, SMART Home
2.3. Application Project

On Creating a New Project, the SHP Code Generator automatically generates following folder structure:

e For a C++ Project:

(&5 Project Explorer 2 = A

.o - Required header files are automatically
e % included from ‘'SDK components directory
& NewTemplateVerifyPrj Path set in 'SHP' - Preferences

> &) Includes

¥ & ShpGen Contains Resource and Response Listener Classes
» & Client
A =
S Serlalization Contains Resource handler Classes
» &= Server
> = xsd

Contains all the Resource representation Classes
Contains Self Device representation

> [& MySHPDevice.cpp

(5 MySHPDevice.h

(g SHPDevice.cpp

[n SHPDevice.h

[€] SHPDeviceFactory.cpp
> [n SHPDeviceFactory.h

» [& ConditionUtility.cpp

> [ConditionUtility.h

> [& main.cpp

> [g SHPListener.cpp

> B SHpListenech Sl

> [g SHPUtils.cpp

Framework
» [SHPULils.h

v V' 9

Contains Discovered
Devices’ representation

[wamcrr |

Contains representation of utility
Methods for interaction with SHP
Framework

‘Server’ folder in C++ Project contains Resource handler classes that are called when a particular request
(allowed SHP-REST request) is received on a specific Resource, these are to be developed.

The Application developer should ensure that the Server responds properly to valid (allowed as per SHP
specification) requests for each Resource.

» This can be ensured by developing all the required Resource Handler methods left out for the developer (check
the TODO list on Eclipse).

= The ‘XSD folder in C++ Project contains classes corresponding to various Resources.
A few of the members of these classes are optional members while some are mandatory members.

If the mandatory members are not dealt with properly (setting or getting their values depending on whether
sending a request or sending a response), the serialization (or deserialization fails).

= The Serialization folder contains methods to serialize and de-serialize the Serializable data.
Additionally, ‘SHPUtils.cpp’ class contains methods to initialize and also to start the framework apart from

other methods required to configure it. And ‘SHPListener.cpp’ class in C++ project contains
representation of handlers for notifications from SHP Framework

@ Samsung
: SMART Home

2.3.1. Server Classes
Developers need to develop the resource handler stubs which are generated by SHP Plug-in for each of the selected
resources while project creation.

This is a characteristic of a Controlled device, which responds to a REST request received for a particular Resource.
This response should be set in the Resource handler file, for each of the valid request methods.

[(‘:;ProjectExplorerSS: gl Y =0

¥ /A NewTempateVerifyPrj =

> &) Includes

¥ = ShpGen

> = Client
» = Serialization

[> [CapabilityResourceHandler.cpp |
CapabilityResourceHandler.h
[ConfigurationResourceHandler.cpp
ConfigurationResourceHandler.h
[¢) DeviceResourceHandler.cpp
DeviceResourceHandler.h
[¢) DevicesResourceHandler.cpp
DevicesResourceHandler.h
[InformationResourceHandler.cpp
InformationResourceHandler.h
[& NetworkResourceHandler.cpp
NetworkResourceHandler.h
[¢ NetworksResourceHandler.cpp
NetworksResourceHandler.h
[NotificationHandler.cpp
NotificationHandler.h
ResourceHandlers.h
ResourceTypeEnum.h
[¢) SHPResourceHandlerFactory.cpp
SHPResourceHandlerFactory.h
[¢ WiFiResourceHandler.cpp
> [n WiFiResourceHandler.h

V. '¥% %Y ¥ ¥ "' YN ivYY ¥ ¥»¥YyyYwyYyyYy Yy >

> = xsd
> [¢] MySHPDevice.cpp =

4N\ SMART Home

2.4. Developing Application

Developing SHP applications majorly consists of following steps:

1. Initialization of SHP Framework

a.

f.
g.

Configuration of required certificates
i. Setting certificates path for Server and Client (Please note that default certificate
provided in this package can be used for the testing purposes only. In order to apply
to the commercial product, new model certificate shall be issued from the Samsung
Electronics.)
ii. Setting Remote Access configuration file path (If remote access features is required by
the application)
Configuration of Self Device Details — for setting device specific details
i. Like IP Address, Port, UUID, device type, application type, device information related
details and etc.
ii. Setting of supported resources — resources to be controlled (for Controller application) or
handled (Controlled application)
Configuration of Subscription Manager — for handling subscriptions and receiving notification
Configuration of SHP Connectors
i. Server Connectors — for handling and serving requests from SHP Controller devices
ii. Client Connectors — for retrieving SHP device details and sending control commands
Configuration related to remote access (If remote access features is required by the application)
i. Configuration and initialization of all servers (Samsung Account Server, Smart Home
Server — SHS, and SCS) involved for remote access
Initialization of required factories — for example, device, serialization, and resource handler
Setting and verification of final configuration

2. Creation, initialization, and setting of SHP Framework listeners

a.

Creation and configuration of Device Finder Listener — for handling SHP Devices related
notifications, for example, new SHP device discovery, modification to existing SHP device, and
device leaving network

Creation and configuration of SHP Status Listener — for handling notifications from SHP
Framework related status (start/ stop / error) of framework, easy setup, registration, and device
token related

3. Starting SHP Framework

a.

Check whether application (running on device) is provisioned or not?
i. Check whether application possess all required details to be connected to Home Access
Point (Home AP) for registering onto cloud OR not?
1. If application is not provisioned then enable Soft AP mode onto device and
perform Easy Setup routine (refer to SHP Architecture for complete details on
Easy Setup routine)

4. Discovering devices

a.
b.
c.

Implementation of /DeviceFinderListener
Registering DeviceFinderListener
Retrieving Discovered devices

5. Performing Resource Control / Monitor / Manipulation

a.
b.

Sending REST requests to discovered devices
Handling REST requests from controller devices

6. Stopping SHP Framework

a.
b.
c.

Remove / Un-set all listeners
Rest Configuration, and
Cleanup memory

7. Easy Setup, Registration, and Remote Access

4N\ SMART Home

2.4.1. Initialization of SHP Framework for C++ Controlled App

SHPUtils::initializeFramework() of file: <SHP-C++ Project Name>\SHPUtils.cpp is the function which
is responsible for complete initialization of SHP Framework.

24.1.1. Configuration of required Certificates

By default, Server and Client security related file paths are set using "SDK Components directory path" preference
field value of SHP Preferences Page (Window —> Preferences » SHP). And all certificates and certificate’s key
files are stored in certificates folder under "SDK Components directory path" preference field value.

The following are macros used for setting security related file paths and passphrase. The application developer needs
to modify these macros case of storing security related files in different folder or used different files.

SERVER _ROOT_CA: This macro is used to specify root certificate or chain of root certificates file path, which is
used for issuing server certificate. Default file path is
<"SDK Components directory path" preference field value>/certificates/Standalone CA.crt"

SERVER SELF_CERTIFICATE_RSA: This macro is used to specify server certificate file path. Default file path
is <"SDK Components directory path" preference field value >/certificates\Server.crt"

SERVER SELF_CERTIFICATE PRIVATE _KEY PATH: This macro is used to specify server certificate’s
private key file path. Default file path is
<"SDK Components directory path" preference field value >/certificates/Server.pem"

SERVER SELF_CERTIFICATE_PRIVATE _KEY_FILE PASSWORD: This macro is used to specify server
certificate’s private key passphrase. Default value is “SHPSDK_SERVER TEST CERTIFICATE”.

CLIENT_ROOT_CA: This macro is used to specify root certificate or chain of root certificates file path, which is
used for issuing client certificate. Default file path is
<"SDK Components directory path" preference field value>/certificates/Standalone CA.crt"

CLIENT_SELF _CERTIFICATE_RSA: This macro is used to specify client certificate file path. Default file path
is <"SDK Components directory path" preference field value >/certificates\Client.crt"

CLIENT_SELF _CERTIFICATE_PRIVATE_KEY_ PATH: This macro is used to specify client certificate’s
private key file path. Default file path is
<"SDK Components directory path" preference field value >/certificates/Client.pem"

CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE PASSWORD: This macro is used to specify client
certificate’s private key passphrase. Default value is “SHPSDK_CLIENT TEST CERTIFICATE”.

COMMON_ROOT_CA: This macro is used to specify chain of root certificates file path, which is used for issuing
Service Server and Account Server Certificates.

Following is the code snipped from file : <SHP-C++_Project Name>\SHPUtils.cpp, which sets up all certificates:

Samsung
SMART Home

#define SERVER_ROOT_CA

"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Standalone_CA.crt"

/**< Represents Server Root CA Path */

#define SERVER_SELF_CERTIFICATE_RSA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Server.crt"
/**< Represents Server RSA version of Self Certificate */

#define SERVER_SELF_CERTIFICATE_PRIVATE_KEY_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Server.pem"

/**< Represents Private Key path for Server Self Certificate */

#define SERVER_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD "SHPSDK_SERVER_TEST_CERTIFICATE"

/**< Represents Private Key password for Server Self Certificate */

#define CLIENT_ROOT_CA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Standalone_CA.crt"
/**< Represents Client Root CA Path */

#define CLIENT_SELF_CERTIFICATE_RSA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Client.crt"
/**< Represents Client RSA version of Self Certificate */

#define CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Client.pem"

/**< Represents Private Key path for Client Self Certificate */

#define CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD "SHPSDK_CLIENT_TEST_CERTIFICATE"

/**< Represents Private Key password for Client Self Certificate */

#ifdef REMOTE_ACCESS_SUPPORT

#include "xsd/Network.h"

#define COMMON_ROOT_CA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/CA.crt"

/**< Represents Common Root CA file path */

#define RA_CONFIG_FILE_PATH "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/config/controllable.ra.config"
/**< Represents Remote Access Configuration file path */

#endif
2.4.1.2. Configuration of Self Device Details
24.1.2.1. Setting of Application’s Port Number

By default, application’s port number is set to “8888”. So the application developer should specify application’s port
number by updating port variable’s value in SHPUtils: initializeFramework() method of file: <SHP-
C++_Project Name>\SHPUltils.cpp.

Sec::Shp::Configuration* p_config = sp_shp->getConfiguration();
if (p_config == NULL) {
std::cout << "Failed to get SHP Configuration" << std::endl;
return false;

}

if (false == p_config->setAppType(Sec::Shp::ApplicationType_Controllable)) {
std::cout << "Failed to set SHP Aplication Type" << std::endl;
return false;

}

/** Configure Network Interface and port to be used */
char deviceAddress[256] = {0x00, };

std::string devi 0
std::string portj=
std::string uuid;

"8888"; * @note Default Port */

\ SMART Home

2.4.1.2.2. Setting of Application’s IP Address

Sec::Shp::Configuration: :setAddress() is the API to be used for setting Application Address
(IP_Address:Port) and

SHPUtils: :getIPAddressAndUUID() is the method generated for getting interfaces IP Address and UUID
using MAC address

By default, the application retrieves interface’s IP addresses and chooses the first non-multicast IP address from the
IP address list and configure as application’s IP Address. If the application developer wants to choose a different IP
address, he has to override the “devicelPAdress” variable’s value in SHPUtils: :initializeFramework() method of file:
<SHP-C++_Project Name>\SHPUtils.cpp.

if (false == SHPUtils::getIPAddressAndUUID(deviceIPAdress, uuid))

{
cout << "SHPUtils::initializeFramework() => " << "failed to determine network
interface\n";
return false;

¥

if ((deviceIPAdress.empty()) || (uuid.empty()))

{
cout << "SHPUtils::initializeFramework() => " << "invalid network interface or uuid\n";
return false;

¥

cout << "SHPUtils::initializeFramework() => " << "Selected IPAddress:" << deviceIPAdress << ";
UUID :" << uuid << std::endl;

if (false == sp myDevice->setAddress(deviceAddress)) {
std::cout << "Failed to set SHP Device Address" << std::endl;

return false;

2.4.1.2.3. Setting of device specific details

Sec::Shp::Device: :setDeviceType(), Sec::Shp:: Device::setUUID(), Sec::Shp::
Device::setDescription(), Sec::Shp::Device::setManufacturer(),

Sec::Shp::Device: :setModelID(), and Sec::Shp::Device::setSerialNumber() arc the APIs to be
used for setting device specific details by application

By default, the application sets devices’ application specific details like device type, and application type based on
details provided during project creation, however, application is expected to set other device specific details like
mode ID, description, serial number and etc. by modifying default generated values SHPUtils: :initializeFramework()
method of file: <SHP-C++_Project Name>\SHPUtils.cpp.

/** Configure Device Details */

if (false == sp_myDevice->setDeviceType(Sec::Shp::DeviceType_Thermostat)) {
std::cout << "Failed to set SHP Device Type" << std::endl;
return false;

o= O s
& SMART Home

if (false == sp _myDevice->setUUID(uuid.c_str())) { // Example UUID: "E8113233-9A97-0000-0000-
000000000000
std::cout << "Failed to set SHP Device UUID" << std::endl;
return false;

}

if (false == sp_myDevice->setDescription("Description”)) {
std::cout << "Failed to set SHP Device Description™ << std::endl;
}

if (false == sp_myDevice->setManufacturer("Manufacturer")) {
std::cout << "Failed to set SHP Device Manufacturer Name" << std::endl;
}

// User can additionally specify an optional 'deviceSubType' attribute if 'deviceType' is not
sufficient to define the type of device user want to apply.

// (e.g., System_Air_Conditioner)

//if (false == sp_myDevice->setDeviceSubType("DeviceSubType")) {

// std::cout << "Failed to set SHP Device Sub-Type" << std::endl;

/1}

if (false == sp_myDevice->setModelID("Model ID")) {
std::cout << "Failed to set SHP Device Model ID" << std::endl;

}
if (false == sp_myDevice->setSerialNumber("Serial Number")) {
std::cout << "Failed to set Serial Number" << std::endl;
}
2.4.1.2.4. Setting of supported resources

Sec: :Shp: :Device: :setSupportedResourceType() is the API to be used for setting all the supported
resources

By default, the application sets devices’ supported resources based on selected resources during project creation.
Application developers can modify (add/delete) by modifying resource type values in
SHPUtils: :initializeFramework() method of file: <SHP-C++_Project Name>\SHPUtils.cpp.

/** Configure Supported Resources */

try {
sp_myDevice->setSupportedResourceType("AccessPoint");
sp_myDevice->setSupportedResourceType("AccessPoints");
sp_myDevice->setSupportedResourceType("Action");
sp_myDevice->setSupportedResourceType("Actions");
sp_myDevice->setSupportedResourceType("Alarm");
sp_myDevice->setSupportedResourceType("Alarms");
sp_myDevice->setSupportedResourceType("Capability");
sp_myDevice->setSupportedResourceType("Configuration");
sp_myDevice->setSupportedResourceType("Device");
sp_myDevice->setSupportedResourceType("Devices");

} catch(...) {

std::cout << "Caught Exception" << std::endl; return false;

}

Y \ SMART Home

2.4.1.2.5. Setting of Subscription manager’s Database file path

Sec::Shp: :SHP: :setSubscriptionManager() is the API to be used for setting Subscription manager and
Sec: :Shp::Configuration: :setSubscriptionDbPath() is the API to be used for setting Subscription
Database file path

By default, the Subscription manager’s Database file path is set to “SubscriptionManager.db”. The database is used
to store subscriptions. If the application developer wants to change the data base file path, specify the new database
file path by passing the first argument to setSubscriptionDbPath() call of “Sec::Shp::Configuration” class in
SHPUtils: :initializeFramework() method of file: <SHP-C++_Project Name>\SHPUltils.cpp.

