

Smart Home SDK

Development Guide

Version 1.0

October 31, 2014

Samsung Smart Home Partnership Program Proprietary

Copyright © 2014 Samsung Electronics Co., LTD.

Table of Contents

1. Installation .. 5

1.1. Prerequisite .. 5

1.2. JRE Installation .. 5

1.2.1. Verification of JRE installation ... 5

1.2.2. Install JRE ... 6

1.3. Eclipse Installation .. 6

1.3.1. Verification of Eclipse installation ... 6

1.3.2. Install Eclipse ... 6

1.4. Eclipse CDT Plug-in Installation .. 7

1.4.1. Verification of Eclipse CDT Plug-in installation ... 7

1.4.2. Install Eclipse CDT Plug-in ... 7

1.5. Compiler and Database Installation ... 9

1.5.1. Install gcc compiler for Linux... 9

1.5.2. Install SQLite3 for Linux ... 9

1.6. ‘SHP-SDK’ Plugin Installation .. 10

2. Application Development ... 15

2.1. New SHP Project ... 15

2.1.1. Creating a SHP Project ... 15

2.1.2. Configuring a SHP project ... 17

2.1.3. Selecting Resources ... 18

2.2. Import existing SHP Projects into the Eclipse workspace .. 19

2.3. Application Project ... 21

2.3.1. Server Classes .. 22

2.4. Developing Application .. 23

2.4.1. Initialization of SHP Framework for C++ Controlled App .. 24

2.4.2. Creation, initialization, and setting of SHP Framework listeners .. 33

2.4.3. Starting SHP Framework ... 36

2.4.4. Discovering devices ... 38

2.4.5. Performing Resource Control / Monitor / Manipulation .. 39

2.4.6. Stopping SHP Framework .. 40

2.4.7. Implementation of network resource handler ... 41

2.4.8. Remote Access Configuration Files ... 42

2.4.9. Setting of Authorization Grant Type ... 43

2.4.10. Easy Setup, Registration and Remote Access .. 44

2.5. Build and Run SHP Project .. 54

2.5.1. Execute the application ... 54

2.5.2. Fast Compilation in Eclipse .. 55

2.6. Sample Application ... 55

2.6.1. Features ... 55

2.6.2. Build and run sample application .. 56

2.6.3. Testing sample application with Simulator ... 56

3. Test Tool Usage ... 60

3.1. Launching SHP Test Tool ... 60

3.2. Controller Test Tool .. 61

3.3. Controlled Test Tool ... 63

3.4. Easy Setup, registration, and Remote Access Test Tool ... 64

3.4.2. Step 1 – Enable Remote Access for Controller Simulator ... 65

3.4.3. Step 2 – Launch/activate Controller Simulator ... 66

3.4.4. Step 3 – Provide User Credentials ... 66

3.4.5. Step 4 – Ensure that Controller simulator is registered successfully 67

3.4.6. Step 5 – Enable Remote Access for Controlled Simulator ... 67

3.4.7. Step 6 – Launch/activate Controlled (‘CoffeePot’) Simulator ... 68

3.4.8. Step 7 – Ensure that Controlled (‘CoffeePot’) simulator launched successfully but it is not

registered .. 69

3.4.9. Step 8 – Initiate Easy Setup process on Controlled (‘CoffeePot’) device simulator 69

3.4.10. Step 9 – Initiate Easy Setup process on Controller device simulator 71

3.4.11. Step 10 – Ensure that Easy Setup phase is completed on Controller device Simulator 73

3.4.12. Step 11 – Ensure that Easy Setup phase is completed on Controlled (‘CoffeePot’) device

Simulator 73

3.4.13. Step 12 – Initiate Registration phase on Controlled (‘CoffeePot’) device simulator 75

3.4.14. Step 13 – Initiate Registration phase on Controller device simulator 75

3.4.15. Step 14 – Ensure that Registration phase is completed on Controller device Simulator .. 76

3.4.16. Step 15 – Ensure that Registration phase is completed on Controlled (‘CoffeePot’) device

Simulator 77

3.4.17. Step 16 – Ensure that Controlled (‘CoffeePot’) device Simulator has been successfully

logged into SCS Server .. 78

3.4.18. Step 17 – Ensure that Controller device Simulator has been successfully logged into SCS

Server after helping Controlled device for provisioning ... 79

3.4.19. Monitor / Control / Access Remotely – Remote Access Feature (sending a GET request

through remote channel – SCS) .. 80

3.4.20. Easy Setup Timer Timeout ... 80

3.5. Device Token .. 81

3.5.1. Device Token issuance during ‘Registration’ phase of Easy Setup 81

3.5.2. Reissuance of Device Token upon ‘401 Unauthorized error’ – only for TV (only local) 83

3.5.3. Developer perspective of Device Token ... 84

3.5.4. Device Token Test Tool ... 85

1. Installation

1.1. Prerequisite
As of now, Smart Home SDK only supports Linux 32 bit development environment and Plug-in runs on Eclipse

platform.

1.2. JRE Installation
For Eclipse to work properly, it is mandatory to have installation of JRE (Java Runtime Environment).

1.2.1. Verification of JRE installation
Check whether JRE is installed on the system or not by running the below command on the command prompt on

terminal.

Test your environment by typing:

$java –version

The commands above will show the current installed version of Java on the system; if JRE is installed then the

sample output on Linux terminal would look similar to the following:

If JRE is installed then skip Section 1.2.2 and proceed to Section 1.3, otherwise continue with next section (Section

1.2.2).

1.2.2. Install JRE
Java 1.6 JRE/JDK or above is recommended for Eclipse 4.3 installation, and Java 1.5 JRE/JDK or above is

recommended for Eclipse 3.5 installation.

Download the JRE/JDK Installation executable based on platform form the link –

http://www.java.com/en/download/manual.jsp, and follow installation instructions from the link –

http://www.java.com/en/download/help/download_options.xml.

Note: The default path should be like, $/usr/lib/jvm/java-6-openjdk-i386/jre

1.3. Eclipse Installation
SHP-SDK supports Eclipse installation of version 3.5 (code name: Galileo) onwards, however, take note that all the

screenshots and references used and/or mentioned in this manual are taken from Eclipse installation 4.3 (code name:

Kepler) and above.

1.3.1. Verification of Eclipse installation
There is no direct way to find whether Eclipse is installed on a system or not.

One of the possible ways to find out on a Linux system (it works only for the installation which comes with Linux)

is:

$ file /usr/bin/eclipse
eclipse: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked
(uses shared libs), for GNU/Linux 2.2.5, not stripped

Note: Eclipse also allows more than one installation on same system

If Eclipse is already installed then proceed to Section 1.4, otherwise continue with Section 1.3.2

1.3.2. Install Eclipse
Download Eclipse from http://www.eclipse.org/downloads/ and unzip to a local directory.

Eclipse can be launched through the terminal from the downloaded folder.

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/help/download_options.xml
http://www.eclipse.org/downloads/

1.4. Eclipse CDT Plug-in Installation

1.4.1. Verification of Eclipse CDT Plug-in installation
Check whether the CDT Plugin is installed on Eclipse installation or not. Go to Help About Eclipse SDK

 Installation Details Features. In the ‘Feature Id’ column check whether ‘org.eclipse.cdt’ is present. If

present then it means CDT has already been installed, then skip Section 1.4.2 and proceed to Section 1.5,

otherwise continue with Section 1.4.2.