Note: Application developers can also modify type of subscription store also

/**
* Configure Subscription Manager::@n
& Applications can use their own Subscription manager OR@n
& Default Subscription manager provided by framework.
*/

// Instantiating custom Subscription Manager
Sec::Shp::Notification: :ISubscriptionDB *subDBStore = NULL;
#ifdef USE_SQLITE3_SUBS_MANAGER

subDBStore = Sec::Shp::Notification::SHPSqliteSubscriptionDB::createInstance();
#elif USE_FILE_SUBS_MANAGER

subDBStore = Sec::Shp::Notification::SHPFileSubscriptionDB::createlInstance();
#else
#error "implement a custom Subscription Manager and configure it with framework"
#endif

Sec::Shp::Notification: :ISubscriptionManager *pSub =
Sec::Shp::Notification: :SHPSubscriptionManager::createInstance(subDBStore);

/**
* @note To Use Default Subscription Manager, please un-comment below line and comment above line
*/

if (false == sp shp->setSubscriptionManager(*pSub)) {

std::cout << "Failed to set Subscription Manager instance" << std::endl;
return false;

/** Configure Subscription DB Path */
if (false == p_config->setSubscriptionDbPath("SubscriptionManager.db")) { // User needs to give
actual DB Path

std::cout << "Failed to set Subscription DB Path" << std::endl;

return false;

2.4.1.2.6. Setting of Remote Access Configuration File Path

Sec: :Shp::Configuration: :setRAConfigPath() is the API to be used for setting Remote Access
Configuration File Path

This file is used to specify remote access configuration details (if remote access feature is configured for the
application). By default, these files are stored in the config folder under "SDK Components directory path"
preference field value. If the application developer wants to change the file path, update
“RA_CONFIG_FILE PATH” macro to the new file path.

#define RA_CONFIG_FILE_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/config/controllable.ra.config"
/**< Represents Remote Access Configuration file path */

T O\
SMART Home

Note: It is application developers’ responsibility to ensure existence (if required create before execution of the
application itself) of the parent directory (for e.g., /home/SHP SDK/configs/) of ‘remoteconfigs’ folder.
Framework will only be able to create folders ‘remoteconfigs’ onwards.

#ifdef REMOTE_ACCESS_SUPPORT

if (false == p_config->setRemoteAccessEnable(true)) {
std::cout << "Failed to enable Remote Access Support" << std::endl;
return false;

/** Set Remote Access Configuration File Path */
std::string raConfigFilePath = RA_CONFIG_FILE_PATH;

*

/

Configure Remote Access Configuration File::@n

1) No encryption OR@n

- 'raConfigFilePath' will not be encrypted when the second private key argument is not
provided@n
*/

* ¥ ¥ X ¥

if (false == p_config->setRAConfigPath(raConfigFilePath.c_str())) {
std::cout << "Failed to set Remote Access Configuration path" << std::endl;
return false;

24.1.2.7. Configuration of factories

Sec::Shp::Configuration: :setDeviceFactory(),Sec::Shp::Configuration::setSerializableD
ataFactory(), and Sec::Shp::Configuration::setResourceHandlerFactory() arc the APIs to be
used for configuring factories

By default, the application sets the device, serializable, and resource handler factories. Application developers can
use their own implementation by setting above mentioned APIs. . If application developer wants to configure
custom factories then they are expected to implement respective interface (Sec::Shp::DeviceFinder::DeviceFactory
for custom device factory) and modify following calls in SHPUtils: :initializeFramework() method of file: <SHP-
C++_Project_Name>\SHPUtils.cpp.

/** Configure Factories :: */

if (false == p_config->setDeviceFactory(new ::SHPDeviceFactory())) {
std::cout << "Failed to set SHP Device Factory" << std::endl;
return false;

}

if (false == p_config->setSerializableDataFactory(new ::SHPSerializationFactory())) {
std::cout << "Failed to set SHP Serializable Data Factory" << std::endl;
return false;

}

if (false == p_config->setResourceHandlerFactory(new ::SHPResourceHandlerFactory())) {
std::cout << "Failed to set SHP Resource Handler Factory" << std::endl;
return false;

Samsung
SMART Home

Pinsunig M\

2.4.1.2.8. Configuration of Server Connectors

Sec: :Shp::Connector: :SSLConfiguration: :addCACertificate(),

Sec: :Shp::Connector: :SSLConfiguration: :setSelfCertificateWithRSAPrivateKey(), are the
APIs to be used for configuring HTTPS server connectors and
Sec: :Shp::Configuration: :setServerConnector() is the API to be used for setting configured server
connector as the server connector of SHP Framework

By default, the application configures and sets server connectors based on the option (internal http/https, FCGX, or
custom) selected while creation of the project. Application developers can implement their own custom server
connector by implementing Sec::Shp::Connector::Server::IServerConnector and set using
setServerConnector() APl in SHPUtils: initializeFramework() ~ method of file: <SHP-
C++_Project_Name>\SHPUtils.cpp.

/** Configure Client AND Server Connectors :: */
#ifdef USE_INTERNAL_HTTPS_SERVER
std::string serverRootCA

std: :string serverCertificate SERVER_SELF_CERTIFICATE_RSA;
std::string serverRSAPrivateKey SERVER_SELF_CERTIFICATE_PRIVATE_KEY_PATH;
std::string serverRSAKeyFilePassword = SERVER_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD;

SERVER_ROOT_CA;

/** Configure Server Certificates */
Sec::Shp::Connector::Server: :IServerConnector *pServerConnector =
Sec::Shp::Connector: :Server: : SHPHTTPSServerConnector: : createInstance(deviceIPAddress, port);
if (NULL == pServerConnector) {
std::cout << "Failed to get Server Connector object" << std::endl;
return false;

}

Sec::Shp::Connector: :SSLConfiguration *pServerConnectorConfiguration =
(Sec::Shp::Connector::SSLConfiguration *) (pServerConnector->getConnectorConfiguration());
if (NULL == pServerConnectorConfiguration) {
std::cout << "Failed to get Client SSL Configuration object" << std::endl;
return false;

¥

if (false == pServerConnectorConfiguration->addCACertificate(serverRootCA.c_str())) {
std::cout << "Failed to set Server Root CA Certification" << std::endl;
return false;

¥

if (false == pServerConnectorConfiguration-

>setSelfCertificateWithRSAPrivateKey(serverCertificate.c_str(), serverRSAPrivateKey.c_str(),
serverRSAKeyFilePassword.c_str())) {

std::cout << "Failed to set Server Self Certificate/Key" << std::endl;

return false;

}

if (false == p_config->setServerConnector(*pServerConnector)) {
std::cout << "Failed to set Internal HTTPS Server Connector" << std::endl;
return false;

¥
#elif USE_FCGI_HTTP_CONNECTOR
Sec::Shp::Connector::Server: :IServerConnector *connector = new
Sec::Shp::Connector: :Server: :SHPFCGXServerConnector: :createInstance(true);
if (false == p_config->setServerConnector(*connector)) {
std::cout << "Failed to set FCGI Server Connector" << std::endl;
return false;
}
#telse
#error "implement a custom Server Connector and configure it with framework"
#endif

Samsung
SMART Home

Pinsunig M\

2.4.1.2.9. Configuration of Client Connectors

Sec: :Shp::Connector: :SSLConfiguration: :addCACertificate(),

Sec::Shp::Connector: :SSLConfiguration::setSelfCertificateWithRSAPrivateKey(), arc the
APIs to be used for configuring HTTPS client connectors and
Sec: :Shp::Configuration: :setClientConnector() is the API to be used for setting configured client
connector as the client connector of SHP Framework

By default, the application configures and sets server connectors based on the option (internal http/https, or custom)
selected while creation of the project. Application developers can implement their own custom server connector by
implementing Sec: :Shp: :Connector: :Client: :IClientConnector and set using setClientConnector()
APl in SHPUtils: :initializeFramework() method of file: <SHP-C++_Project Name>\SHPUtils.cpp.

#ifdef USE_INTERNAL_HTTPS_CLIENT
std::string clientRootCA
std::string clientCertificate CLIENT_SELF_CERTIFICATE_RSA;
std::string clientRSAPrivateKey CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_PATH;
std::string clientRSAKeyFilePassword = CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD;

CLIENT_ROOT_CA;

/** Configure Client Certificates */
Sec::Shp::Connector::Client::IClientConnector* pClientConnector =
Sec::Shp::Connector: :Client: :SHPHTTPSClientConnector: :createInstance();
Sec::Shp::Connector: :SSLConfiguration *pClientConnectorConfiguration =
(Sec: :Shp::Connector::SSLConfiguration *) (pClientConnector->getConnectorConfiguration());
if (NULL == pClientConnectorConfiguration) {
std::cout << "Failed to get Client SSL Configuration object" << std::endl;
return false;

}

if (false == pClientConnectorConfiguration->addCACertificate(clientRootCA.c_str())) {
std::cout << "Failed to set Client Root CA Certificate" << std::endl;
return false;

#ifdef REMOTE_ACCESS_SUPPORT
std::string commonRootCA = COMMON_ROOT_CA;
if (false == pClientConnectorConfiguration->addCACertificate(COMMON_ROOT_CA)) {
std::cout << "Failed to set Common Root CA Certificate which need to access External
Cloud Servers" << std::endl;
return false;

#tendif
if (false == pClientConnectorConfiguration-
>setSelfCertificateWithRSAPrivateKey(clientCertificate.c_str(), clientRSAPrivateKey.c_str(),
clientRSAKeyFilePassword.c_str())) {
std::cout << "Failed to set Client Self Certificate/Key" << std::endl;
return false;

}

pClientConnectorConfiguration->enablePeerVerification();

if (false == p_config->setClientConnector(*pClientConnector)) {
std::cout << "Failed to set Internal HTTPS Client Connector." << std::endl;
return false;
}
t#telse
#terror "implement a custom Client Connector and configure it with framework"
#endif

SMART Home

2.4.1.2.10. Verification and Setting of final Configuration

Sec: :Shp::Configuration: :setConfiguration() is the API to be used for setting final configuration with
SHP Framework

sp_shp->setConfiguration(p_config);

\ SMART Home

2.4.2. Creation, initialization, and setting of SHP Framework listeners

SHP Framework makes use of configured listeners for notifying status events, SHP device related notifications. By
default, the application will create, initialize, and set SHP Status Listener (file: <SHP-
C++_Project Name>/SHPListener.cpp). However, the application developers (especially controller application)
are expected to implement device finder listener for handling all SHP device related notifications from SHP
Framework.

2.4.2.1. Creation and configuration of Device Finder Listener

Sec::Shp: :SHP: :getDeviceFinder()->setDeviceFinderListener() is the API to be used for setting
custom device finder listener with SHP Framework

By default, application will not generate code for handling device related notifications. However, developers can
follow below mentioned guideline in SHPUtils: initializeFramework() —method of file: <SHP-
C++_Project_Name>\SHPUtils.cpp)

Developers are expected to implement 'Sec::Shp::IDeviceFinderListener' for getting and handling all SHP devices
related notifications, like, new SHP device discovery, modification to existing SHP device, and SHP device leaving
network (add/modify/delete). Controller applications are mostly expected to create, configure, and set their custom
device finder listeners to discover peer SHP devices and do specific actions based on received notifications.

Following is the sample implementation of 'Sec::Shp::IDeviceFinderListener' :

/**

* Developers need to implement 'IDeviceFinderListener' for getting device related
(add/modify/delete)

* notifications from SHP-Framework.

* @n

* If the application type is a Controller then handling device related notifications is mostly

* expected.

* @n

* @note Un-comment following block of code for setting device finder listener (before that
developers are expected to implement 'IDeviceFinderListener'

*/

class DeviceFinderListener : public Sec::Shp::DeviceFinder::IDeviceFinderListener

{

virtual void OnDeviceAdded(Sec::Shp::Device& device)

{ /* This method will be invoked when a new device is discovered */
3irtua1 void OnDeviceRemoved(Sec::Shp::Device& device)

t /*This method will be invoked when a device leaves the network */
3irtua1 void OnDeviceUpdated(Sec: :Shp::Device& device)

t /*This method will be invoked when a device details got updated */
}

s

Following is the sample registration of custom device finder listener with SHP Framework.:

sp_shp->getDeviceFinder()->setDeviceFinderListener(*(new DeviceFinderListener())) ;

\ SMART Home

2.4.2.2. Creation and configuration of SHP Status Listener

Sec::Shp::SHP: :setSHPListener() is the API to be used for setting SHP Status Listener with SHP
Framework

By default, the application will generate code for receiving and handling status related notifications from SHP
Framework and providing configuration data back to SHP Framework. Applications will create, initialize, and set
the SHP Status Listener (file: <SHP-C++_Project Name>\SHPListener.cpp).

Developers can also have their own custom SHP Listener by implementing 'Sec.:Shp::ISHPListener' and handle
SHP Framework notifications related to status (start/ stop / error) of framework, easy setup, registration, and device
token related. Developers are expected to set their custom SHP Status listener by using above mentioned API
Sec::Shp::SHP: :setSHPListener().

/**

* Configure SHP Listener

*/

if (false == sp shp->setSHPListener(*sp_shpListener)) {
std::cout << "Failed to set SHP Listener Object" << std::endl;
return false;

}
24.2.2.1. More details on ‘ISHPListener’ interface

The ISHPListener interface is used for receiving notification from the SHP Framework and providing configuration
data to SHP Framework. As part of project creation, the SHPListener class is created which implements
ISHPListener. ISHPListener interface has the following methods (APIs).

Note: Complete description and documentation is available with SHP Framework API documentation
public void onStarted(String address)

This method will be invoked by framework when framework is started. In return, it gets address of the server
which is started by framework.

public void onStopped()
This method will be invoked when framework is stopped.
public void onError()
This method will be invoked when framework encounters an error.
public String getMyDeviceToken()
This method will be invoked by SHP Framework for getting Controlled devices token
public String getUUIDAndTokenMap()
This is no longer used.
public void updateUUIDAndTokenMap(Sec.Shp.DeviceToken token)

This method is used only on Controller Application. This method will be invoked whenever SHP Framework
receive device token and pass received device token and UUID of controlled Device.

public void tokenRequestNotification(String uuid)

This method will be invoked whenever SHP Framework gets request for Device Token and pass UUID of the
requested device.

public void easySetupNotification(Sec.Shp.EasySetupNotifactionnotif)

\ SMART Home

This method will be invoked by SHP Framework for notifying the status of easy setup and registration & de-
registration procdure.

void scsErrorNotification(interroCode)
This method will be invoked by SHP Framework for notifying the error code which was sent by SCS server.
public void OnChannelCreated(String channelName, intconnID)

This method will be invoked whenever steam channel is created by SHP framework and provide Stream
ChannelName and connection Identifier to application.

public String getAuthCode()

This method is used only on Controller Application. SHP Framework will invoke for getting “Authcode” from
application.

public String getAccessToken()

This method is used only on Controller Application. SHP Framework will invoke for getting “AccessToken”
from application.

public String getRefreshToken()

This method is used only on Controller Application. SHP Framework will invoke for getting “Refresh Token”
from application.

public String getUserID()

This method is used only on Controller Application. SHP Framework will invoke for getting “UserID” from
application.

Following is the code snippet of applications default ISHPListener implementation present in file: <SHP-
C++_Project Name>\SHPListener.cpp).