NOTE: Application development using Eclipse require presence of a compiler, for example, GCC compiler

for Linux. Instructions for respective compiler installation are provided in Section 1.5 (Compiler

Installation).

1.4.2. Install Eclipse CDT Plug-in
Following are the sequence of steps for installation of Eclipse CDT plug-in:

Step 1: Launch Eclipse ⇒ Help ⇒ Install New Software

Step 2: In "Add", enter location as the CDT update site

http://download.eclipse.org/tools/cdt/releases/kepler (for Eclipse Kepler only) and enter a name (e.g., CDT 8.2.0)

NOTE: The link above will change based on the installation of Eclipse, for different versions of Eclipse installations,

the link will change with the release name at the last.

Step 3: Optional features of CDT can also be selected however, it is mandatory to select all main features of CDT,

(“CDT Main Features”).

http://download.eclipse.org/tools/cdt/releases/kepler

1.5. Compiler and Database Installation

1.5.1. Install gcc compiler for Linux
A) Download the ‘gcc-4.8.1.tar.gz’ for gcc from ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.1/

B) Verify the gcc installation by listing the version of gcc :

$gcc –version

1.5.2. Install SQLite3 for Linux
Installation of SQLite3 onto respective development environment is essential for developing applications involving

database operations.

 If ‘sqlite3’ is not installed then install it in the following way:

 If ‘libsqlite3-dev’ is not installed then install in the following way:

 Verify installation of ‘sqlite3’ in the following way:

ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.1/gcc-4.8.1.tar.gz
ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.1/

1.6. ‘SHP-SDK’ Plugin Installation

Step 1: Launch Eclipse, click on ‘Help’ ‘Install New Software’

Step 2: Click on ‘Add’

Step 3: Select ‘Local’ and select SHP-SDK plugin folder (from the local location) and click on ‘OK’:

‘<Downloaded Location of Plugin>/EclipsePlugin’, on

Step 4: Now select ‘SHP Eclipse Plugin’, unselect option ‘Group items by category’ under ‘Details’ section, and

click on ‘Next’

Step 5: Click ‘Next’ and ‘Finish’

Step 6: This will install SHP-SDK-Plugin onto local system

Step 7: Approve all security warnings by clicking on ‘OK’:

Step 8: Click on ‘Yes’ on ‘Eclipse Restart’ confirmation window, close the Eclipse window, and proceed to next

step:

Step 9: Once Eclipse has restarted successfully then we need to change SHP preferences, select ‘Window

Preferences’:

Step 10: On this, we need to setup SHP preferences by setting ‘SDK Components directory path’ to ‘<Downloaded

Location of SHP-SDK >/ Linux_32_Bit/ ’ location for SHP-SDK-Eclipse Plugin installation:

Step 11: This finishes ‘SHP-SDK-Eclipse plugin’ installation, now launch ‘Eclipse’, and we shall be able to create

new SHP Projects, try to create new SHP project (File New Other), and shall see that options to create SHP

projects are available as below:

2. Application Development

2.1. New SHP Project

2.1.1. Creating a SHP Project

 Select ‘File New Project’

 Select ‘SHP New SHP Project’

 Select type of project which needs to be created (C++), SHP project wizard will invoke selected

project wizard.

 Create a new project by giving a name to the project and select appropriate tool chain.

2.1.2. Configuring a SHP project

‘Configuration SHP Project’ enables SHP-Application developers to configure (type of device, Server/Client

connectors to be used) SHP-Framework (their projects) based on their needs.

Following are different configuration options provided by SHP-SDK for application development:

Respective explanation for each Configuration option is as follows:

 Application Type: Using this, developers can select type of application to be created, select ‘Controlled’

from the drop down

 Controlled: Controlled by other devices (e.g. Washer, Refrigerator, Thermostat, LED, Smart Plug)

 Device Type: Using this, developers can select the type of device for which the application is being

created, developers can select any one of the device types supported by SHP

 Based on selected device type SHP-SDK makes some automatic suggestion of Resources (Section

2.1.3) to be Controlled

 Configure Server Connector: Using this, developers can select kind of Server Connector to be used for

the application being created.

 SHP-Framework provides two types of server connectors, one is ‘Internal Server Connector’

which is in-house implementation (this is the default selection – ‘Use Internal Server Connector’),

and the other one is FCGI based (for this select ‘Use FCGI Server Connector’) server connector

 Developers can also develop their own (custom) Server Connector by implementing

Sec::Shp::Connector::Server::IServerConnector interface

 Configure Client Connector: Using this, developers can select kind of Client Connector to be used for

the application being created.

 SHP-Framework provides, one ‘Internal Client Connector’ which is in-house implementation

(this is the default selection – ‘Use Internal Client Connector’)

 Developers can also develop their own (custom) Client Connectors by implementing

Sec::Shp::Connector::Client::IClientConnector interface

 Configure Subscription Database (subscription implementation): Using this, developers can select kind

of Subscription feature implementation.

 SHP-Framework provides two types of subscription implementations, one is using ‘SQLite

database’ (this is the default selection – ‘Use SQLite Subscription Manager’), and the other one is

file based (for this select ‘Use File Based Database Subscription Manager’) implementation

 Developers can also develop their own (custom) subscription implementation by

implementing Sec::Shp::Notification::ISubscriptionManager interface

 Use Remote Connector: Developers needs to select (by default selected) this feature if the application

being developed needs to have Remote Access feature of SHP, otherwise, they are expected to unselect

this option

Note: Selection of custom connectors (Server/Client) expects application developers to have their own

implementation for REST message handling (construction and parsing)

2.1.3. Selecting Resources

Selection of Controlled application type, leads to ‘Selection of Server Resources’ (resources to be handled by the

Controlled application) screen. Mandatory Resources are selected automatically. Mandatory Resources cannot be

removed

 On Selecting a Device Type, the suggested Resources are automatically selected (will be automatically

moved) to ‘Selected List of Resources:’

 Other Resources can be added or removed as per requirement by selecting (click) from ‘Optional

Resources to be Controlled:’

 Remove unwanted resources (non-mandatory) by clicking on them in the Selected Resources List.

Note: These resources are characteristic of a controlled device, which acts as a server and responds to the requests it

receives.

2.2. Import existing SHP Projects into the Eclipse workspace

1. Select ‘File Import’

2. Select ‘Select an import source SHP Import SHP Projects Next’

3. Select ‘Select root directory(Where source code locates) Browse… Finish’

2.3. Application Project

On Creating a New Project, the SHP Code Generator automatically generates following folder structure:

 For a C++ Project:

 ‘Server’ folder in C++ Project contains Resource handler classes that are called when a particular request

(allowed SHP-REST request) is received on a specific Resource, these are to be developed.

 The Application developer should ensure that the Server responds properly to valid (allowed as per SHP

specification) requests for each Resource.

• This can be ensured by developing all the required Resource Handler methods left out for the developer (check

the TODO list on Eclipse).

 The ‘XSD folder in C++ Project contains classes corresponding to various Resources.

 A few of the members of these classes are optional members while some are mandatory members.

 If the mandatory members are not dealt with properly (setting or getting their values depending on whether

sending a request or sending a response), the serialization (or deserialization fails).

 The Serialization folder contains methods to serialize and de-serialize the Serializable data.

 Additionally, ‘SHPUtils.cpp’ class contains methods to initialize and also to start the framework apart from

other methods required to configure it. And ‘SHPListener.cpp’ class in C++ project contains

representation of handlers for notifications from SHP Framework

2.3.1. Server Classes
Developers need to develop the resource handler stubs which are generated by SHP Plug-in for each of the selected

resources while project creation.

This is a characteristic of a Controlled device, which responds to a REST request received for a particular Resource.

This response should be set in the Resource handler file, for each of the valid request methods.

2.4. Developing Application

Developing SHP applications majorly consists of following steps:

1. Initialization of SHP Framework

a. Configuration of required certificates

i. Setting certificates path for Server and Client (Please note that default certificate

provided in this package can be used for the testing purposes only. In order to apply

to the commercial product, new model certificate shall be issued from the Samsung

Electronics.)

ii. Setting Remote Access configuration file path (If remote access features is required by

the application)

b. Configuration of Self Device Details – for setting device specific details

i. Like IP Address, Port, UUID, device type, application type, device information related

details and etc.

ii. Setting of supported resources – resources to be controlled (for Controller application) or

handled (Controlled application)

c. Configuration of Subscription Manager – for handling subscriptions and receiving notification

d. Configuration of SHP Connectors

i. Server Connectors – for handling and serving requests from SHP Controller devices

ii. Client Connectors – for retrieving SHP device details and sending control commands

e. Configuration related to remote access (If remote access features is required by the application)

i. Configuration and initialization of all servers (Samsung Account Server, Smart Home

Server – SHS, and SCS) involved for remote access

f. Initialization of required factories – for example, device, serialization, and resource handler

g. Setting and verification of final configuration

2. Creation, initialization, and setting of SHP Framework listeners

a. Creation and configuration of Device Finder Listener – for handling SHP Devices related

notifications, for example, new SHP device discovery, modification to existing SHP device, and

device leaving network

b. Creation and configuration of SHP Status Listener – for handling notifications from SHP

Framework related status (start/ stop / error) of framework, easy setup, registration, and device

token related

3. Starting SHP Framework

a. Check whether application (running on device) is provisioned or not?

i. Check whether application possess all required details to be connected to Home Access

Point (Home AP) for registering onto cloud OR not?

1. If application is not provisioned then enable Soft AP mode onto device and

perform Easy Setup routine (refer to SHP Architecture for complete details on

Easy Setup routine)

4. Discovering devices

a. Implementation of IDeviceFinderListener

b. Registering DeviceFinderListener

c. Retrieving Discovered devices

5. Performing Resource Control / Monitor / Manipulation

a. Sending REST requests to discovered devices

b. Handling REST requests from controller devices

6. Stopping SHP Framework

a. Remove / Un-set all listeners

b. Rest Configuration, and

c. Cleanup memory

7. Easy Setup, Registration, and Remote Access

2.4.1. Initialization of SHP Framework for C++ Controlled App

SHPUtils::initializeFramework() of file: <SHP-C++_Project_Name>\SHPUtils.cpp is the function which

is responsible for complete initialization of SHP Framework.

2.4.1.1. Configuration of required Certificates

By default, Server and Client security related file paths are set using "SDK Components directory path" preference

field value of SHP Preferences Page (Window Preferences SHP). And all certificates and certificate’s key

files are stored in certificates folder under "SDK Components directory path" preference field value.

The following are macros used for setting security related file paths and passphrase. The application developer needs

to modify these macros case of storing security related files in different folder or used different files.

SERVER_ROOT_CA: This macro is used to specify root certificate or chain of root certificates file path, which is

used for issuing server certificate. Default file path is

<"SDK Components directory path" preference field value>/certificates/Standalone_CA.crt"

SERVER_SELF_CERTIFICATE_RSA: This macro is used to specify server certificate file path. Default file path

is <"SDK Components directory path" preference field value >/certificates\Server.crt"

SERVER_SELF_CERTIFICATE_PRIVATE_KEY_PATH: This macro is used to specify server certificate’s

private key file path. Default file path is

<"SDK Components directory path" preference field value >/certificates/Server.pem"

SERVER_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD: This macro is used to specify server

certificate’s private key passphrase. Default value is “SHPSDK_SERVER_TEST_CERTIFICATE”.

CLIENT_ROOT_CA: This macro is used to specify root certificate or chain of root certificates file path, which is

used for issuing client certificate. Default file path is

<"SDK Components directory path" preference field value>/certificates/Standalone_CA.crt"

CLIENT_SELF_CERTIFICATE_RSA: This macro is used to specify client certificate file path. Default file path

is <"SDK Components directory path" preference field value >/certificates\Client.crt"

CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_PATH: This macro is used to specify client certificate’s

private key file path. Default file path is

<"SDK Components directory path" preference field value >/certificates/Client.pem"

CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD: This macro is used to specify client

certificate’s private key passphrase. Default value is “SHPSDK_CLIENT_TEST_CERTIFICATE”.

COMMON_ROOT_CA: This macro is used to specify chain of root certificates file path, which is used for issuing

Service Server and Account Server Certificates.

Following is the code snipped from file : <SHP-C++_Project_Name>\SHPUtils.cpp, which sets up all certificates:

2.4.1.2. Configuration of Self Device Details

2.4.1.2.1. Setting of Application’s Port Number

By default, application’s port number is set to “8888”. So the application developer should specify application’s port

number by updating port variable’s value in SHPUtils::initializeFramework() method of file: <SHP-

C++_Project_Name>\SHPUtils.cpp.

#define SERVER_ROOT_CA
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Standalone_CA.crt"
/**< Represents Server Root CA Path */
#define SERVER_SELF_CERTIFICATE_RSA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Server.crt"
/**< Represents Server RSA version of Self Certificate */
#define SERVER_SELF_CERTIFICATE_PRIVATE_KEY_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Server.pem"
/**< Represents Private Key path for Server Self Certificate */
#define SERVER_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD "SHPSDK_SERVER_TEST_CERTIFICATE"
/**< Represents Private Key password for Server Self Certificate */
#define CLIENT_ROOT_CA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Standalone_CA.crt"
/**< Represents Client Root CA Path */
#define CLIENT_SELF_CERTIFICATE_RSA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Client.crt"
/**< Represents Client RSA version of Self Certificate */
#define CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/Client.pem"
/**< Represents Private Key path for Client Self Certificate */
#define CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD "SHPSDK_CLIENT_TEST_CERTIFICATE"
/**< Represents Private Key password for Client Self Certificate */
#ifdef REMOTE_ACCESS_SUPPORT
#include "xsd/Network.h"
#define COMMON_ROOT_CA "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/certificates/CA.crt"
/**< Represents Common Root CA file path */
#define RA_CONFIG_FILE_PATH "/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/config/controllable.ra.config"
/**< Represents Remote Access Configuration file path */
#endif

Sec::Shp::Configuration* p_config = sp_shp->getConfiguration();
if (p_config == NULL) {
 std::cout << "Failed to get SHP Configuration" << std::endl;
 return false;
}

if (false == p_config->setAppType(Sec::Shp::ApplicationType_Controllable)) {
 std::cout << "Failed to set SHP Aplication Type" << std::endl;
 return false;
}

/** Configure Network Interface and port to be used */

char deviceAddress[256] = {0x00,};

std::string deviceIPAdress;

std::string port = "8888"; /** @note Default Port */

std::string uuid;

2.4.1.2.2. Setting of Application’s IP Address

Sec::Shp::Configuration::setAddress() is the API to be used for setting Application Address

(IP_Address:Port) and

SHPUtils::getIPAddressAndUUID() is the method generated for getting interfaces IP Address and UUID

using MAC address

By default, the application retrieves interface’s IP addresses and chooses the first non-multicast IP address from the

IP address list and configure as application’s IP Address. If the application developer wants to choose a different IP

address, he has to override the “deviceIPAdress” variable’s value in SHPUtils::initializeFramework() method of file:

<SHP-C++_Project_Name>\SHPUtils.cpp.