#ifndef _ SHPListener__
#define __ SHPListener__
#include <iostream>
#include "ISHPListener.h"
#include "ConditionUtility.h"
#include "MySHPDevice.h"
/**
* @classSHPListener
* @briefThis class implements ISHPListener, this class is used for receiving notifications

e from SHP Framework and providing configuration data to SHP Framework.
*/
class SHPListener: public Sec::Shp::ISHPListener
{
public:
/**
* Default constructor of SHPListener
*/
SHPListener();
/**
* Default destructor of SHPListener
*/
virtual ~SHPListener();
/**

* This method will be a notified from SHP-Framework to application along with the UUID
* from which device token request is received.
* This method is used only on Controlled Application.
*
* @param[in] uuidulIiD from which device token request is received by SHP-Framework
*/

void tokenRequestNotification(std::string uuid);

_ SMART Home
2.4.3. Starting SHP Framework

Sec: :Shp::SHP: :start() is the API to be used for starting SHP Framework after successful initialization SHP
Framework AND Sec: :Shp: :SHP: : getSHPState() is the API to be used for knowing current execution status
of SHP Framework

SHP Framework start() method is a non-blocking call and the framework will be in Sec::Shp::SHP STARTING
state till SHP is completely started. The SHP Framework will go to state Sec::Shp::SHP STARTED once it is
completely and successfully started all servers, clients, and successfully registered the device with the cloud.
Developers are expected not to perform any other activity till SHP is completely started. By default, the application
will be waiting for SHP to either to start successfully or exit with an error. Sec::Shp::SHP: :getSHPState()
needs to be used by developers to know status of SHP Framework any time.

Note: Complete documentation on valid SHP States are explained in detail in SHP API documentation

Once the SHP is successfully started, the application checks whether Easy Setup routine needs to be performed or
not by checking the flag ‘easySetupRequired’ of SHPUtils class. By default, before initialization of the framework,
the application checks whether application (running on device) is provisioned or not. It will verify whether
application possess all required details to be connected to Home Access Point (Home AP) for registering onto cloud.

e Ifapplication is not provisioned then enable Soft AP mode on device and perform Easy Setup routine (refer
to SHP Architecture for complete details on Easy Setup routine)

SHPUtils: :startFramework() method in file: <SHP-C++_Project Name>\SHPUtils.cpp) does contain default
implementation of application for invoking SHP Framework start and based on need initiates Easy Setup routine
(SHPUtils: :performEasySetupProcess()).

bool
SHPUtils: :startFramework()

if ((false == isFrameworkIntialized) || (NULL == sp_shp) || (NULL == sp_myDevice)) {
cout<<"SHPUtils::startFramework() => "<<"ERROR: SHP Framework hasn't initialized"<<
std::endl; return false;

if (false == sp_shp->start(*sp_myDevice)) {
cout << "SHPUtils::startFramework() => "<<"ERROR: Failed to Start framework"<<std::endl;
return false;

b

/** Confirm SHP-Start */

Sec::Shp::SHPStates shpState = sp_shp->getSHPState() ;

while (Sec::Shp::SHP_STARTING == shpState) {
Sleep(1000); // Waiting for 1 second for checking status of SHP
cout << "SHPUtils::startFramework() => " << "INFO - Waiting for SHP to be started
completely, SHP Running Status " << shpState << std::endl;
shpState = sp_shp->getSHPState() ;
¥

if (shpState == Sec::Shp::SHP_STARTED) {
std::cout << "SHPUtils::startFramework() => " << "INFO - Successfully started SHP with
State " << shpState << std::endl;

}
else {
std::cout << "SHPUtils::startFramework() => " << "ERROR: Failed to Start framework with
State " << shpState << ", Hence Exiting!!!" << std::endl;
stopFramework();

return false;

#ifdef REMOTE_ACCESS_SUPPORT
if (easySetupRequired == true) {
performeasySetupProcess();

#tendif
return true;
}

Samsung
SMART Home

I

Application sets ‘easySetupRequired’ flag to true upon non-availability of Home AP details.

SHPUtils::isWifiDetailsAvailable(),
SHPUtils: :connectToHomeAccessPoint(),
SHPUtils: :enableSoftAPMode(), and

SHPUtils: :disableSoftAPMode() are the application methods which needs to be implemented by application
developers. What is expected out of each of these methods is clearly documented inline in the application project.

/**
* Initially, application will check whether WiFi details are present or not to connect HomeAP.
* If WiFi details are present, then device will connect to HomeAP. Application will terminate
* on failure of connecting HomeAP. If device doesn't have WiFi information, then application
* will exit in case of controller and device will goto softAP mode in case of controlled device.
*/
bool wifiDataAvailality = isWifiDetailsAvailable();
bool connected = false;

if (wifiDataAvailality == false) {
if (p_config->getAppType() == Sec::Shp::ApplicationType_Controller) {
cout << "SHPUtils::initializeFramework() => " << "No WiFi Details to Connect Home
AP " << std::endl;
return false;

}
else {
cout << "SHPUtils::initializeFramework() => " << "No WiFi Details to Connect Home
AP " << std::endl;
if (false == enableSoftAPMode()) {
cout << "SHPUtils::initializeFramework() => " << "Failed to Start Soft-AP
Mode " << std::endl;
return false;
}
easySetupRequired = true;
connected = true;
}
¥
else {
connected = connectToHomeAccessPoint();
}

if (connected == false) {
cout << "SHPUtils::initializeFramework() => " << "Failed to connect Home Access Point,
Please check WiFi Details" << std::endl;
return false;

\ SMART Home

2.4.4. Discovering devices

24.4.1. Retrieving discovered devices

The essential resources to be implemented for the device to be discovered by the SHP Plugin are Capability and
Devices. The Capability Resource Handler is already implemented, so the application developer needs to implement
the Devices Resource Handler. This can be done by implementing the required methods in the
DevicesResourceHandler.cpp in the Server folder (ShpGen > Server). The status code must also be updated while
implementing the Resource Handler methods.

Implement the following methods, updating status code and filling the ‘respData’ structure.
For C++ Projects:
bool

DevicesResourceHandler: :onGET(Sec::Shp::Connector::Server::ServerSession& session, int&
statusCode, ::Devices* respData)

{
// : Autogenerated code. Add Resource implementation here
// : Default Status Code is: 501 - Not Implemented. Replace Default Status Code
based on implementation!
statusCode = 501;
return true ;
}

For example, developers can make use of sample device implementation available in method
MySHPDevice::getDevices(), for example:

bool
DevicesResourceHandler: :onGET(Sec::Shp::Connector::Server::ServerSession& session, int&
statusCode, ::Devices* respData)

{
std::cout<<"\n\n$$$$$$$$$$$$$$$$$$ onGET Devices\n\n";
statusCode = 200;
return MySHPDevice::getInstance()->getDevices(respData);
}

Implement following methods, updating status code and storing/updating as per ‘reqData’.

For C++ Projects:

bool
DevicesResourceHandler: :onPOST(Sec::Shp::Connector: :Server::ServerSession& session, int&
statusCode, ::Device* reqData,std::string& location)

{
// : Autogenerated code. Add Resource implementation here
// : Default Status Code is: 501 - Not Implemented. Replace Default Status Code

based on implementation!
statusCode = 501;
return true ;

\ SMART Home

2.4.5. Performing Resource Control / Monitor / Manipulation

2.45.1. Sending REST requests to discovered devices

If application wants to send requests to any specific resource (controlled applications) of say discovered devices
then

1. Expected to implement all required methods in respective /<Resource Name>ResourceResponseListener
located in ‘Client’ folder (ShpGen = Client in case of C++ Projects)

class LightResourceResponseListener : public ILightResourceResponseListener

{
public:
bool onGetLight(int& requestId, int status, ::Light* pRespData)
{
std::string power = pRespData->mpLightPower->value;
// Check if light is powered on
if (power.compare(“on") == 0)
{
int requestId;
Light *pLight = new Light();
pLight->mpLightPower = new OnType();
pLight->mpLightPower->value = "Off";
// Power off the light
pLightResource->putLight(requestId , *pLight);

return true;

bool onPutLight(int& requestId, int status)
if (status == 204)

// Light powered off successfully
}

3

2. They are expected to use respective resource classes
(Sec::Shp::Client::Resource::<Resource_name>Resource) to make requests, and

LightResource* pLightResource = NULL;
void powerOffLight()

{
pLightResource = device->createResource(RT_LIGHT);
if (NULL != pLightResource)
{
int requestId;
pLightResource->addResponseListener(*(new LightResourceResponseListener()));
pLightResource->getLight(requestld);
¥
}

Application developers must have the knowledge of input and output data format SHP requests only then can they
properly type cast the response data. Application needs to type cast the response data to corresponding data class

@ ’— Samsung
\ SMART Home

generated by SHP-SDK. SHP-SDK also generates resource specific controllers and status listeners. It is advisable to
use these resource specific controllers and interfaces to avoid type casting.

2.4.5.2. Precautions when assigning attribute values into the resource object

1. Due to nature of the SHP specification if any of attribute values are not belongs to Enumeration type SDK
will not validate whether the contents of the value is appropriate or not, but SDK do the basic type
validation. For example, "NotificationEventType" value should be one of the following: "Created" or
"Notified" or "Deleted". Main difference when defining a type of attribute is, whether the certain attribute
can be generalized or not. When you see the value of "progress" attribute located under the "Operation”
resource, you'll find out it's defined as a "String20" and SDK will only checks length of the string is not
exceed more than 20. Because, representation or supported values for this attribute can be very different
among the devices and thereby SHP specification just provides a string container with one single constraints
which is maximum length of the string.

2. SDK will removes from the string all leading and trailing white-space characters. Each leading and trailing
trim operation stops when a non-whitespace character is encountered. For example, if the assigned attribute
value is " 2014-10-31T18:30:00 ", the SDK internally converts it into "2014-10-31T18:30:00".

2.4.5.3. Handling REST requests from Controller devices

If the application wants to handle requests on specific resource (controlled applications) then application developers
are expected to implement all required methods in the respective resource handler
<Resource_Name>ResourceHandler.cpp in ‘Server’ folder (ShpGen > Server in case of C++). The status code
shall also be updated while implementing respective Resource Handler methods.

By default, generated application handles ‘Capability’ resource and respective resource handlers are available in
ShpGen > Server > CapabilityResourceHandler.cpp

Please refer to sample implementation for in Retrieving discovered devices for handling GET request on ‘Devices’
resource.

2.4.6. Stopping SHP Framework

Sec: :Shp: :SHP: :stop() isthe API to be used for stopping SHP Framework completely after successful start of
SHP Framework

Sec: :Shp: :SHP: :stop(true) is the API to be used for stopping SHP Framework internally after successful
start of SHP Framework

Sec: :Shp: :SHP: :removeSHPListener() is the API to be used for un-subscribing SHP Status listeners

SHP Framework stop() method is a blocking call and the framework will be in Sec::Shp::SHP STOPPING state till
SHP is completely stopped. SHP Framework will go to state Sec::Shp::SHP STOPPED once it is completely and
successfully stopped all servers, and clients. Developers will not to be able to perform any other activity till SHP is
completely stopped once ‘stop()’ method is invoked. By default, the application will be verifying completeness of
SHP Framework stop by checking Sec: :Shp: :SHP: :getSHPState() with Sec::Shp::SHP_STOPPED.

Note: Complete documentation on valid SHP States are explained in detail in SHP API documentation.

@ , Samsung
‘ SMART Home

Once the SHP is successfully stopped by default application, unsubscribe to SHP Status notifications by invoking
API, Sec: :Shp: :SHP: :removeSHPListener() and do memory cleanup.

SHPUtils: :stopFramework() method in file: <SHP-C++_Project Name>\SHPUtils.cpp) does contain default
implementation of application for invoking SHP Framework stop.

bool
SHPUtils: :stopFramework()

{
if (sp_shp == NULL) {
return false;
}

sp_shp->stop();

/** Confirm SHP-Stop */

Sec::Shp::SHPStates shpState = sp_shp->getSHPState() ;

if (Sec::Shp::SHP_STOPPED == shpState) {
std::cout << "SHPUtils::stopFramework() => " << "INFO - SHP Stopped Completely"
<< std::endl;

/** Un-subscribe SHP Listener */
sp_shp->removeSHPListener(*sp_shplListener);

if (sp_shpListener) { delete sp_shpListener; }

/** Reset SHP Configuration */
Sec::Shp::Configuration *config = sp_shp->getConfiguration();

if (NULL != config) {
config->reset();
}

#ifdef REMOTE_ACCESS_SUPPORT
if (sp_condition) { delete sp_condition; }

#endif
if (sp_shp) { delete sp_shp; }
std::cout << "SHPUtils::stopFramework() => " << "Exiting Successfully!" << std::endl;
return true;

}

Note: SHP Framework provides another variant of stop() method stop(true) which will make SHP Framework to
perform an internal stop.

For complete details please refer to SHP-API documentation.

2.4.7. Implementation of network resource handler

As part of an easy setup procedure, Controller Device will PUT network resource with the Wi-Fi AP access
information to controlled the Device. The application developer shall implement onPUT() method of
NetworkResourceHandler class and stores Wi-Fi AP access information in persistent storage for avoiding losing of
AP access information during restart of the device.

4N\ SMART Home

2.4.8. Remote Access Configuration Files

This file is used to specify remote access configuration details. By default, this files (controller.ra.config,
controllable.ra.config) are stored in config folder under "SDK Components directory path" preference field value.
This file contains default value for all fields. The application developer needs to modify this file if required. The file
contains the following remote access configuration details.

AUTH_ACC_SERVER_ADDR

This field specifies the Authentication Account server address.
API_ACC_SERVER_ADDR

This field specifies the API Account server address.
ACC_SERVER_PORT

This field specifies the Account Server port Number.
SERVICE_SERVER_ADDR

This field specifies the Service Server Address.
SERVICE_SERVER PORT

This field specifies the Service Server Port Number.
REMOTE_SERVICE_PORT

This field specifies the P2P service port for the connection
REMOTE_SERVER TYPE

This field specifies type of the SCS server to be connected. During the development period, it's strongly
suggested to use a staging server to avoid any interference with a commercial smart home service being operated.
(0: Production, 1: Staging)

SCS_LOG_LEVEL

This field specifies the SCS library log level.
SCS_LOG_PATH

This field specifies the SCS log folder, where SCS library create log file and write logs to file.
REMOTE_CONFIG_PATH

This field specifies the folder, where SHP Framework create file for storing SCS configuration details like
authCode, accountID, peerID, peerGrouplID, countryCode and guid(Global User ID).

For example, REMOTE _CONFIG _PATH=/home/SHP_SDK/configs/remoteconfigs/

Note: It is application developers’ responsibility to ensure existence (if required create before execution
of the application itself) of the parent directory (for e.g., /home/SHP_SDK/configs/) of ‘remoteconfigs’
folder. Framework will only be able to create folders ‘remoteconfigs’ onwards.

Developer Note:
AppID

This value specifies the application id. If application developer wants to get a new application id, please contact
to the Convergence Development Group of the MSC division.

@ ’— Samsung
\ SMART Home

AppSecret

This value specifies the application secret key that depends on the application id. When application developer
gets an application id, corresponding application secret key also will be provided.

InstancelD

This value specifies the application instance id that represents purpose of the application. If application
developer wants to get a new instance id, please contact to the Convergence Development Group of the MSC
division.
Above three values shall be set from application using their respective setter APIs, for reference,
RemoteAccessConfig: :setAppId() , RemoteAccessConfig: :setAppSecret(), AND

RemoteAccessConfig: :setInstanceId().

2.4.9. Setting of Authorization Grant Type

Please note that user must create a Samsung Account to utilize a remote access feature. Please visit
"https://account.samsung.com/membership/signUp.do" to sign up to Samsung Account.

Application should set required authorization grant type by using the API below:

C++ API: void RemoteAccessConfig::setAuthorizationType(const AuthorizationType authType)

The application shall provide all mandatory details as part of the SHP framework initialization based on
Authorization Grant Type. If any mandatory details are missing, framework throw error and stop framework. Please
find mandatory parameters details for each Authorization Grant Type in table. And Instance ID with zero is not
allowed by framework.

- - -
Authorization Grant Type Mandatory Details From App C#++ AP for setting required

details
Resource Owner Password Appld , AppSecret, Instanceld, Email & Password. RemoteAccessConfig::setEmail()
Credentials for setting email id.

Framework will retrieve authcode, accessToken
AUTH GRANT TYPE PASS . . ’
%VORD_CRED) - - RefreshToken & UserID by using provided

dentials.

credentials RemoteAccessConfig::setPassword

Whenever current access token is expired, () for setting password.

framework retrieves new access token by using

refresh token.
Authorization Code Appld , AppSecret, Instanceld, Email, [AuthCode]. Eifsaig(:szcl%nﬁg::setAppId()
AUTH_GRANT TYPE AUTH . . ’
g - - - Framework will retrieve accessToken, RefreshToken

& UserID by using provided credentials.
RemoteAccessConfig::setAppSecr

If applicati “Auth » f .
application does not set “AuthCode” as part o et() for setting App Secret.

initialization, framework will call
ISHPListener::getAuthCode() callback for getting

“AuthCode” from application.
RemoteAccessConfig::setlnstancel

Whenever current access token is expired, d() for setting Instance ID.
framework retrieves new access token by using
refresh token.

https://account.samsung.com/membership/signUp.do

@ ’— Samsung
\ \ SMART Home

Implicit Grant Appld , AppSecret, Instanceld, Email, RemoteAccessConfig::setAuthCod
(AUTH_GRANT TYPE IMPLI | [AccessToken] & [UserID]. e() for setting Auth Code.
CIT)

If application does not set “AccessToken” or
“UserID” as part of initialization, framework will
call ISHPLisfener:: getAccessToken() callback for RemoteAccess'Conﬁg::setAccessT
getting “AccessToken” and oken() for setting Access Token.
ISHPListener::getUserID() for “UserID” from
application.
RemoteAccessConfig::setRefreshT
Whenever current access token is expired, oken() for setting Refresh Token.
framework will call ISHPListener::getAccessToken
() callback for getting “AccessToken” and

ISHPListener::getUserID() for “UserID” from RemoteAccessConfig::setUserID()

application. for setting User ID.
Access Token & Refresh Token Appld , AppSecret, Instanceld, Email, RemoteAccessConfig::getAuthCod
(AUTH GRANT TYPE EXTE [AccessToken], [RefreshToken] & [UserID]. e() for getting Auth Code.
NDED_TOKEN) If application does not set “AccessToken”,
RefreshToken or “UserID” as part of initialization,
framework will call ISHPListener:: RemoteAccessConfig::
getAccessToken() callback for getting getUserID() for getting User ID.
“AccessToken”, ISHPListener::getRefreshToken()
callback for getting “RefreshToken” and
ISHPListener::getUserID() for “UserID” from RemoteAccessConfig::getAccessT
application. oken() for getting Access Token.

Whenever current access token is expired,
framework retrieves new access token by using

refresh token. RemoteAccessConfig::getRefreshT

oken() for getting refresh token.

2.4.10. Easy Setup, Registration and Remote Access

Smart Home devices shall be connected to the Smart Home Network (Cloud Server) for providing Smart Home
services. All Smart Home Devices needs to be registered with Cloud Server beforehand, EITHER for accessing /
monitoring / controlling (Controller devices) other SHP devices information OR for being accessible / to be
controlled (Controlled device) by other SHP devices.

All devices needs to connect to Home Access Point (‘Home AP’ — which is expected provide external connectivity)
firstly and then register with the Cloud Server. But generally most of Home appliances just have limited user
interface like display and/or user input method comparing to mobile phone and PC, so that it would be not easy to
type password for connection to the home network.

SHP Specification provides ‘Easy Setup’ procedure for Smart Home Appliances which has limited user interface to
connect to the Smart Home network with help of a mobile device like a smart phone.

‘Easy Setup’ process is required for those kind of devices which cannot connect to ‘Home AP’ on their own OR for
those devices which are not having provision (Display GUI) to key in ‘Home AP’ details by users. For example,
most of the Controlled devices (home appliances) which are not having display need ‘Easy Setup’ process. Since
the Controller device (smart phone or tablet) can connect to the ‘Home AP’ by itself, ‘Easy Setup’ process
procedure is not needed beforehand. Registration process of the Controller device with the Cloud Server is almost
same as the Controlled device registration except that the Controller device can perform registration process by
itself without help of other devices.

Devices which can connect to ‘Home AP’ by themselves (Controller devices) can also help devices which cannot
connect on their own (Controlled devices). ‘Easy Setup’ process does facilitate the same, in this process Controller
device helps Controlled devices provisioning and eventually their registration with Cloud Server.

‘Easy Setup’ process mainly comprises of three phases:

I

1. ‘Easy Setup’,
2. ‘Registration’, and
3. ‘SCS Login’

2.4.10.1. Easy Setup Phase

In ‘Easy Setup’ phase,

R/

, Samsung
SMART Home

¢ Firstly, Controller (helper) device shall pair with the Controlled (device which needs external help for

registration) device, SHP Specification supports two types of pairing:

‘0

connects to Controlled device

7
*

direct connection with each other

Home Server (SHS)

s Controller device shall discover Controlled device

this marks completion of ‘Easy Setup’ phase

A N
< Soft AP Connection established)
A L\
1. sp_shp->stop(true); + < 3. Set Easy Setup Mode D,
LN Y v
2. getlPAddressAndUUID(address, uuid); —14 (SHPUtils::restartSHP(EASY_SETUP_MODE))
3. Sec::Shp::SHP-setSHPMode(EASY_SETUP_MODE) 4. SSDP Advertisement
6. Share Home AP details
7. Share Controlled device details
‘a N
8. Easy Setup completed
\‘ '/
onEasySetupModeCompleted()

Controlled device l 4

(Appliance)

‘ 1. Enable Soft-AP

% Soft-AP connection mode, in which Controlled device acts as an AP and Controller device

Wi-Fi P2P connection mode, in which Controller device and the Controlled device make a

¢ Once discovered, Controller device provisions Controlled device by sharing details of ‘Home AP’

» And in return, Controlled device sends its device information to Controller for registration with Smart

» Both Controller and Controlled device application receives onEasySetupModeCompleted() call back —

Controller device
(Smart Phone)

(SHPULils::enableSoftAPMode()) ‘ 2. Connect to Controlled AP

5. Controller device discovered
Controlled device

ST O\ o
; \ ’ SMART Home

2.4.10.2.

Registration Phase

In ‘Registration’ phase,

Firstly, upon reception of onEasySetupModeCompleted() call back, both (Controller and Controlled)
devices shall teardown their connection in Soft-AP mode (application needs to implement
SHPUtils: :disableSoftAPMode()) and connect back to the Home AP. Later, they are expected
to initiate ‘Registration’ phase by setting SHP-Framework mode to REGISTRATION MODE

Controller device shall discover Controlled device

From Samsung Account server, Controller (helper) gets necessary credentials and sends (for example,
Authorization Code and E-mail ID) to Controlled device — this will initiate Account server registration
request on Controlled device

Then Controlled device performs Account server registration and shares the response with Controller

Upon the response, Controller performs Controlled device registration with Smart Home Server (SHS)
by using the device details which are already retrieved in ‘Easy Setup’ phase

Upon successful registration, SHS server will return an ID (peerID) to the Controller

Then, Controller device sends all necessary details (peerID, peerGrouplID, countryCode and etc.)
required for Controlled device to perform login with Samsung Smart Connectivity Server (SCS) — this
will initiate SCS server registration request on Controlled device — this marks completion of
‘Registration’ phase

Samsung
SMART Home

P ’ =
VI:PmeAP Co"t"O”Efi device ~| Controller device SHS n 4
(AP) (Appliance) —’ (Smart Phong . (Service server) L) Account Server

1. Disable Soft-AP 2. Disconnect from
(SHPULtils::disableSoftAPMode()) Controlled and
sp_shp->stop(true); + P N disable Soft-AP
ﬁzyd:fe”/‘"duum{adm”' < 3. Soft AP Connection Teardown
ia);
Sec::Shp::SHP::setSHPMode(REG N v
STRATION_MODE) A k\
4. Set Registration Mode p,
~N L4
[\(sHPUtils::restartSHP(REGISTRATION_MODE))
A N
< 5. Connect to Home AP)
N

6. Connect to Home AP
8. Controller device

7. SSDP Advertisement

(SHputils::connectToHomeAccessPqint()) discovered
Controlled device
9. Account Server registration request
10. Account Server registration responsg
p A
< 11. Get Access Token >
N v

A

N
12. Controlled Registration /

13. SCS Server registration request

14. SCS Server registration response

A
< 15. Registration completed
~N

2.4.10.3. SCS Login Phase

In ‘SCS Login’ phase,

®,

s Controlled device performs SCS server registration using collected details in above two phases.
Controlled device attempts SCS Login and update the same to Controller device, this marks
completion of Easy Setup process. Controlled device makes use of these details for further
initialization as well

SMART Home

L/
Controlled device Controller device
(Appliance) ——" (Smart Phond
‘ Registration Done Registration Done

< 1. SCS Registration >
/ 2. SCS Registration >

N\

3. Notify Peer Device Details

<4. Easy Setup process completed>

2.4.10.4. Remote Access

In ‘Remote Access’,

7

« Upon successful SCS login, using ‘Remote Access’ feature Controller device can manage
(monitor/control) all registered Controlled devices through remote channel

Note: For complete details and usage of Remote Access feature, refer to Section 3.4.18

2.4.10.5. Easy Setup Notifications

As mentioned earlier during the Easy Setup process, SHP-Framework notifies each progress to the respective
application (assumed to be having a listener by implementing Sec:Shp.:SHP::ISHPListener) at each phase. This
enables application developers to have their custom implementation (or actions to be done) based on the notification
received. For example, upon reception of EASY_SETUP_REQUIRED, application developers are expected to
initiate Easy Setup up process by enabling the device into Soft-AP mode and etc.

Note: Complete details about Easy Setup notifications are detailed in SHP-API documentation

I

Samsung

N
\) SMART Home

Following are the possible notifications from SHP-Framework during Easy Setup process along with their

explanation:

Easy Setup Notification

Description

DEVICE_TOKEN_REQUEST_TIMEOUT

EASY_SETUP_REQUIRED

DIFFERENT_COUNTRY_CODE

AUTH_CODE_EXPIRED

MISSING_MANDATORY_PARAMS

LOCAL_SERVER_ERROR

NO_AUTHORIZATION_DETAILS

CONNECTION_ERROR

REMOTE_SERVER _ERROR

INVALID_REQUEST

CONNECTION_TIMEOUT

REFRESH_TOKEN_EXPIRED

DEVICE_LOGIN_FAILED_TO_SCS

FAILED_TO START TIMER

FAILED _TO_REGISTER DEVICE_TO_SHS

FAILED TO FETCH_INFORMATION FROM _
SHS_CR

FAILED TO UPDATE REFRESH TOKEN

ACCESS_TOKEN_EXPIRED

Represents Device Token Request Timeout

Represents Easy setup is required.

Represents Different Country Code.

Represents Authentication code is expired.

Represents Missing Mandatory Parameters.

Represents Local server ERROR.

Represents No Authorization details.

Represents Connection ERROR.

Represents Remote Server ERROR.

Represents Invalid Request.

Represents Connection Time Out.

Represents Refresh Token expired.

Represents Device Login failed to SCS.

Represents Failed to start Timer.

Represents Failed to register device to SHS.

Represents Failed to fetch information from
SHS.

Represents Failed to update refresh token.

Represents Access token expired.

I

FAILED TO GET_TOKEN_DETAILS
FAILED TO _GET_AUTH_CODE_CR
EASY_SETUP_TIME_OUT_CR
DEVICE_NOT_REGISTERED

WAITING_FOR_HELPING DEVICE_TO_BE_D
ISCOVERED_CR

AWAITING_WIFI_DETAILS_CD
SENDING_WIFI_DETAILS_CR
WIFI_DETAILS_SENT CR
REQUESTING_CONTROLLER _UUID CD
SENDING_UUID_CR
AWAITING_DEVICE_DETAILS_CR
SENDING_DEVICE_DETAILS_CD
EASY_SETUP_COMPLETED
REQUESTING_DEVICE_TOKEN_CR
REGISTRATION_INITIATED

GETTING_AUTH_CODE_FROM_SERVER_CR

AWAITING_AUTHCODE_DETAILS_CD
SENDING_AUTHCODE_DETAILS_CR

GETTING_TOKEN_DETAILS FROM_SERVER

Samsung

l"\
‘.‘ , SMART Home

Represents Failed to get Token details.
Represents Failed to get Authentication Code.
Represents Easy setup Time Out.

Represents Device not registered.

Represents Waiting for helping device to be
discovered.

Represents Awaiting WIFI details.
Represents sending WIFI details.
Represents WIFI details sent.
Represents Requesting controller UUID.
Represents Sending UUID.

Represents Awaiting device details.
Represents Sending device details.
Represents Easy setup completed.
Represents Requesting device token.
Represents Registration initiated.

Represents Getting Authentication code from
server.

Represents Awaiting authentication details.
Represents Sending authentication details.

Represents Getting token details from server.

i \ SMART Home

GETTING_DEVICE_LIST_FROM_SHS CR Represents Getting device list from SHS.
GETTING_USER _INFO_FROM_SHS CR Represents Getting User info from SHS.
GETTING_PEERID_LIST FROM_SHS CR Represents Getting peerID list from SHS.
DEVICE_REGISTERED_TO_SHS CR Represents Device registered to SHS.
WAITING_FOR_PEERID DETAILS CD Represents Waiting for peer ID details.
SENDING_PEERID DETAILS CR Represents Sending peer ID details.

ATTEMPTING_REGISTRATION_WITH_SCS Represents Attempting registration with SCS.

DEVICE_LOGGED_INTO_SCS Represents Device logged into SCS.
ALREADY_ REGISTERED TO _SHS CR Represents Already registered to SHS.
RETRYING REGISTRATION WITH_SCS Represents Retrying registration with SCS.

2.4.10.6. Steps for Easy setup and Registration of Controlled Device

The SHP Framework should be started only when Controlled device’s interface has proper IP Address. The
application developer should follow steps for Easy setup and Registration.

1. Stop SHP Framework by calling stop (true) method of SHP class in case of SHP Framework is already started.
As part of this method SHP-Framework stops all its Server Connectors and Remote Connectors.

2. Soft AP operation shall be started in the Controlled device whenever user pushes Soft AP enabling button.

3. Set SHP mode to Easy Setup Mode by calling Sec::Shp.::SHP::setSHPMode() method of SHP class. The first
argument value should be “EASY_SETUP_MODE” and second argument value should be IP address of Interface.