2.4.1.2.3. Setting of device specific details

Sec::Shp::Device::setDeviceType(), Sec::Shp:: Device::setUUID(), Sec::Shp::
Device::setDescription(), Sec::Shp::Device::setManufacturer(),
Sec::Shp::Device::setModelID(), and Sec::Shp::Device::setSerialNumber() are the APIs to be

used for setting device specific details by application

By default, the application sets devices’ application specific details like device type, and application type based on

details provided during project creation, however, application is expected to set other device specific details like

mode ID, description, serial number and etc. by modifying default generated values SHPUtils::initializeFramework()

method of file: <SHP-C++_Project_Name>\SHPUtils.cpp.

if (false == SHPUtils::getIPAddressAndUUID(deviceIPAdress, uuid))
{

cout << "SHPUtils::initializeFramework() => " << "failed to determine network
interface\n";
return false;

}

if ((deviceIPAdress.empty()) || (uuid.empty()))
{

cout << "SHPUtils::initializeFramework() => " << "invalid network interface or uuid\n";
return false;

}

cout << "SHPUtils::initializeFramework() => " << "Selected IPAddress:" << deviceIPAdress << ";
UUID :" << uuid << std::endl;

sprintf(deviceAddress, "%s:%s", deviceIPAdress.c_str(), port.c_str());
if (false == sp_myDevice->setAddress(deviceAddress)) {
 std::cout << "Failed to set SHP Device Address" << std::endl;
 return false;
}

 /** Configure Device Details */
 if (false == sp_myDevice->setDeviceType(Sec::Shp::DeviceType_Thermostat)) {
 std::cout << "Failed to set SHP Device Type" << std::endl;
 return false;
 }

2.4.1.2.4. Setting of supported resources

Sec::Shp::Device::setSupportedResourceType() is the API to be used for setting all the supported

resources

By default, the application sets devices’ supported resources based on selected resources during project creation.

Application developers can modify (add/delete) by modifying resource type values in

SHPUtils::initializeFramework() method of file: <SHP-C++_Project_Name>\SHPUtils.cpp.

 if (false == sp_myDevice->setUUID(uuid.c_str())) { // Example UUID: "E8113233-9A97-0000-0000-
000000000000"
 std::cout << "Failed to set SHP Device UUID" << std::endl;
 return false;
 }

 if (false == sp_myDevice->setDescription("Description")) {
 std::cout << "Failed to set SHP Device Description" << std::endl;
 }

 if (false == sp_myDevice->setManufacturer("Manufacturer")) {
 std::cout << "Failed to set SHP Device Manufacturer Name" << std::endl;
 }

 // User can additionally specify an optional 'deviceSubType' attribute if 'deviceType' is not
sufficient to define the type of device user want to apply.
 // (e.g., System_Air_Conditioner)
 //if (false == sp_myDevice->setDeviceSubType("DeviceSubType")) {
 // std::cout << "Failed to set SHP Device Sub-Type" << std::endl;
 //}

 if (false == sp_myDevice->setModelID("Model ID")) {
 std::cout << "Failed to set SHP Device Model ID" << std::endl;
 }

 if (false == sp_myDevice->setSerialNumber("Serial Number")) {
 std::cout << "Failed to set Serial Number" << std::endl;
 }

/** Configure Supported Resources */
try {
 sp_myDevice->setSupportedResourceType("AccessPoint");
 sp_myDevice->setSupportedResourceType("AccessPoints");
 sp_myDevice->setSupportedResourceType("Action");
 sp_myDevice->setSupportedResourceType("Actions");
 sp_myDevice->setSupportedResourceType("Alarm");
 sp_myDevice->setSupportedResourceType("Alarms");
 sp_myDevice->setSupportedResourceType("Capability");
 sp_myDevice->setSupportedResourceType("Configuration");
 sp_myDevice->setSupportedResourceType("Device");
 sp_myDevice->setSupportedResourceType("Devices");
} catch(...) {
 std::cout << "Caught Exception" << std::endl; return false;
}

2.4.1.2.5. Setting of Subscription manager’s Database file path

Sec::Shp::SHP::setSubscriptionManager() is the API to be used for setting Subscription manager and

Sec::Shp::Configuration::setSubscriptionDbPath() is the API to be used for setting Subscription

Database file path

By default, the Subscription manager’s Database file path is set to “SubscriptionManager.db”. The database is used

to store subscriptions. If the application developer wants to change the data base file path, specify the new database

file path by passing the first argument to setSubscriptionDbPath() call of “Sec::Shp::Configuration” class in

SHPUtils::initializeFramework() method of file: <SHP-C++_Project_Name>\SHPUtils.cpp.

Note: Application developers can also modify type of subscription store also

2.4.1.2.6. Setting of Remote Access Configuration File Path

Sec::Shp::Configuration::setRAConfigPath() is the API to be used for setting Remote Access

Configuration File Path

This file is used to specify remote access configuration details (if remote access feature is configured for the

application). By default, these files are stored in the config folder under "SDK Components directory path"

preference field value. If the application developer wants to change the file path, update

“RA_CONFIG_FILE_PATH” macro to the new file path.

/**
 * Configure Subscription Manager::@n
 * Applications can use their own Subscription manager OR@n
 * Default Subscription manager provided by framework.
 */
// Instantiating custom Subscription Manager
Sec::Shp::Notification::ISubscriptionDB *subDBStore = NULL;
#ifdef USE_SQLITE3_SUBS_MANAGER
 subDBStore = Sec::Shp::Notification::SHPSqliteSubscriptionDB::createInstance();
#elif USE_FILE_SUBS_MANAGER
 subDBStore = Sec::Shp::Notification::SHPFileSubscriptionDB::createInstance();
#else
#error "implement a custom Subscription Manager and configure it with framework"
#endif

Sec::Shp::Notification::ISubscriptionManager *pSub =
Sec::Shp::Notification::SHPSubscriptionManager::createInstance(subDBStore);

/**
 * @note To Use Default Subscription Manager, please un-comment below line and comment above line
 */
if (false == sp_shp->setSubscriptionManager(*pSub)) {
 std::cout << "Failed to set Subscription Manager instance" << std::endl;
 return false;
}

/** Configure Subscription DB Path */
if (false == p_config->setSubscriptionDbPath("SubscriptionManager.db")) { // User needs to give
actual DB Path
 std::cout << "Failed to set Subscription DB Path" << std::endl;
 return false;
}

#define RA_CONFIG_FILE_PATH
"/home/SHP_SDK/Lastest/SHP_Framework/Linux_32_Bit/config/controllable.ra.config"
/**< Represents Remote Access Configuration file path */

Note: It is application developers’ responsibility to ensure existence (if required create before execution of the

application itself) of the parent directory (for e.g., /home/SHP_SDK/configs/) of ‘remoteconfigs’ folder.

Framework will only be able to create folders ‘remoteconfigs’ onwards.

2.4.1.2.7. Configuration of factories

Sec::Shp::Configuration::setDeviceFactory(),Sec::Shp::Configuration::setSerializableD
ataFactory(), and Sec::Shp::Configuration::setResourceHandlerFactory() are the APIs to be

used for configuring factories
By default, the application sets the device, serializable, and resource handler factories. Application developers can

use their own implementation by setting above mentioned APIs. . If application developer wants to configure

custom factories then they are expected to implement respective interface (Sec::Shp::DeviceFinder::DeviceFactory

for custom device factory) and modify following calls in SHPUtils::initializeFramework() method of file: <SHP-

C++_Project_Name>\SHPUtils.cpp.

#ifdef REMOTE_ACCESS_SUPPORT
if (false == p_config->setRemoteAccessEnable(true)) {
 std::cout << "Failed to enable Remote Access Support" << std::endl;
 return false;
}
/** Set Remote Access Configuration File Path */
std::string raConfigFilePath = RA_CONFIG_FILE_PATH;

/**
 * Configure Remote Access Configuration File::@n
 *
 * 1) No encryption OR@n
 * - 'raConfigFilePath' will not be encrypted when the second private key argument is not
provided@n
 */

if (false == p_config->setRAConfigPath(raConfigFilePath.c_str())) {
 std::cout << "Failed to set Remote Access Configuration path" << std::endl;
 return false;
}

/** Configure Factories :: */
if (false == p_config->setDeviceFactory(new ::SHPDeviceFactory())) {

std::cout << "Failed to set SHP Device Factory" << std::endl;
 return false;
}

if (false == p_config->setSerializableDataFactory(new ::SHPSerializationFactory())) {
 std::cout << "Failed to set SHP Serializable Data Factory" << std::endl;
 return false;
}

if (false == p_config->setResourceHandlerFactory(new ::SHPResourceHandlerFactory())) {
 std::cout << "Failed to set SHP Resource Handler Factory" << std::endl;
 return false;
}

2.4.1.2.8. Configuration of Server Connectors

Sec::Shp::Connector::SSLConfiguration::addCACertificate(),
Sec::Shp::Connector::SSLConfiguration::setSelfCertificateWithRSAPrivateKey(), are the

APIs to be used for configuring HTTPS server connectors and
Sec::Shp::Configuration::setServerConnector() is the API to be used for setting configured server

connector as the server connector of SHP Framework

By default, the application configures and sets server connectors based on the option (internal http/https, FCGX, or

custom) selected while creation of the project. Application developers can implement their own custom server

connector by implementing Sec::Shp::Connector::Server::IServerConnector and set using

setServerConnector() API in SHPUtils::initializeFramework() method of file: <SHP-

C++_Project_Name>\SHPUtils.cpp.

/** Configure Client AND Server Connectors :: */

#ifdef USE_INTERNAL_HTTPS_SERVER

 std::string serverRootCA = SERVER_ROOT_CA;
 std::string serverCertificate = SERVER_SELF_CERTIFICATE_RSA;
 std::string serverRSAPrivateKey = SERVER_SELF_CERTIFICATE_PRIVATE_KEY_PATH;
 std::string serverRSAKeyFilePassword = SERVER_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD;

 /** Configure Server Certificates */
 Sec::Shp::Connector::Server::IServerConnector *pServerConnector =
Sec::Shp::Connector::Server::SHPHTTPSServerConnector::createInstance(deviceIPAddress, port);
 if (NULL == pServerConnector) {
 std::cout << "Failed to get Server Connector object" << std::endl;
 return false;
 }

 Sec::Shp::Connector::SSLConfiguration *pServerConnectorConfiguration =
(Sec::Shp::Connector::SSLConfiguration *) (pServerConnector->getConnectorConfiguration());
 if (NULL == pServerConnectorConfiguration) {
 std::cout << "Failed to get Client SSL Configuration object" << std::endl;
 return false;
 }

 if (false == pServerConnectorConfiguration->addCACertificate(serverRootCA.c_str())) {
 std::cout << "Failed to set Server Root CA Certification" << std::endl;
 return false;
 }

 if (false == pServerConnectorConfiguration-
>setSelfCertificateWithRSAPrivateKey(serverCertificate.c_str(), serverRSAPrivateKey.c_str(),
serverRSAKeyFilePassword.c_str())) {
 std::cout << "Failed to set Server Self Certificate/Key" << std::endl;
 return false;
 }

 if (false == p_config->setServerConnector(*pServerConnector)) {
 std::cout << "Failed to set Internal HTTPS Server Connector" << std::endl;
 return false;
 }
#elif USE_FCGI_HTTP_CONNECTOR
 Sec::Shp::Connector::Server::IServerConnector *connector = new
Sec::Shp::Connector::Server::SHPFCGXServerConnector::createInstance(true);
 if (false == p_config->setServerConnector(*connector)) {
 std::cout << "Failed to set FCGI Server Connector" << std::endl;
 return false;
 }
#else
#error "implement a custom Server Connector and configure it with framework"
#endif

2.4.1.2.9. Configuration of Client Connectors

Sec::Shp::Connector::SSLConfiguration::addCACertificate(),
Sec::Shp::Connector::SSLConfiguration::setSelfCertificateWithRSAPrivateKey(), are the

APIs to be used for configuring HTTPS client connectors and
Sec::Shp::Configuration::setClientConnector() is the API to be used for setting configured client

connector as the client connector of SHP Framework

By default, the application configures and sets server connectors based on the option (internal http/https, or custom)

selected while creation of the project. Application developers can implement their own custom server connector by

implementing Sec::Shp::Connector::Client::IClientConnector and set using setClientConnector()
API in SHPUtils::initializeFramework() method of file: <SHP-C++_Project_Name>\SHPUtils.cpp.

#ifdef USE_INTERNAL_HTTPS_CLIENT

 std::string clientRootCA = CLIENT_ROOT_CA;
 std::string clientCertificate = CLIENT_SELF_CERTIFICATE_RSA;
 std::string clientRSAPrivateKey = CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_PATH;
 std::string clientRSAKeyFilePassword = CLIENT_SELF_CERTIFICATE_PRIVATE_KEY_FILE_PASSWORD;