SHPUtils: :restartSHP(Sec: :Shp: :SHPModes mode) is the method in file <Project Name>/SHPUltils.cpp
which performs internal stop [stop(true)] and takes Sec::Shp::SHPMode as parameters which will be passed as an
argument to Sec::Shp::SHP::setSHPMode() method. Same method can be used for setting Easy Setup and
registration routines. C++ application developers are expected to make use of this.

SHPUtils: :enableSoftAPMode() is the method in file <Project Name>/SHPUltils.cpp which needs to be
implemented for enabling Soft AP during Step 2

4. Once receive “EASY_SETUP_COMPLETED” easySetupNotification through registered SHP listener
easySetupNotification() method, stop SHP Framework by calling stop (true) method of SHP class.

SHPUtils: :processNotification() is the method in file <Project Name>/SHPUtils.cpp which handles all
required easy setup notifications from SHP Framework. This method takes necessary action based on notification
received, for example this method initiates registration process after receiving EASY SETUP COMPLETED
notification from SHP Framework in Step 4

Samsung
SMART Home

Pinsunig M\

5. De-activate Soft AP operation and connect to Home AP using AP access information received from controlled
Device.

SHPUtils: :disableSoftAPMode() is the method in file <Project Name>/SHPUtils.cpp which needs to be
implemented for disabling Soft AP during Step 5

6. Set SHP mode to Registration Mode by calling Sec::Shp.:SHP::setSHPMode() method of SHP class. The first
argument value should be “REGISTRATION_MODE” and second argument value should be IP address of
Interface. As part of registration procedure, SHP Framework will invoke “getMyDeviceToken()” method of
registered SHP listener for getting Device Token, so application developer should implement “getMyDeviceToken()”
method.

2.4.10.6.1. Function call constraints

It is strictly prohibited for application developers to call any framework API (especially start() and stop()
methods) from framework callbacks to the application. They are requested to make use of their Application
thread to perform any sort action OR write any implementation (GUI logic) which is time consuming.

Note: Doing some action on framework callback thread make SHP-Framework to be blocked till the finish of
custom implementation.

For example, as aforementioned, during Easy Setup process and as part of few notifications, application is
expected to restart SHP-Framework. However, application should not restart SHP framework from the callback
thread (notification receiver).

One way of handling this by application developers is by setting some variable or state or by notifying application
threads about the framework callback and relieve call back thread. Later, have implementation which does some
action based on the variable/state/notification received on application thread only.

SHP-SDK handles this by making use of Conditional wait logic.

All generated C++ Controlled applications (generated using SHP-SDK-Plugin) will have a generated class
‘ConditionUtility’ which implements functions related to Conditional wait logic. This is kind of conditional variable
wrapper class. ‘SHPUtility’ class of the generated application has ‘ConditionUtility’ as a member, which means
main thread will wait for the condition.

For example, upon reception of any Easy Setup notification (say, EASY_SETUP_COMPLETED, which expects
application to restart framework) from framework it just notifies (condition) the application and relieves framework
callback thread. And application will handle (restarts SHP-Framework by calling sp_shp->stop(true)) the received
notification in its own thread.

SMART Home

class SHPUtils

{
public:

static ConditionUtility *sp_condition; /**< Represents object of ConditionUtility class.
*/
¥

void
SHPListener: :easySetupNotification(int eNotification)

{

std::cout << "SHPListener::easySetupNotification(): =>
Notification from Framework " << eNotification << std::endl;

<< "Received Easy Set-up

if (m_shpNotification != eNotification) {
std::cout << "SHPListener::easySetupNotification(): =>
<< eNotification << std::endl;
m_shpNotification = eNotification;
std::cout << "SHPListener::easySetupNotification() => " << "Notifying Condition"
<< std::endl;
SHPUtils::sp condition->notify();

" << m_shpNotification <<

}

/**

* TODO: Application developers are expected to implement logic to handle
notifications from SHP-Framework and take necessary action.

* @n

* @note By default code generator doesn't send anything

*/
}
bool

SHPUtils: :processNotification()

{
#ifdef REMOTE_ACCESS_SUPPORT

std::cout << "SHPUtils::processNotification() =>
sp_shpListener->m_shpNotification << std::endl;

<< "Called with Notification " <<

/%%
* TODO: In this method, we are handling only easy setup process notification, if
application developer wants to
* cover other notification, then he has to implement those.
*/
if ((sp_shpListener->m_shpNotification == (int)Sec::Shp::NO_AUTHORIZATION_DETAILS) ||
(sp_shpListener->m_shpNotification == (int)Sec::Shp::EASY_SETUP_REQUIRED))
{
std::cout << "SHPUtils::processNotification() => " << "No Authorization Details,
hence Device needs Easy Setup process..."
<< "Do you want to start Easy Setup Process (Y/N)? : " << std::endl;

restartSHP(Sec: :Shp: :EASY_SETUP_MODE) ;

else if (sp_shpListener->m_shpNotification == (int)Sec::Shp::EASY_SETUP_COMPLETED)

{
if (easySetupRequired == true) {
restartSHP(Sec: :Shp: :EASY_SETUP_MODE) ;
}
#endif

return true;

}

@ Samsung
y SMART Home
2.5. Build and Run SHP Project

Before Building the project it needs to be ensured that all necessary library files are copied into the Project
workspace

* SHP Eclipse plug-in does not provide any build & run tools. It invokes the build tools which are already
installed in Eclipse

* After finishing the development build the project using Build menu command (Project = Build Project)

Project Run Window Help

Close Project

Build All Ctrl+B

Build Configurations »
| Build Project

Build Working Set »

Clean...

Build Automatically

Make Target »
C/C++Index »

Properties

2.5.1. Execute the application

Unless user modify the default created functions processNotification() and performEasySetupProcess() in the
SHPUtils.cpp, in case the application requires an Easy Setup, application must be executed on the shell to get the
user input (Yes or No). Please set the LD LIBRARY PATH environment variable to corresponding libraries folder
before executing the application.

For example, setting LD LIBRARY PATH environment variable in Linux 32 Bit Platform
$export LD LIBRARY PATH=<SHP SDK PATH>/SHP Framework/Linux 32 Bit/sdk/cpp/lib

SMART Home

2.5.2. Fast Compilation in Eclipse

For fast compilation — ‘build parallel compilation’ option should be enabled in the eclipse build configurations.

™ Properties for NewTempateVerifyPrj

@ C/C++ Build o ov -
> Resource
Builders Configuration: | Debug [Active] * | | Manage Configurations...
¥ C/C++Build
Build variables
Environment [l Builder Settings | @Behaviour | *Refresh Policy
Logging Build settings
Settlngs. _ Stop on first build error Enable parallel build
Tool Chain Editor Useoptimaljobs (1)
» C/C++ General .
@® Use parallel jobs: -
Project References limited job E
Run/Debug Settings oo Unimiced joos
» Task Repository Workbench Build Behavior
WikiText Workbench build type: Make build target:
Build on resource save (Auto build) Variables...
Note: See Workbench automatic build preference
& Build (Incremental build) all |Variables... |
& Clean clean | Variables... |
Restore Defaults Apply
@ Cancel | [OK |

2.6. Sample Application

The provided sample application show developers shows how to use The Smart Home SDK. For running the sample
application, developers are expected to ensure existence/availability of the following on their development
environment:

e Eclipse installation
e SHP-Plugin installation

o Availability of SHP-libraries
e Required Tools installation

o Compiler — G++/GCC

o SQLite3 installation

Installation guides are in Chapter 1.

2.6.1. Features

Sample application has following additional features.

- How to implement a state machine with database. Please see the "DeviceManager.cpp"” and files under the
"/ShpGen/Database" directory to find out ways to manipulate database.

@ ’ \ Samsung
$ \ SMART Home

- How to handle REST calls. Additional code is implemented to the following files.
"/ShpGen/Server/DeviceResourceHandler.cpp"
"/ShpGen/Server/DevicesResourceHandler.cpp"”
"/ShpGen/Server/InformationResourceHandler.cpp"
"/ShpGen/Server/OperationResourceHandler.cpp"
"/ShpGen/Server/TemperatureResourceHandler.cpp"
"/ShpGen/Server/TemperaturesResourceHandler.cpp"

"/ShpGen/Server/VersionResourceHandler.cpp"

"/ShpGen/Server/VersionsResourceHandler.cpp"

2.6.2. Build and run sample application

After importing the sample application project into the eclipse, it can be executed. Refer to ‘Import existing SHP
Projects into the Eclipse workspace’ and ‘Build and Run SHP Project’ chapters.

2.6.3. Testing sample application with Simulator

SHP Eclipse plug-in provides simulators which simulates the behavior of real SHP devices. Developer can use these
simulators to test their application. Controlled application developers can use Controller Simulator for testing.

e Use “SHP Simulator perspective” to manage simulators. Please refer to section — ‘Launching SHP Test
Tool’ and launch “SHP Simulator perspective”

Q | B &’Java <-Plug-in Development | D@ c/c++| [9Resodfce | /A SHP Simulator | ¥ Debug
i | | |

e The provided sample application is ‘Controlled’ application, so launch ‘Controller’ Simulator, Please refer
to section — ‘Controller Test Tool’ and select ‘Controller’ Simulator, for example:

SMART Home

@ select simulator

Select a simulator to activate

AirConditioner

= |

Dishwasher
DoorlLock
DoorPhone
Dryer
Gateway

GenericSensor
Heater
IPCamera

Iron

@ Cancel OK

NOTE 1: Assuming that the provided sample application is ‘Controlled-Generic Sensor’ application and
rest of the screen shots describes further steps involved in testing sample SHP ‘Controlled’ application using
‘Controller’ simulators.

NOTE 2: It is assumed that the sample application is launched and running

e Upon launching ‘Controller’ simulator successfully, it shall discover and show developed ‘Controlled’
application in the following way:

/% Simulator View &8
Controller 2

Address: 10.0.2.15:60111 URL
UuID: 36d4e36d-8e27-0000-0000-0000000

«" Refresh <F Add Device

b Jl‘”) Generic_Sensor
(https://10.0.2.15:8888)

NOTE: Developers can verify whether IP Address and port of the developed application (device) are shown
correctly on ‘Controller’ simulator or not

e Supported resources by the discovered device can be viewed on ‘ Controller’ simulator by expanding
(clicking) on the device tree, it shall show resources of discovered device as follows:

f SMART Home

Controller 52 |

Address: 10.0.2.15:60111
uuID : 36d4e36d-8e27-0000-0000-0000000

& Refresh 4k Add Device

(hEPS://‘I 0.0&15:8888)

v o) Generic_Sensor
>

Devices
> Notifications
> Records
> Actions
> Subscriptions
Capability
LongPollingNotification
3 FoodManager
3 Groups
3 Patterns
3 Energy

NOTE: Developers can verify whether the displayed resources are indeed supported by the developed application
(device) on ‘Controller’ simulator are correct or not

e Access/control developed application (device) from ‘Controller’ simulator:
o Select any one of the supported resources and try to get retrieve details, for example:
1. Select ‘Capability’ resource
2. Select GET request on ‘HTTP Method’
3. Click on ‘Send’ button

/A simulator View 2 = 0

Controller £ |

Address: 10.0.2.15:60111 URL
UUID: 36d4e36d-8e27-0000-0000-0000000 ooy o seditur | @ cer | PUT O posT) DELETE % send
p L J

< Refresh <+ Add Device

v 4 Generic_Sensor Selected Resource a od does not have request payload

(https://10.0.2.15:8888)
Devices

»
L4 Notifications
L3 Records

»

Actions

> FoodManager
> Groups

L4 Patterns

4 Energy

Add New Device Remove Device

NOTE: Please refer to section — ‘Controller Test Tool* for sequence of steps to be followed for ‘Controlling’
resources (Request method as: PUT/POST/DELETE)

Samsung
y SMART Home

e Response from developed application (device) shall be 200, for example:

Controller £ |

Address: 10.0.2.15:60111 URL HTTP Method

UUID: 36d4e36d-8e27-0000-0000-0000000(| o2 ahility FEdtURL @ GET ()PUT (1 POST () DELETE % send

< Refresh ¢ Add Device

- Generic_sensor Selected Resource and method does not have request payload
(https://10.0.2.15:8888)

v Devices
> Notifications
4 Records
L3
L3

Actions
Subscriptions Request Executed successfully.. Status Code : 200

Capability 0

LongPollingNotification

FoodManager

Groups _cncel (oK)
Patterns
Energy

vy v v v

Add New Device Remove Device

e Actual response (payload) for the request can be viewed on ‘Simulator SHP Verification’ panel and request
and response details can also be viewed separately on ‘Simulator TimeStamp’ panel, for example:

/A simulator SHP Verification 22
@ Passed!
"Capability":{

"DevicesLink":{
"href":"/devices"

h
"SubscriptionsLink":{
"href":"/subscriptions"
}
}
}

/A Simulator TimeStamp 52 = a

Direction Time Method URL Host Status body

< Request | 2014/10/1321:51:39.51 GET | /capability | 100.2.15:8888

& Response | 2014/10/13 21:51:39.57 200 OK {"Capability":{"DevicesLink":{"href":"/devic

This finishes testing (discovery, monitor, and access) of sample ‘Controlled’ application (Generic Sensor) using
‘Controller’ simulators on SHP-SDK Simulator perspective.

Samsung
SMART Home

I

3. Test Tool Usage

SHP Eclipse plug-in provides simulators which simulates the behavior of real SHP devices. Developer can use these
simulators to test their application. Controller application developer can use Controlled Simulators for testing. Also
Controlled application developers can use Controller Simulator for testing. Use “SHP Simulator perspective” to
manage simulators.

3.1. Launching SHP Test Tool

e Select Window = Open Perspective > Other

B I S N
B | Bc/c++ & Java

New Window

Hide Toolbar

Open Perspective » Debug
Show View » Team Synchronizing

Customize Perspective... |_cher...
Save Perspective As...

Reset Perspective...

Close Perspective

Close All Perspectives

Navigation ’

Preferences

e Select “SHP Simulator”

Open Perspective

&3 GDB Trace B
& Git

& Java

{J Java Browsing

Ted Java Type Hierarchy

B 1 TTng Kernel

@ Planning

4= Plug-in Development

B8 remote System Explorer

[t5 Resource

Iz SystemTap IDE

&Y Team Synchronizing

Tracing =

coce

@ Samsung
3 SMART Home
3.2. Controller Test Tool

e Click on ‘Add New Device’ button of ‘Simulator View’ to select and activate a SHP Simulator

A simulator View EZW = 0
Add New Device Remove Device

e Select a Simulator to activate and press ‘OK’ button

Select Simulator

Select a simulator to activate

[

V¥

AirConditioner
CoffeePot
Controller
Cooktop
Dishwasher
DoorLock
DoorPhone
Dryer
Gateway
GenericSensor
Heater
IPCamera

Iron

® cancel [0k

* When the Mozi
: sudo apt-get

1la path error below occurs in Linux, install ‘webkitgtk-1.0-0’.

install libwebkitgtk-1.0-0

Problem Occurred
Unhandled event loop exception
e No more handles [Unknown Mozilla path
(MOZILLA_FIVE_HOME not set)]

Show Error Log

[Details>> | ok |

Samsung
SMART Home

= SHP Controller Simulator can detect SHP Controlled devices.

= Discovered devices will be shown in a tree view
= To Send a request,
1. Select a device from device list
2. Select a resource and method to execute
3. Set Request Payload, if request needs if any
4. Press “Send” button to send the request
5. Response payload will be displayed.

SHP Simulator - Eclipse

Twl W 0G4 Q

r Fuc/ce+ &'Java [Resource 4> Plug-in Development | /3 SHP Simulator
A simulator view 8 = B A simulator SHP Verification 2 -
Alrconditioner | Controller 12 S rasseadt Q
Address: 10.0.2.15:58006 URL HTTP Method
UUID: 90SBCIT-5490-4143-a839SSS66C1ET 4ot JEditURL | @ GET eur, PCaT) DELETE

& Refresh + Add Device

s Air_Conditioner Selected Resource and method does not have request payload

" e (WeEp:f/10.0.2.15:44521)

) *Device™:{
% Send “AVSourcesLink®:{ Response
“href"devices/0/avso Payload

“Alarms™{

“alarmType*:"Nomal",

¥ Devices id":70
e) “triggeredTime":"2013-12-31T12:01:01
4 Notifications 1
R *Audio™:{
Records “speakerVolume®:1
* Actions - p - Arp— o s ;
This will be for the if the *Camera®:{
» subscriptions J v h ‘brightness*:68.
Capability resource does not have the request payload in the WADL file “flickerlessMode®:"Auto®,
ically":~Off",
LongPollingNotification “inUse":true,
» FoodM: “maxBrightness*:100,
codManager “maxPan":180,
4 Groups “maxTilt":220,
"maxZoom":48.
¥ Pattems “minBrightness*:0,
0 0 “minPan*:-180.
Device List a_nd “minTilt=:0.
Resource List minZoom’:L,
‘mirror:-0ff".
m ‘nightMode”:~Off

Add New Device Remove Device

A Simulator TimeStamp 5

Direction Time

“pan”87,
“ptzValueMode":*Absolute”,
“tilt":49,

=g ©5HP Ervor List

No Field Message

Method URL Host Status

body

~ Request | 2014/03/0317:13:52.305 | GET

Gaennnea | 3neainain: +7.43:€2 3na |

|/devimjo | 10021544521

| | | 2000k {"Device™:{"AVSources -

SHP Simulator - Eclipse

Samsung
SMART Home

w w Qi i Vv * - Q | B Wg/ces Bava [Resource 4 Plugin Development [/2 sHP simulator
A simulator View B I 2) Select Request Method | /A simulator SHP Verification 3t =B
AirConditioner Controller & Q) Passed!

Address: 10.0.2.15:58006 URL HTTP Method
. ¥ oy “Device™:{
UUID: S098CIT-5490-4143-2839-55566CTCT yyeicer JEDILURL @ GET PUT POST DELETE % Send *AVSourcesLinki{ 5) Response
& Refresh + Add Device “href*:*/devices/0/avso Payload

, s Air_Conditioner
T (heEpi/[10.0.2.15:44521)
* Device
» Notifications
L Records
> Actions
» Subseriptions
Capability
LangPollingNotification
> FoodManager
* Groups
* Pattems

| 1) Select a Device |
and Resource

® =
Add New Device Remove Device

A simulator Timestamp £
Direction Time Method URL Host Status body
- Request | 2014/09/0317:13:52.305 | GET | /devices/0 Qa2 et

. Dacnanca | 3n14/M0IN2 17.12.€2 300 1 |z000k

3.3. Controlled Test Tool

Selected Resource and method does not have request payl 4) Click on Send

{"Device":{"AVSources -

*Alarms={
“alamType*:Nommal",
“triggeredTime":"2013-12-31T12:01:01"
}
1
“Audio:{
“speakervolumer:1
b

“Camera:{
“brightness”-68.

“pan’
“ptzval

87,
i

iueMode"*Absolute”.
“tilt~:a9,
=g O'sHP Error List
No Field Message

SHP Controlled Simulator simulates the behavior of a SHP controlled device. Controlled Simulator provides Ul
to configure current values of a resource. Simulator uses these values as response to requests received.

= To configure a resource
1. Select a resource
2. Fill the required details

3. Click on Save to save details

/A Simulator View 8

I 1) Select Resource I

AirConditioner 2 \ Controller

Select Resource

= 0

I 3) Click On Save Resource I

[Record

:| [ElsaveResource

| 2) Fill/Modify details |

Record

Id* :

DevicelDs

Add New Device Remove Device

show |
Properties Value ~
Name AirConditioner GrouplDs =
Description | Simulates an Air Conditioner =
ol » =
B

4N\ SMART Home

3.4. Easy Setup, registration, and Remote Access Test Tool

SHP Simulators (both Controlled and Controller) support simulation of complete Easy Setup routine along with
Remote Access feature. Applications can make use of these simulators for verifying their Easy Setup or
Remote Access specific functionality (either for Controller or Controlled).

Easy Setup process mainly comprises of three phases, ‘Easy Setup’, ‘Registration’, and ‘SCS Login’.

In ‘Easy Setup’ phase,

s Controller (helper) device discovers Controlled device (device which needs external help for
registration)

s Controller device provisions Controlled device by sharing details of ‘Home AP’.

¢ And in return, Controlled device sends its device information to Controller for registration with Smart
Home Server (SHS)

In ‘Registration’ phase,

s Controller (helper) sends necessary credentials (for example, Authorization Code and E-mail ID) to
Controlled device

¢ Then Controller performs Controlled device registration with Smart Home Server (SHS) by using the
device details which are already retrieved in ‘Easy Setup’ phase

¢ Upon successful registration, SHS server will return an ID (peerID) to the Controller.

s Then, Controller device sends all necessary details (peerID, peerGroupID, countryCode and efc.)
required for Controlled device to perform login with Samsung Smart Connectivity Server (SCS)

In ‘SCS Login’ phase,

+» Using collected details in above two phases Controlled device attempts SCS Login and update the
same to Controller device, this marks completion of Easy Setup process. Controlled device makes use
of these details for further initialization as well

In ‘Remote Access’,

« Upon successful SCS login, using ‘Remote Access’ feature Controller device can manage
(monitor/control) all registered Controlled devices through remote channel.

Note:

1. Currently, Remote Access feature cannot be tested from the same instance of Eclipse; they are
expected to launch Eclipse application for each simulated device, i.e., Controller on one Eclipse
application and Controlled device on another instance of Eclipse application.

2. Before launch the SHP Simulator with Remote Access feature enabled, 2.4.8. Remote Access
Configuration Files must be set appropriately in advance.

Following are the sequence of steps involved in simulation of Easy Setup process, in which a Controller
simulator (which has already been registered with the cloud) device helps in Controlled simulator device
provisioning (Home AP details) and eventually empower Controlled devices to register themselves to the cloud.

Note: Please refer to SHP-Architecture artifact for complete details on Easy Setup process

I

3.4.2.

As shown in the below figure, enable Remote Access for Controller simulator by selecting Controller for ‘Enable

Remote Access for simulator’ option on Windows = Preferences page.

Note 1: It is advised to rename current Controller eclipse configuration and save, so that the same configuration can

Step 1 — Enable Remote Access for Controller Simulator

Samsung

SMART Home

be re-used for further launches. If not, further launches of Controller Simulator do get different UUID

Note 2: As mentioned in the below figure, one can enable Remote Access for Controller only if there is no active
instance of Controller with Remote Access had already been enabled. At a time only one instance of device type

simulator can have Remote Access being enabled.

™ Preferences

¥ v vV ¥V ¥ ¥ ¥

k4

¥

L€

General

Ant

CfC++
Doxygen

Help
Install/Update
Java

Library Hover
Plug-in Development
Run/Debug
SHP

Team

SHP

General SHP Preferences

&

SDK Components directory path:

hd

[-uild/makefiles/sdk/Linux_SZ_Bit”‘ Browse... |

Metwork Interface For Simulators:

| 107.108.206.29

& Use Secure Communication

— "illdi‘ﬂ o 'IEDF :n{riFir:rn

Enable Remote Access for simulator: ‘_Controller

e

| Restore Defaults ||

Apply

| Cancel |

OK

Samsung
SMART Home

I

3.4.3. Step 2 — Launch/activate Controller Simulator

As shown in the below figure, launch/activate Controller simulator by clicking ‘Add New Device’ button on
‘Simulator View’ and by selecting Controller on ‘Select Simulator’ window.

Note: Refer to Section 3.1 to launch ‘SHP Simulator’

Cirld D wi@«Q i 4 Select Simulator i‘ B EyResource | /A SHP Simulator

/A simulator view 32 Select a simulator to activate simulator SHP Verificatio 8 = O

| | .
AirConditioner
CoffeePot

Cooktop
Dishwasher
DoorLock

DoorPhone

b Dryer
Gateway
GenericSensor
Heater
IPCamera

Iron

@ conce

J

Add New Device Remove Device

@ SHP Error List

/% Simulator TimeStamp 52 = g No Field Message

Direction Time Method URL Host Sta

3.4.4. Step 3 - Provide User Credentials

As shown in the below figure, launch/activation of Controller simulator probes for user credentials (Samsung
account), users are expected to key in E-mail address and password to be used for registering the device.

‘A Simulator View R ‘% Simulator SHP Verificatio]

Samsung Account Login Details

Login Details

Email b [pbcaxyz.com]

Password [ssseees |

@ b cancel | [ek |

(3] =
Add New Device Remove Device

@ SHP Error List

% simulator TimeStamp 5% = = No | Field Message

Direction Time Method URL

@ , Samsung
SMART Home

3.4.5. Step 4 — Ensure that Controller simulator is registered successfully

As shown in the below figure, ensure that Controller simulator got registered successfully, users shall verify that
‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar. Also ensure that ‘Easy Setup’ button has been
enabled.

/A simulator View 2 = 0 /A Simulator SHP Verificatio 8 = 0O
Controller 2 a,
Address: 107.108.206.29 HTTP Method

uuiD: 7b6b6360-240d-0000-0000-000000C @® GET -\ pUT ~ POST | DELET

S parcgeb L add oouice

Selected Resource and method does not ha
(Easyset] payload
DEVICE_LOGGED_INTO_SCS
Lok
e (scs://000003_5B72EJTBVIM29751A9
Air_Conditioner
(scs://000003_PVLVUNIKB35J6K3FLIL
B
Add New Device Remove Device R
@ SHP Error List
/A simulator TimeStamp 2 = 3 No Field filessane
Direction Time Method URL Host Sta
3.4.6. Step 5 — Enable Remote Access for Controlled Simulator

As shown in the below figure, now enable Remote Access for any Controlled simulator by selecting any one device
type other than Controller for ‘Enable Remote Access for simulator’ option on Windows - Preferences page.

Note 1: It is advised to rename current Controlled eclipse configuration and save, so that the same configuration can
be re-used for further launches. If not, further launches of Controlled Simulator do get different UUID

Note 2: As mentioned in the below figure, one can enable Remote Access for Controlled (any device type) only if
there is no active instance of same device type simulator with Remote Access had already been enabled. At a time
only one instance of device type simulator can have Remote Access being enabled.

Note 3: For further explanation of Easy Setup, device type ‘CoffeePot’ has been selected as Controlled Simulator.

This means using Easy Setup routine, Controller device simulator which had been successfully registered in Step 4
will help provisioning of Controlled Simulator (‘CoffeePot’).

Samsung
SMART Home

Preferences
(@| SHP o v -
> General General SHP Preferences
B Ant
PCfCH+ SDK Components directory path: I-uild/makeﬁlesfsdk/LinusziBid] \ Browse...
* Doxygen Network Interface fFor Simulators: | 107.108.206.29 2
" Help & Use Secure Communication
> Install/Update

o

» Java

Library Hover Enable Remote Access for simulator: | CoffeePot =

» Plug-in Development == ————e—————— e eesume
» Run/Debug
SHP
» Team
lResture Qefaults‘ \ Apply

® cance

3.4.7. Step 6 — Launch/activate Controlled (‘CoffeePot’) Simulator
As shown in the below figure, launch/activate Controlled simulator (‘CoffeePot’) by clicking ‘Add New Device’
button on ‘Simulator View’ and by selecting ‘ CoffeePot’ on ‘Select Simulator’ window.

(fivy @ 9@ @i Select Simulator ! B [5Resource | /A SHP Simulator

/A Simulator View 2 Select a simulator to activate Simulator SHP Verificatio 82 = O

| | .

AirConditioner

CoffeePot
Controller
Cooktop
Dishwasher
DoorLock
DoorPhone

Dryer
Gateway
GenericSensor
Heater
IPCamera

Iron

@ Cancel ﬁ

J

Add New Device Remove Device

O SHP Error List

/A Simulator TimeStamp = 9 No | Field Message

Direction Time Method URL Host Sta

@ , Samsung
SMART Home

3.4.8. Step 7 — Ensure that Controlled (‘CoffeePot’) simulator launched
successfully but it is not registered

As shown in the below figure, ensure that Controlled (‘CoffeePot’) simulator has been launched successfully and it
is not registered, users shall verify that ‘NO_AUTHORIZATION_DETAILS’ has been shown on status bar.
Controller will help Controlled device getting necessary authorization details. And also ensure that ‘Easy Setup’
button has been enabled.

Note 1: If ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar then users are expected repeat Steps 5
and 6 for any other device type.

/A simulator View 2 = b /A simulator SHP Verificatio ® = O
CoffeePot &2 a,

Rec Select Resource
| Easy Setup | Reg

: | [slsave Resource

NO_AUTHORIZATION_DETAILS

Selected Resource and
method does not have request

payload
Properties Value |
=]
Add New Device Remove Device R
O SHPError List
/A Simulator TimeStamp &2 = g No_ Field Message
(Direction Time Method URL Host Sta

3.4.9. Step 8 — Initiate Easy Setup process on Controlled (‘CoffeePot’) device
simulator

For simulation of ‘Easy Setup’ process (for details refer to Section 3.4) all device simulators (Controller and
Controlled) are provided with two buttons ‘Easy Setup’ and ‘Registration’. ‘Easy Setup’ button will initiate ‘Easy
Setup’ phase and ‘Registration’ button will initiate ‘Registration’ phase of ‘Easy Setup’ process.

As shown in the below figure, first initiate ‘Easy Setup’ phase on Controlled (‘CoffeePot’) device simulator by
clicking on ‘Easy Setup’ button present. Initiation of ‘Easy Setup’ phase can be ensured by checking status bar for:

If easy setup is not initiated at Controller side then look for ‘Waiting to be discovered’.

f SMART Home

* Simwlator View I) \ Simulator SHP Verifikatio . = O
ColfeePot &
Select Resource

H Save Resowrce
Waiting to be discovercd

L] Selected Resource and
method does not have request
payad
L
Properties Value I
Add New Device Remove Device
| Q5P Error Lnt
A\ Sevclater TimeStamp 12 --n | No_ Fiels Massage
|
1 Direction Time Method URL Host 23

If easy setup is initiated at Controller side (Step 9) after initiated at Controllable side, then look for
‘AWAITING_WIFI_DETAILS CD’

/A simulator View 2 = B /A simulator SHP Verificatio 8 = O
CoffeePot 13 q
Easy Setup Regi: Select Resource
- 2 | [Elsave Resource
AWAITING_WIFI_DETAILS_CD
o > Selected Resource and
method does not have request
payload
Properties Value |
Add New Device Remove Device -
@ SHP Error List
/A Simulator TimeStamp £ = g No_Field Message
Direction Time Method URL Host Sta

Note 1: Sequence/order of initiation is a must, initiation on Controlled device shall always be first and then
only on Controller

Note 2: ‘Easy Setup’ phase comprises of different stages (for details refer to Section 3.4), initially Controlled
device does wait for Home AP (Wi-Fi) details from Controller device

Samsung
SMART Home

I

3.4.10. Step 9 — Initiate Easy Setup process on Controller device simulator

‘SHP Simulator’ provides two ways of initiating ‘Easy Setup’ on Controller device. Users can either opt for Easy
Setup through Controlled device discovery OR directly (without discovery).