 /** Configure Client Certificates */
 Sec::Shp::Connector::Client::IClientConnector* pClientConnector =
Sec::Shp::Connector::Client::SHPHTTPSClientConnector::createInstance();
 Sec::Shp::Connector::SSLConfiguration *pClientConnectorConfiguration =
(Sec::Shp::Connector::SSLConfiguration *) (pClientConnector->getConnectorConfiguration());
 if (NULL == pClientConnectorConfiguration) {
 std::cout << "Failed to get Client SSL Configuration object" << std::endl;
 return false;
 }

 if (false == pClientConnectorConfiguration->addCACertificate(clientRootCA.c_str())) {
 std::cout << "Failed to set Client Root CA Certificate" << std::endl;
 return false;
 }
#ifdef REMOTE_ACCESS_SUPPORT
 std::string commonRootCA = COMMON_ROOT_CA;
 if (false == pClientConnectorConfiguration->addCACertificate(COMMON_ROOT_CA)) {
 std::cout << "Failed to set Common Root CA Certificate which need to access External
Cloud Servers" << std::endl;
 return false;
 }
#endif
 if (false == pClientConnectorConfiguration-
>setSelfCertificateWithRSAPrivateKey(clientCertificate.c_str(), clientRSAPrivateKey.c_str(),
clientRSAKeyFilePassword.c_str())) {
 std::cout << "Failed to set Client Self Certificate/Key" << std::endl;
 return false;
 }

 pClientConnectorConfiguration->enablePeerVerification();

 if (false == p_config->setClientConnector(*pClientConnector)) {
 std::cout << "Failed to set Internal HTTPS Client Connector." << std::endl;
 return false;
 }
#else
#error "implement a custom Client Connector and configure it with framework"
#endif

2.4.1.2.10. Verification and Setting of final Configuration

Sec::Shp::Configuration::setConfiguration() is the API to be used for setting final configuration with

SHP Framework

sp_shp->setConfiguration(p_config);

2.4.2. Creation, initialization, and setting of SHP Framework listeners

SHP Framework makes use of configured listeners for notifying status events, SHP device related notifications. By

default, the application will create, initialize, and set SHP Status Listener (file: <SHP-

C++_Project_Name>/SHPListener.cpp). However, the application developers (especially controller application)

are expected to implement device finder listener for handling all SHP device related notifications from SHP

Framework.

2.4.2.1. Creation and configuration of Device Finder Listener

Sec::Shp::SHP::getDeviceFinder()->setDeviceFinderListener() is the API to be used for setting

custom device finder listener with SHP Framework

By default, application will not generate code for handling device related notifications. However, developers can

follow below mentioned guideline in SHPUtils::initializeFramework() method of file: <SHP-

C++_Project_Name>\SHPUtils.cpp)

Developers are expected to implement 'Sec::Shp::IDeviceFinderListener' for getting and handling all SHP devices

related notifications, like, new SHP device discovery, modification to existing SHP device, and SHP device leaving

network (add/modify/delete). Controller applications are mostly expected to create, configure, and set their custom

device finder listeners to discover peer SHP devices and do specific actions based on received notifications.

Following is the sample implementation of 'Sec::Shp::IDeviceFinderListener' :

Following is the sample registration of custom device finder listener with SHP Framework.:

/**
 * Developers need to implement 'IDeviceFinderListener' for getting device related
(add/modify/delete)
 * notifications from SHP-Framework.
 * @n
 * If the application type is a Controller then handling device related notifications is mostly
 * expected.
 * @n
 * @note Un-comment following block of code for setting device finder listener (before that
developers are expected to implement 'IDeviceFinderListener'
 */

class DeviceFinderListener : public Sec::Shp::DeviceFinder::IDeviceFinderListener
{

virtual void OnDeviceAdded(Sec::Shp::Device& device)
{
 /* This method will be invoked when a new device is discovered */
}
virtual void OnDeviceRemoved(Sec::Shp::Device& device)
{
 /*This method will be invoked when a device leaves the network */
}
virtual void OnDeviceUpdated(Sec::Shp::Device& device)
{
 /*This method will be invoked when a device details got updated */
}

};

sp_shp->getDeviceFinder()->setDeviceFinderListener(*(new DeviceFinderListener())) ;

2.4.2.2. Creation and configuration of SHP Status Listener

Sec::Shp::SHP::setSHPListener() is the API to be used for setting SHP Status Listener with SHP

Framework

By default, the application will generate code for receiving and handling status related notifications from SHP

Framework and providing configuration data back to SHP Framework. Applications will create, initialize, and set

the SHP Status Listener (file: <SHP-C++_Project_Name>\SHPListener.cpp).

Developers can also have their own custom SHP Listener by implementing 'Sec::Shp::ISHPListener' and handle

SHP Framework notifications related to status (start/ stop / error) of framework, easy setup, registration, and device

token related. Developers are expected to set their custom SHP Status listener by using above mentioned API

Sec::Shp::SHP::setSHPListener().

2.4.2.2.1. More details on ‘ISHPListener’ interface

The ISHPListener interface is used for receiving notification from the SHP Framework and providing configuration

data to SHP Framework. As part of project creation, the SHPListener class is created which implements

ISHPListener. ISHPListener interface has the following methods (APIs).

Note: Complete description and documentation is available with SHP Framework API documentation

public void onStarted(String address)

This method will be invoked by framework when framework is started. In return, it gets address of the server

which is started by framework.

public void onStopped()

This method will be invoked when framework is stopped.

public void onError()

This method will be invoked when framework encounters an error.

public String getMyDeviceToken()

This method will be invoked by SHP Framework for getting Controlled devices token

public String getUUIDAndTokenMap()

This is no longer used.

public void updateUUIDAndTokenMap(Sec.Shp.DeviceToken token)

This method is used only on Controller Application. This method will be invoked whenever SHP Framework

receive device token and pass received device token and UUID of controlled Device.

public void tokenRequestNotification(String uuid)

This method will be invoked whenever SHP Framework gets request for Device Token and pass UUID of the

requested device.

public void easySetupNotification(Sec.Shp.EasySetupNotifactionnotif)

/**

 * Configure SHP Listener

 */

if (false == sp_shp->setSHPListener(*sp_shpListener)) {
 std::cout << "Failed to set SHP Listener Object" << std::endl;
 return false;
}

This method will be invoked by SHP Framework for notifying the status of easy setup and registration & de-

registration procdure.

void scsErrorNotification(interroCode)

This method will be invoked by SHP Framework for notifying the error code which was sent by SCS server.

public void OnChannelCreated(String channelName, intconnID)

This method will be invoked whenever steam channel is created by SHP framework and provide Stream

ChannelName and connection Identifier to application.

public String getAuthCode()

This method is used only on Controller Application. SHP Framework will invoke for getting “Authcode” from

application.

public String getAccessToken()

This method is used only on Controller Application. SHP Framework will invoke for getting “AccessToken”

from application.

public String getRefreshToken()

This method is used only on Controller Application. SHP Framework will invoke for getting “Refresh Token”

from application.

public String getUserID()

This method is used only on Controller Application. SHP Framework will invoke for getting “UserID” from

application.

Following is the code snippet of applications default ISHPListener implementation present in file: <SHP-

C++_Project_Name>\SHPListener.cpp).

#ifndef __SHPListener__
#define __SHPListener__
#include <iostream>
#include "ISHPListener.h"
#include "ConditionUtility.h"
#include "MySHPDevice.h"
/**
 * @classSHPListener
 * @briefThis class implements ISHPListener, this class is used for receiving notifications
 * from SHP Framework and providing configuration data to SHP Framework.
 */
class SHPListener: public Sec::Shp::ISHPListener
{

public:
 /**
 * Default constructor of SHPListener
 */
SHPListener();
 /**
 * Default destructor of SHPListener
 */
virtual ~SHPListener();
/**
 * This method will be a notified from SHP-Framework to application along with the UUID
 * from which device token request is received.
 * This method is used only on Controlled Application.
 *
 * @param[in] uuidUUID from which device token request is received by SHP-Framework
 */
void tokenRequestNotification(std::string uuid);

2.4.3. Starting SHP Framework

Sec::Shp::SHP::start() is the API to be used for starting SHP Framework after successful initialization SHP

Framework AND Sec::Shp::SHP::getSHPState() is the API to be used for knowing current execution status

of SHP Framework

SHP Framework start() method is a non-blocking call and the framework will be in Sec::Shp::SHP_STARTING

state till SHP is completely started. The SHP Framework will go to state Sec::Shp::SHP_STARTED once it is

completely and successfully started all servers, clients, and successfully registered the device with the cloud.

Developers are expected not to perform any other activity till SHP is completely started. By default, the application

will be waiting for SHP to either to start successfully or exit with an error. Sec::Shp::SHP::getSHPState()
needs to be used by developers to know status of SHP Framework any time.

Note: Complete documentation on valid SHP States are explained in detail in SHP API documentation

Once the SHP is successfully started, the application checks whether Easy Setup routine needs to be performed or

not by checking the flag ‘easySetupRequired’ of SHPUtils class. By default, before initialization of the framework,

the application checks whether application (running on device) is provisioned or not. It will verify whether

application possess all required details to be connected to Home Access Point (Home AP) for registering onto cloud.

 If application is not provisioned then enable Soft AP mode on device and perform Easy Setup routine (refer

to SHP Architecture for complete details on Easy Setup routine)

SHPUtils::startFramework() method in file: <SHP-C++_Project_Name>\SHPUtils.cpp) does contain default

implementation of application for invoking SHP Framework start and based on need initiates Easy Setup routine

(SHPUtils::performEasySetupProcess()).

bool
SHPUtils::startFramework()
{
 if ((false == isFrameworkIntialized) || (NULL == sp_shp) || (NULL == sp_myDevice)) {
 cout<<"SHPUtils::startFramework() => "<<"ERROR: SHP Framework hasn't initialized"<<
std::endl; return false;
 }

 if (false == sp_shp->start(*sp_myDevice)) {
cout << "SHPUtils::startFramework() => "<<"ERROR: Failed to Start framework"<<std::endl;
return false;

 }
 /** Confirm SHP-Start */
 Sec::Shp::SHPStates shpState = sp_shp->getSHPState() ;

 while (Sec::Shp::SHP_STARTING == shpState) {

Sleep(1000); // Waiting for 1 second for checking status of SHP
cout << "SHPUtils::startFramework() => " << "INFO - Waiting for SHP to be started

completely, SHP Running Status " << shpState << std::endl;
shpState = sp_shp->getSHPState() ;

 }

 if (shpState == Sec::Shp::SHP_STARTED) {

std::cout << "SHPUtils::startFramework() => " << "INFO - Successfully started SHP with
State " << shpState << std::endl;
 }
 else {

std::cout << "SHPUtils::startFramework() => " << "ERROR: Failed to Start framework with
State " << shpState << ", Hence Exiting!!!" << std::endl;

stopFramework();
return false;

 }
#ifdef REMOTE_ACCESS_SUPPORT
 if (easySetupRequired == true) {

performEasySetupProcess();
 }
#endif
 return true;
}

Application sets ‘easySetupRequired’ flag to true upon non-availability of Home AP details.

SHPUtils::isWifiDetailsAvailable(),

SHPUtils::connectToHomeAccessPoint(),

SHPUtils::enableSoftAPMode(), and

SHPUtils::disableSoftAPMode() are the application methods which needs to be implemented by application

developers. What is expected out of each of these methods is clearly documented inline in the application project.

/**
 * Initially, application will check whether WiFi details are present or not to connect HomeAP.
 * If WiFi details are present, then device will connect to HomeAP. Application will terminate
 * on failure of connecting HomeAP. If device doesn't have WiFi information, then application
 * will exit in case of controller and device will goto softAP mode in case of controlled device.
 */
bool wifiDataAvailality = isWifiDetailsAvailable();
bool connected = false;

if (wifiDataAvailality == false) {

if (p_config->getAppType() == Sec::Shp::ApplicationType_Controller) {
cout << "SHPUtils::initializeFramework() => " << "No WiFi Details to Connect Home
AP " << std::endl;
return false;

}
else {

cout << "SHPUtils::initializeFramework() => " << "No WiFi Details to Connect Home
AP " << std::endl;
if (false == enableSoftAPMode()) {

cout << "SHPUtils::initializeFramework() => " << "Failed to Start Soft-AP
Mode " << std::endl;
return false;

}
easySetupRequired = true;
connected = true;

}
}
else {

connected = connectToHomeAccessPoint();
}

if (connected == false) {

cout << "SHPUtils::initializeFramework() => " << "Failed to connect Home Access Point,
Please check WiFi Details" << std::endl;
return false;

}

2.4.4. Discovering devices

2.4.4.1. Retrieving discovered devices

The essential resources to be implemented for the device to be discovered by the SHP Plugin are Capability and

Devices. The Capability Resource Handler is already implemented, so the application developer needs to implement

the Devices Resource Handler. This can be done by implementing the required methods in the

DevicesResourceHandler.cpp in the Server folder (ShpGen Server). The status code must also be updated while

implementing the Resource Handler methods.

Implement the following methods, updating status code and filling the ‘respData’ structure.

For C++ Projects:

For example, developers can make use of sample device implementation available in method

MySHPDevice::getDevices(), for example:

Implement following methods, updating status code and storing/updating as per ‘reqData’.

For C++ Projects:

bool
DevicesResourceHandler::onGET(Sec::Shp::Connector::Server::ServerSession& session, int&
statusCode, ::Devices* respData)
{

// TODO: Autogenerated code. Add Resource implementation here
// TODO: Default Status Code is: 501 - Not Implemented. Replace Default Status Code
based on implementation!
statusCode = 501;
return true ;

}

bool
DevicesResourceHandler::onGET(Sec::Shp::Connector::Server::ServerSession& session, int&
statusCode, ::Devices* respData)
{

std::cout<<"\n\n$$$$$$$$$$$$$$$$$$ onGET Devices\n\n";
statusCode = 200;
return MySHPDevice::getInstance()->getDevices(respData);

}

bool
DevicesResourceHandler::onPOST(Sec::Shp::Connector::Server::ServerSession& session, int&
statusCode, ::Device* reqData,std::string& location)
{

// TODO: Autogenerated code. Add Resource implementation here
// TODO: Default Status Code is: 501 - Not Implemented. Replace Default Status Code
based on implementation!
statusCode = 501;
return true ;

}

2.4.5. Performing Resource Control / Monitor / Manipulation

2.4.5.1. Sending REST requests to discovered devices

If application wants to send requests to any specific resource (controlled applications) of say discovered devices

then

1. Expected to implement all required methods in respective I<Resource_Name>ResourceResponseListener

located in ‘Client’ folder (ShpGen Client in case of C++ Projects)

2. They are expected to use respective resource classes

(Sec::Shp::Client::Resource::<Resource_name>Resource) to make requests, and

Application developers must have the knowledge of input and output data format SHP requests only then can they

properly type cast the response data. Application needs to type cast the response data to corresponding data class

class LightResourceResponseListener : public ILightResourceResponseListener
{

public:
bool onGetLight(int& requestId, int status, ::Light* pRespData)
{

std::string power = pRespData->mpLightPower->value;
// Check if light is powered on
if (power.compare("on") == 0)
{

int requestId;
Light *pLight = new Light();
pLight->mpLightPower = new OnType();
pLight->mpLightPower->value = "Off";
// Power off the light
pLightResource->putLight(requestId , *pLight);

}

return true;

}

bool onPutLight(int& requestId, int status)
{

if (status == 204)
{
 // Light powered off successfully
}

}
};

LightResource* pLightResource = NULL;
void powerOffLight()
{

pLightResource = device->createResource(RT_LIGHT);
if (NULL != pLightResource)
{

int requestId;
pLightResource->addResponseListener(*(new LightResourceResponseListener()));
pLightResource->getLight(requestId);

}
}

generated by SHP-SDK. SHP-SDK also generates resource specific controllers and status listeners. It is advisable to

use these resource specific controllers and interfaces to avoid type casting.