After clicking ‘Easy Setup’ button on Controlled device, users are expected (sequence/order is a must, initiation
on Controlled device shall always be first and then only on Controller) to click same button on Controller (helper)
device as well. As shown in below figure, users need to choose whether Easy Setup shall be initiated through
Controlled device discovery OR directly (by selecting Yes — through discovery / No — for direct).

/A Simulator View 8 = g /N Simulator SHP Verificatio 8 = 8
Controller &

Address: 107.108.206.29 N R —
UUID: Tbobe360-240d- < e 3

Is Easy Set-up through Device Discovery or not?

Q

« Refres
e Note: Enter correct details, otherwise Easy set-up may not be successFful!

Easy Set
Set Easy set-up mode by device discovery? =
DEVICE_LOGGED_|

b Tablet

(5¢5://000003_5B72
b Air_Conditioner

(ses://000003_PVLY

@ | Cancel | oK
B
Add New Device Remove Device -
@ sHP Error List
/A simulator TimeStamp 28 = o No | Field Message

Direction Time Method URL

As shown in below figure, selection of ‘Yes’ expects users to specify the UUID of non-registered Controlled device
which needs to be discovered by the Controller device:

Samsung
SMART Home

A Simulator View 33 1

Tablet
(scs://000003 _!
Air_Conditionel

« Refres|

DEVICE_LOGGED_|

= g £ Simulator SHP Verificatio 2 = O
Controller £ I } a
Address: 107.108.206.29 SoLEnP pode
UUID: 7beb6360-240d-d & oce

Is Easy Set-up through Device Discovery or not?

Note: Enter correct details, otherwise Easy set-up may not be successful!

Set Easy set-up mode by device discovery? Yes

5B72
r

(scs://000003_PVL
Enter UUID of the Device For Easy Set-up: 6-0000-0000-000000000000]
@ ot SR
Add New Device Remove Device -
@ SHP Error List
A Simulator TimeStamp 28 = g No_Field Message
Direction Time

Method URL Host

Sta

And as shown in below figure, selection of ‘No’ expects users to specify details like IP-Address, Port, and Protocol

(http/https) of the Controlled

device which needs to be reached directly by Controller device:

/A Simulator View 8 1

= O | /A simulator SHP Verificatio 82 = O

Controller }

Address: 107.108.206.29
uuID: 7b6b6360-240d-

Easysel

DEVICE_LOGGED_|
Tablet
(scs://000003_5B72
Air_Conditioner

(scs://000003_PVLY

& Refres|

4 Set SHP Mode

Is Easy Set-up through Device Discovery or not?

Q

Note: Enter correct details, otherwise Easy set-up may not be successful!

Set Easy set-up mode by device discovery? No

107.108.206.29 |
8888 |

Enter IP-Address of the Device For Easy Set-up:

Enter Port of the Device For Easy Set-up:

Enter Protocol of the Device for Easy Sa-up (e.g., http/https):

&

coce

Add NewDevice Remove Device

/A Simulator TimeStamp 2%

Direction Time

0 SHP Error List
No Field

= 0

Sta

Message

Method URL Host

Based on above selection Controller device provisions Controlled device, if the selected option is through discovery

then Controller device waits for the Controlled device to be discovered and then sends Wi-Fi details. Otherwise, it
will directly sends without waiting for discovery.

Y \ SMART Home

Note for Application Development: Devices which can support device discovery (SSDP) during Easy Setup
phase can opt for ‘Easy Setup through discovery’. Devices’ which cannot support any sort device discovery needs
to opt for ‘Direct Easy Setup’ option only.

3.4.11. Step 10 - Ensure that Easy Setup phase is completed on Controller
device Simulator

As shown in the below figure, ensure that ‘Easy Setup’ phase has been completed successfully on Controller device
simulator, users shall verify that ‘EASY_SETUP_COMPLTED’ has been shown on status bar. And also ensure
that ‘Registration’ button has been enabled.

Note: ‘EASY_SETUP_COMPLTED’ will not be displayed on status bar if what so ever reason the Controlled
device is not discovered or not able to reached by Controller device. Refer to Section 3.4.19 for error details and
respective display on status bar

‘A simulator View 8 = 0 /A simulator SHP Verificatio 8 = O
controller 2 Q,
Address : 107.108.206.29 HTTP Method
uuID: 7b6b6360-240d-0000-0000-000000C @ GET ~ PUT ~ POST ~ DELET
< Refresh < Add Device
P— Selected Resource and method does not ha -
egistration| 1o vioad
EASY_SETUP_COMPLETED
Tablet
(scs://000003_5B72EJTBVIM29751A9
Air_Conditioner
(5c5://000003_PVLVUNIKB35J6K3FIJL
B
Add New Device Remove Device 7
@ SHP Error List
/A simulator TimeStamp 2 = n No Field Message
Direction Time Method URL Host Sta

3.4.12. Step 11 - Ensure that Easy Setup phase is completed on Controlled
(‘CoffeePot’) device Simulator

As shown in the below figure, ensure that ‘Easy Setup’ phase has been completed successfully on Controlled
(‘CoffeePot’) device simulator, users shall verify that ‘EASY_SETUP_COMPLTED’ has been shown on status bar.
And also ensure that ‘Registration’ button has been enabled.

Note 1: ‘EASY_SETUP_COMPLTED’ will not be displayed on status bar if what so ever reason the Controlled
device is not discovered or not able to reached by Controller device. Refer to Section 3.4.20 for error details and
respective display on status bar

Note 2: After completion of ‘Easy Setup’ phase, ‘Home AP — WiFi’ details are available at Controlled device.
Using these details Controlled device can connect to Home AP

I

Samsung
SMART Home

/A simulator View 52 = 0 /A simulator SHP Verificatio 82 = 0O
CoffeePot &3 Q,

Select Resource

Easy Setup | Regit |

| - | [lsave Resource

Selected Resource and
method does not have request

payload
Properties Value |
=
Add New Device Remove Device o ..
@ SHP Error List
/A simulator TimeStamp 2% = A No_ Field Message
¢ Direction Time Method URL Host Sta

3.4.12.1. Steps for initiating and/or using ‘Easy Setup’ phase in SHP-

Application Development:

Before setting SHP-Framework to ‘Easy Setup’ mode
(Sec::Shp::SHP::setSHPMode(EASY SETUP _MODE)), application has to ensure that Soft-AP
(application needs to implement SHPUtils::enableSoftAPMode()) mode has been started on
Controlled device and Controller should connect to the same Soft-AP

In the Easy Setup mode, whenever Controller discovers Controlled device which is in Easy Setup mode
through SSDP Device Discovery, it will send Home AP details by doing a PUT on
/deivces/0/configuration/networks/0/wifi

Then, Controlled device sends its device information by doing POST on /devices/ of Controller device

Once both the devices exchange required information, then both will send onEasySetupModeCompleted()
callback to the application, which will mark end of ‘Easy Setup’ phase

Once both Controller and Controlled device application receives onEasySetupModeCompleted() call back,
both devices shall teardown their connection in Soft-AP mode (application needs to implement
SHPUtils: :disableSoftAPMode()) and connect back to the Home AP. Later, they are expected to
initiate ‘Registration’ phase by setting SHP-Framework mode to REGISTRATION MODE

Y \ SMART Home

3.4.13. Step 12 - Initiate Registration phase on Controlled (‘CoffeePot’) device
simulator

As shown in the figure below, upon successful ‘Easy Setup’ phase, initiate ‘Registration’ phase on Controlled
(‘CoffeePot’) device simulator by clicking on ‘Registration’ button present. Initiation of ‘Registration’ phase can
be ensured by checking status bar for ‘REGISTRATION_INITIATED’

Note 1: Sequence/order of initiation is a must, initiation on Controlled device shall always be first and then
only on Controller

Note 2: ‘Registration’ phase comprises of different stages (for details refer to Section 3.4), initially Controlled
device does wait for required credentials like Authorization Code and E-mail ID from Controller device

A simulator View & = O ‘A simulator SHP Verificatio 2 = O
CoffeePot & Q
Select Resource

* | [Hlsave Resource

REGISTRATION_INITIATED

e s Selected Resource and
method does not have request
payload

Properties Value |
E
Add New Device Remove Device e —
@ SHP Error List
/A simulator TimeStamp &2 = 0 No Field Message
Direction Time Method URL Host Sta

3.4.14. Step 13 - Initiate Registration phase on Controller device simulator

As shown in the below figure, upon successful ‘Easy Setup’ phase initiate ‘Registration’ phase on Controller
device simulator (sequence/order is a must, initiation on Controlled device shall always be first and then only
on Controller) by clicking on ‘Registration’ button present. Initiation of ‘Registration’ phase can be ensured by
checking status bar for ‘REGISTRATION_INITIATED’ and/or
‘WAITING_FOR_HELPING_DEVICE_TO BE_DISCOVERED_CR’ and/or
‘GETTING_AUTH_CODE_FROM_SERVER CR’.

Note 1: ‘Registration’ phase comprises of different stages (for details refer to Section 3.4), initially Controller
device wait for Controlled device to be discovered. And respective status on status bar would be
‘WAITING_FOR_HELPING DEVICE_TO_BE_DISCOVERED_CR’,

Error Case 1: For what so ever reason, if Controller device fail to discover Controlled device then Controller
device will continue to be in above state and eventually times out, refer to Section 3.4.20 for error details and
respective display on status bar

ST O\ o
; \ ’ SMART Home

Note 2: Once Controlled device is discovered, Controller device gets required credentials for Controlled device like
Authorization Code and from Samsung Account Server using user credentials provided by user in Step and sends
them to Controlled device

Error Case 2: For what so ever reason, if Controller device fail to get required credentials for Controlled device
then Controller device will continue to be in one of the states (DIFFERENT _COUNTRY_CODE,
AUTH_CODE_EXPIRED,MISSING_MANDATORY_PARAMS,LOCAL_SERVER_ERROR,
NO_AUTHORIZATION_DETAILS,CONNECTION_ERROR,REMOTE_SERVER_ERROR) and eventually
times out, refer to Section 3.4.20 for error details and respective display on status bar. Refer to API documentation
for complete details on possible error cases during registration phase

Note 3: Please refer to SHP-Architecture artifact for completed details on ‘Registration’ phase, and please refer to
SHP-API Documentation for complete details on all possible Easy Setup notifications through ‘Registration’ phase

A simulator View £ = 0 ‘A simulator SHP verificatio 8 = O
Controller &2 o,
Address: 107.108.206.29 HTTP Method
uuID: 7b6b6360-240d-0000-0000-000000C @® GET ~ PUT) POST DELET
& Refresh| 4 Add Device
Selected Resource and method does not ha
payload
—
GETTING_AUTH_CODE_FROM_SERVER_CR
> @ 000003_5B72EJTBVIM29751A915JIUP
Air_Conditioner
(scs://000003_PVLVUNIKB35J6K3FLIL N
e =
Add New Device Remove Device P —
O SHP Error List
/A simulator TimeStamp 2% = A No_ Field Message
Direction Time Method URL Host Sta

3.4.15. Step 14 - Ensure that Registration phase is completed on Controller
device Simulator

As shown in the below figure, ensure that ‘Registration’ phase has been completed successfully on Controller
device simulator, users shall verify that ‘DEVICE_REGISTERED_TO_SHS_CR’ has been shown on status bar.

Note 1: Controller device makes use of device details which are retrieved in ‘Easy Setup’ phase and attempts
registration with SHS Server

Note 2: Upon successful registration, SHS server will return an ID (peerID) to the Controller device, and then the
Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.) required for Controlled
device to perform login with SCS Server

Note 3: ‘DEVICE_REGISTERED_TO_SHS_CR’ will not be displayed on status bar if what so ever reason the
Controller device is not able to register Controlled device to SHS Server. Refer to Section 3.4.19 for error details
and respective display on status bar

SMART Home
/A Simulator View 82 = b /A Simulator SHP Verificatio 28 = O
Controller 2 a

Address: 107.108.206.29 HTTP Method
uuID: 7b6b6360-240d-0000-0000-000000C @ GET ~ PUT - POST - DELET
< Refresh | < Add Device

Selected Resource and method does not ha
payload

Registration

DEVICE_REGISTERED_TO_SHS_CR

» @ 000003_5B72EJT8VIM29751A915JIUP

Air_Conditioner
(5c5://000003_PVLVUNIKB35J6K3FIJL

=]
Add New Device Remove Device
@ SHP Error List

/A Simulator TimeStamp 3 = g No Field Message

Direction Time Method | URL

3.4.16. Step 15 - Ensure that Registration phase is completed on Controlled
(‘CoffeePot’) device Simulator

As shown in the below figure, ensure that the ‘Registration’ phase has been completed successfully on Controlled
(‘CoffeePot’) device simulator, users shall verify that ‘ATTEMPTING REGISTRATION WITH_SCS’ has been
shown on status bar.

Note 1: Controlled device makes use of credentials like Authorization Code and E-mail ID from Controller device
and attempts retrieving required access (access token) from Samsung Account Server

Note 2: Upon successful retrieval of access from Account Server, Controlled device to perform login with SCS
Server using retrieved details (peerID, peerGroupID, countryCode and etc.) from Controller device

Note 3: ‘DEVICE_REGISTERED_TO_SHS CR’ will not be displayed on status bar if what so ever reason the
Controller device is not able to register Controlled device to SHS Server. Refer to Section 3.4.20 for error details
and respective display on status bar

I

/A Simulator View X

= 0

CoffeePot 13|

Easy Setup

ATTEMPTING_REGISTRATION_WITH_SCS
\ B

Properties

Value

Regit

Select Resource

2 | [E]save Resource

Selected Resource and
method does not have request
payload

B
Add New Device Remove Device
/A Simulator TimeStamp

Direction Time

Method URL

Host

Samsung
SMART Home

/N Simulator SHP Verificatio % = O

Q,

O SHP Error List

No Field Message

3.4.17.

Step 16 — Ensure that Controlled (‘CoffeePot’) device Simulator has

been successfully logged into SCS Server

As shown in the below figure, ensure that Controlled (‘CoffeePot’) device has been successfully logged onto SCS
Server, users shall verify that ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar.

Note: ‘DEVICE_LOGGED INTO_SCS’ will not be displayed on status bar if what so ever reason the Controlled

bar

/A Simulator View 23

= b

CoffeePot

Easy Setup

DEVICE_LOGGED_INTO_SCS

Properties Value I

Regi:

Select Resource
2 | [Elsave Resource

Selected Resource and
method does not have request
payload

=
Add New Device Remove Device
/A Simulator TimeStamp 53

Direction Time

Method URL

Host

device is not able to log onto SCS Server. Refer to Section 3.4.19 for error details and respective display on status

/A Simulator SHP Verificatio 8 = &

q,

O SHP Error List

No Field Message

Y \ SMART Home

3.4.18.

Step 17 — Ensure that Controller device Simulator has been successfully
logged into SCS Server after helping Controlled device for provisioning

As shown in the below figure, ensure that Controller device has been successfully logged onto SCS Server, users
shall verify that ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar.

Note 1: ‘DEVICE_LOGGED _INTO_SCS’ will not be displayed on status bar if what so ever reason the
Controller device is not able to log onto SCS Server. Refer to Section 3.4.19 for error details and respective display
on status bar

Note 2: Upon successful SCS login, Controller device shall see Controlled device amongst the list of the devices to
be controlled

A Simulator View 28 = 0 /A Simulator SHP Verificatio 2 = 0O
Controller £ a
Address: 107.108.206.29 HTTP Method
uuID: 7b6b6360-240d-0000-0000-000000C @® GET ~ PUT) POST | DELET
o Refresh = Add Device
— Selected Resource and method does not ha
Easyaet payload
DEVICE_LOGGED_INTO_SCS
Tablet
(5¢s://000003_5B72EJT8VIM29751A%
Air_Conditioner
(scs:/{/000003_PVLVUNIKB35J6K3FIIL
- Coffee_Pot [}
(5¢5://000003_JQOMCKRR4G5VQ2QL
=
Add New Device Remove Device)
@ SHP Error List
‘A Simulator TimeStamp £ = B8 No_ Field Message
Direction Time Method URL Host Sta

3.4.18.1. Steps for initiating and/or using ‘Registration’ phase in SHP-

Application Development:

Before setting SHP-Framework on both the devices (Controlled and Controller) to ‘Registration’ mode
(Sec::Shp::SHP::setSHPMode(REGISTRATION _MODE)), application has to ensure that Soft-AP
(application needs to implement SHPUtils: :disableSoftAPMode()) mode has been tear down and
both are connected to Home AP (application are expected to implement SHPUtils::
connectToHomeAccessPoint())

In the Registration mode, Controller get Authorization Code (authCode) for Controlled device from
Account Server

Upon successful retrieval of authCode, it will send authCode, and accountID to Controlled device by doing
a PUT on /deivces/0/configuration/remote

Controlled device attempts getting Access Token (accessToken) from Account Server using received
authCode, and accountID from Controller device. Controlled device also informs status (success/failure)
of the accessToken attempt as a response to PUT request on /deivces/0/configuration/remote

' \ SMART Home

+¢ Upon successful PUT response, Controller device attempts registration on behalf of Controlled device with
SHS Server by making use of Controlled device details which are retrieved during Easy Setup mode. For
this, Controller device will do a POST on /shs/devices/to SHS Server

« Upon successful registration, SHS server will return an ID (peerID) to the Controller device, and then the
Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.) required for
Controlled device to perform login with SCS Server by doing a PUT on /deivces/0/configuration/remote

« Upon successful reception of remote information, Controlled device (application is expected to make
permanent store of this information) responds to the PUT request, this will mark completion of
‘Registration’ phase

+¢ Upon successful finish of ‘Registration’ phase, both Controller and Controlled device automatically set
themselves normal mode and attempt SCS Login / registration with all the required details

+¢ Upon successful login to SCS Server will mark completion of Easy Setup process

3.4.19. Monitor / Control / Access Remotely — Remote Access Feature (sending
a GET request through remote channel — SCS)

Remote Access feature of SHP allows Controller devices accessing / monitoring / control any Controlled device
remotely through SCS channel.

Upon successful SCS Login, Controller device shall see Controlled device (registered) amongst the list of the
devices to be controlled. And users shall be able to monitor / control / access these devices remotely by performing
respective operation from Controller GUL. For example, select a Controlled device and initiate a GET request.
Following figure displays the GET response from the Controlled (‘CoffePot’) device which is been registered above.

A Simulator View B
Controller &2

Addre: HTTP Methot
J

Jdevices EditURL @ GET PUT POST DELETE send

fresh 4 Add Device

Selected Resource and method does not have request payload

DEVICE_LOGGED_INTO_SCS i

SBI2ESTBVIM29751AY
er Request Executed successfully.. Status Code : 200
0003_PVLVUNIKB3S JGK3FLLY 0

ot
0003_JQOMCKRRAGSVQ2QL

O SHP Error List

L -] No Field Message

Method URL Host Status body
000003_JQOMCKRRAG 5V

| 2019/07/24 15:22:03.41 GET | [devices

3.4.20. Easy Setup Timer Timeout

SHP Framework initiates a timer on both the devices (Controller and Controlled) upon initiation of ‘Easy Setup’
phase (Step 8 or Step 9). Default value of this timer is 300 seconds, and upon expiry of this timer SHP Framework
will forcefully set the mode to NORMAL MODE. Any error scenario during Easy Setup process (Easy Setup or
Registration or SCL Login) will lead to expiry of the timer. And the same will be notified to the application as
‘EASY_SETUP_TIME_OUT_CR’, same has been displayed in the following figure:

A Simulator View 2 = hﬁ /A Simulator SHP Verification 8 = 0
Controller &8 ssed! Q,
Address: 107.108.206.29 HTTP Method
. "Devices":[
UUID: 7b6b6360-240d-0000-0000-000000C) G e o - > ~ DELET T
<" Refresh ¢ Add Device "A;arms":[
Selected Resource and method does not he “alarmType":"Normal",

(Essyset| payload "id":"0"

"tnggsr’edTims":"ZDlB-12-
31T12:01:01"
EASY_SETUP_TIME_OUT_CR 1
1
i @ 000003_5B72EJT8V9M29751A%15JIUR "ConfigurationLink": {
"href":"/devices/0fconfiguration”
i @ 000003_PVLVUNIKB35J6K3FIJUOSPM "I’EnargyCunSumpticn"‘{
"batteryCharge":1
> ﬂ 000003_JQOMCKRR4G5VQ2QLBUT76S" .
"InformationLink™:{
"href":"/devices/0/information”

"I’WessagesLink":{
"href":"/devices/0/messages"

T
"Mode":{
"modes":[
"Modes"
B
Add New Device Remove Device SRR
‘ @ SHP Error List
/A Simulator TimeStamp 52 = 8 No Field Message
Direction | Time Method URL Host St|
4 Request | 2014/07/2415:22:03.41 GET | /devices j 000003_JQOMCKRRAGSVS

3.5. Device Token

SHP mandates all Controller devices to be authorized by Controlled devices which it wants to
access/monitor/control. SHP does D2D (Device to Device) authentication and authorization in different phases. For,
SHP provides authorization by making use of the concept of issuing tokens to devices. All Smart Home Controller
(Smart Phone/Tablet) devices are expected to get authorized by all Smart Home appliances (Controlled devices) by
getting respective device tokens.

As per SHPs mandate all Controlled devices are expected to send error response (IWWW-Authenticate: Bearer
error="invalid_token” header) for any request from any Controller device which is not having proper authorization
(correct device token). Controller device attempts getting authorization (device token) from each Controlled device
right after finishing its D2D authentication.

SHP allows Controller devices to be authorized in two different ways:

1. During ‘Registration’ phase of Easy Setup process, and another way
2. By sending device token request along with their UUIDs upon getting error response

3.5.1. Device Token issuance during ‘Registration’ phase of Easy Setup

Following are the steps involved in getting device token from Controlled device during Easy Setup process:

% Firstly, during ‘Easy Setup’ phase, after getting Home AP details from Controller device (Step 6) of
Section 2.3.12.1 Controlled device requests device details (GET /devices) of Controller device and stores
UUID of the Controller device

®,

¢ Then during ‘Registration’ phase, as a step next to D2D authentication, Controller device requests device
token to the Controlled device (GET /devicetoken/?UUID=<UUID of controller>)

A SMART Home

s Then the Controlled device validates the Controller device using UUID acquired during ‘Easy Setup’
phase

« And upon successful of the UUID, Controlled device issues its device token as a response to the Controller
device.

GET /devicetoken/? CAS-4101 353C51AA983C HT
TP/1.1

|| Host: {1Pvanddress}

= ‘ X-API-Version: v1.0.@

%

Content-Type: application/json

After validating Controller’s UUID, generate a Device Token

HTTP/1.1 200 OK

X-API-Version: v1.0.0

.| Content-Type: application/json
™ Content-Length: {contentLength}

: 10 bytes random string (example: T1SvOBZnHs)

“DeviceToken": "djflaiger9"

}

Following is the excerpt from Section 7.2 of SHP-Architecture artifact which is the detailed procedure for Device
Token issuance by Controlled device:

Step 1: The Controller device requests device token to the Controlled device including the UUID of the
Controller device.

Note: In order to issue the device token by the Controlled device, user consent (e.g., button pushing of the
Controlled device or remote controller, etc.) is needed. If user consent is preceded in step 4 of Figure 4-4,
additional user consent can be omitted within expiration timer after pushing the button. Expiration timer can be
configured by the manufacturer of the Controlled device.

Step 2: The Controlled device compares the UUID from ‘Device Token Request” message to the UUID acquired
from the Controller device during Easy setup procedure specified in section 4.2.2. If both UUIDs are same, the
Controller device is validated successfully

Step 3: If validation is done successfully, the Controlled device sends device token to the Controller device.
Below is an example message of Local token requested response message

Note 1: During ‘Registration’ phase, user consent is not required

Note 2: The Device token received from the Controlled device shall be included in all the request messages for
validation by the Controlled device whether the Controller device is authorized or not. Controlled device responds
to Controller device only if the device token in the request message is same with the device token which the
Controlled device issued. Otherwise, Controlled device sends an error response — “401 Unauthorized error” with
WWW-Authenticate: Bearer error="invalid_token” header

Samsung
SMART Home

I

3.5.2. Reissuance of Device Token upon ‘401 Unauthorized error’ — only for TV

(only local)

The Device token received from the Controlled device shall be included in all the request messages for validation by
the Controlled device whether the Controller device is authorized or not. Controlled device responds to Controller
device only if the device token in the request message is same with the device token which the Controlled device
issued. Otherwise, Controlled device sends an error response: WWW-Authenticate: Bearer error="invalid token”

Upon reception of “401 Unauthorized error” from Controlled device, SHP allows another way of acquiring device
token to Controller device from Controlled device, which is called getting authorized through reissuance of device
token.

Note: However, as on today, this process is allowed only for TV (only local)

Reissuance of device token process is as follows:

‘0

% Step 1: Firstly, after getting error response, Controller device requests device token to the Controlled
device (POST /devicetoken/request),

®,

s Note: In this way of device token issuance, no UUID of the Controller device will be sent as part of
request to the Controlled device and starts token wait timer

7
*

Step 2: Upon reception of the device token request, Controlled device acknowledges it and straight away
starts token wait timer and waits for user consent

®,

s Note 1: In order to issue the device token by the Controlled device, user consent (e.g., button pushing
of the Controlled device or remote controller, etc.) is needed.

7

¢ Note 2: Expiration timer can be configured by the manufacturer of the Controlled device

7
*

Step 3: If user consent preceding timer expiry and is affirmative then the Controlled device sends device
token to the Controller device

7
*

Step 4: If user consent is not preceding timer expiration then the Controlled device sends error response to
the Controller device

L/
Controlied Device B o sare
1. POST /devicetoken/request

k
Timer - \ N

\ - Timer
3.2000¢
2. Push Button ® \
for Grant
3. POST /devicetoken/res
e Token]

\3 2000K
\

Controller Device|

1.2000€

3. POST /devicetoken/response -/
TDevice Token)

<P

Response Device Token
POST /devicetoken/response HTTP/1.1
Host: {IPv4Address}

Request Device Token

POST /devicetoken/request HTTP/1.1
Host: {IPv4Address}
X-API-Version: v1.0.8

HTTP/1.1 280 OK
X-API-Version: v1.8.0

X-API-Version: v1.0.0
Content-Type: application/json
Content-Length: {contentLength}

{
}

“DeviceToken": "djflaiger9"

|

HTTP/1.1 200 OK
X-API-Version: v1.0.0

' \ SMART Home

3.5.3. Developer perspective of Device Token

Following is list of few of the functions which are involved in SHP-Application development related Device Token
feature of SHP:

R

% Sec::Shp::Device::initiateTokenRequestUsingUUID(const char *deviceUUID, bool
fromSimulator), is the function which can be used by Controller application to initiate token request
upon reception of error response from any device which it is interested in monitoring or controlling

o Developer Note: Once Controller sends the device token request, then Controller application has
to wait till either valid token received or request timed out.
= Upon successful reception of device token, Controller application will get a callback
(SHPListener: :updateUUIDAndTokenMap()) from the framework
= Upon failure in getting device token, Controller application will get
"DEVICE_TOKEN_ REQUEST TIMEOUT" notification from the framework
« SHPListener: :tokenRequestNotification(std::string uuid), is the function which will be
an application call back by SHP-Framework upon reception of device token request from Controller along
with Controllers UUID. Application is expected either to Grant or to revoke permission for the request:
o ::MySHPDevice::getInstance()->setTokenGrantStatus(bool true_false) is the
function which needs to called by the application based on users consent
= setTokenGrantStatus(true) allows Controlled device to stop its token wait timer
and send its device token to the caller as a response
= setTokenGrantStatus(false) forces Controlled device to stop its token wait timer
and send error response to the caller

SHPListener: :getMyDeviceToken(), is the method which will be an application call back by SHP-

Framework to know and store Controlled devices’ device token
o Note: This function is applicable only for Controlled device application

std::string SHPListener::getUUIDAndTokenMap(), is another method which will be an

application call back by SHP-Framework, which will be called by Controller framework during its

initialization.
o Application developers are expected to implement this function to retrieve and return list of device
(Controlleds) token and their mapped UUIDs as a string back to framework

Similarly, void SHPListener: :updateUUIDAndTokenMap(uuid, deviceToken), is the call back

from Controllers SHP-framework to the application upon reception of any Controlled device token
o Application developers are expected to implement this function to store passed device token

mapped to UUID to a permanent storage, which needs to be retrieved later
o Note: Without this implementation, Controller application needs to go through complete process
mentioned in Section 3.5.1 or 3.5.2 to get device token of Controlled device

7
*

7
*

7
*

Note: Please refer to SHP-API documentation for complete list of APIs related Device Token feature of SHP

Samsung

SMART Home

3.5.4. Device Token Test Tool

SHP-Simulator supports simulation of both the device token issuance procedures mentioned in Section 3.5.1 and
3.5.2. Following is the screen shot which describes SHP-Simulation for procedure mentioned in Section 3.5.2.

‘Controller’ simulation on SHP-SDK supports reissuance of Device Token upon ‘401 Unauthorized error’, by
providing an option to initiate token request. Users can initiate token request for a specific ‘Controlled’ device is by
right clicking on that device under discovered list and by selecting ‘Initiate Token Request’ option.

/A Simulator View 32

Controller & |AirConditioner

Address : 107.108.206.215 ’rum

HTTP Method
WD : 603786cf-ade3-45F4-87e0-4cfbe2d3394 /7 EditURL ‘ { & cer pur poST ¢ pRETE % send

« Refresh 4 Add Device

Selected Resource and method does not have request payload

Add New Device Remove Device

Note: In this mode, SHP-Simulator get users consent in form of a request popup, either to grant or revoke.

/A Simulator View 2 = 0 /% Simulator SHP Verificatio ® = 0O

CoffeePot 52 | q,

Easy Setup Regi:

DEVICE_LOGGED_INTO_SCS

Select Resource

: | [E]save Resource

Grant token to Device?
(IP Address : 000003_6EE7TH6240Q01SS307HP6NE7A9G000)

cone (S

Properties Value

=
Add New Device Remove Device -
@ SHP Error List

No Field Message

/A simulator TimeStamp 22

Direction Time Method URL Host Sta