2.4.5.2. Precautions when assigning attribute values into the resource object

1. Due to nature of the SHP specification if any of attribute values are not belongs to Enumeration type SDK

will not validate whether the contents of the value is appropriate or not, but SDK do the basic type

validation. For example, "NotificationEventType" value should be one of the following: "Created" or

"Notified" or "Deleted". Main difference when defining a type of attribute is, whether the certain attribute

can be generalized or not. When you see the value of "progress" attribute located under the "Operation"

resource, you'll find out it's defined as a "String20" and SDK will only checks length of the string is not

exceed more than 20. Because, representation or supported values for this attribute can be very different

among the devices and thereby SHP specification just provides a string container with one single constraints

which is maximum length of the string.

2. SDK will removes from the string all leading and trailing white-space characters. Each leading and trailing

trim operation stops when a non-whitespace character is encountered. For example, if the assigned attribute

value is " 2014-10-31T18:30:00 ", the SDK internally converts it into "2014-10-31T18:30:00".

2.4.5.3. Handling REST requests from Controller devices

If the application wants to handle requests on specific resource (controlled applications) then application developers

are expected to implement all required methods in the respective resource handler

<Resource_Name>ResourceHandler.cpp in ‘Server’ folder (ShpGen Server in case of C++). The status code

shall also be updated while implementing respective Resource Handler methods.

By default, generated application handles ‘Capability’ resource and respective resource handlers are available in

ShpGen Server CapabilityResourceHandler.cpp

Please refer to sample implementation for in Retrieving discovered devices for handling GET request on ‘Devices’

resource.

2.4.6. Stopping SHP Framework

Sec::Shp::SHP::stop() is the API to be used for stopping SHP Framework completely after successful start of

SHP Framework

Sec::Shp::SHP::stop(true) is the API to be used for stopping SHP Framework internally after successful

start of SHP Framework

Sec::Shp::SHP::removeSHPListener() is the API to be used for un-subscribing SHP Status listeners

SHP Framework stop() method is a blocking call and the framework will be in Sec::Shp::SHP_STOPPING state till

SHP is completely stopped. SHP Framework will go to state Sec::Shp::SHP_STOPPED once it is completely and

successfully stopped all servers, and clients. Developers will not to be able to perform any other activity till SHP is

completely stopped once ‘stop()’ method is invoked. By default, the application will be verifying completeness of

SHP Framework stop by checking Sec::Shp::SHP::getSHPState() with Sec::Shp::SHP_STOPPED.

Note: Complete documentation on valid SHP States are explained in detail in SHP API documentation.

Once the SHP is successfully stopped by default application, unsubscribe to SHP Status notifications by invoking

API, Sec::Shp::SHP::removeSHPListener() and do memory cleanup.

SHPUtils::stopFramework() method in file: <SHP-C++_Project_Name>\SHPUtils.cpp) does contain default

implementation of application for invoking SHP Framework stop.

Note: SHP Framework provides another variant of stop() method stop(true) which will make SHP Framework to

perform an internal stop.

For complete details please refer to SHP-API documentation.

2.4.7. Implementation of network resource handler

As part of an easy setup procedure, Controller Device will PUT network resource with the Wi-Fi AP access

information to controlled the Device. The application developer shall implement onPUT() method of

NetworkResourceHandler class and stores Wi-Fi AP access information in persistent storage for avoiding losing of

AP access information during restart of the device.

bool
SHPUtils::stopFramework()
{

if (sp_shp == NULL) {
return false;

}

sp_shp->stop();

/** Confirm SHP-Stop */
Sec::Shp::SHPStates shpState = sp_shp->getSHPState() ;
if (Sec::Shp::SHP_STOPPED == shpState) {

std::cout << "SHPUtils::stopFramework() => " << "INFO - SHP Stopped Completely"
<< std::endl;

}

/** Un-subscribe SHP Listener */
sp_shp->removeSHPListener(*sp_shpListener);

if (sp_shpListener) { delete sp_shpListener; }

/** Reset SHP Configuration */
Sec::Shp::Configuration *config = sp_shp->getConfiguration();

if (NULL != config) {

config->reset();
}

#ifdef REMOTE_ACCESS_SUPPORT

if (sp_condition) { delete sp_condition; }
#endif

if (sp_shp) { delete sp_shp; }

std::cout << "SHPUtils::stopFramework() => " << "Exiting Successfully!" << std::endl;
return true;

}

2.4.8. Remote Access Configuration Files

This file is used to specify remote access configuration details. By default, this files (controller.ra.config,

controllable.ra.config) are stored in config folder under "SDK Components directory path" preference field value.

This file contains default value for all fields. The application developer needs to modify this file if required. The file

contains the following remote access configuration details.

AUTH_ACC_SERVER_ADDR

This field specifies the Authentication Account server address.

API_ACC_SERVER_ADDR

This field specifies the API Account server address.

ACC_SERVER_PORT

This field specifies the Account Server port Number.

SERVICE_SERVER_ADDR

This field specifies the Service Server Address.

SERVICE_SERVER_PORT

This field specifies the Service Server Port Number.

REMOTE_SERVICE_PORT

This field specifies the P2P service port for the connection

REMOTE_SERVER_TYPE

This field specifies type of the SCS server to be connected. During the development period, it's strongly

suggested to use a staging server to avoid any interference with a commercial smart home service being operated.

(0: Production, 1: Staging)

SCS_LOG_LEVEL

This field specifies the SCS library log level.

SCS_LOG_PATH

This field specifies the SCS log folder, where SCS library create log file and write logs to file.

REMOTE_CONFIG_PATH

This field specifies the folder, where SHP Framework create file for storing SCS configuration details like

authCode, accountID, peerID, peerGroupID, countryCode and guid(Global User ID).

For example, REMOTE_CONFIG_PATH=/home/SHP_SDK/configs/remoteconfigs/

Note: It is application developers’ responsibility to ensure existence (if required create before execution

of the application itself) of the parent directory (for e.g., /home/SHP_SDK/configs/) of ‘remoteconfigs’

folder. Framework will only be able to create folders ‘remoteconfigs’ onwards.

Developer Note:

AppID

This value specifies the application id. If application developer wants to get a new application id, please contact

to the Convergence Development Group of the MSC division.

AppSecret

This value specifies the application secret key that depends on the application id. When application developer

gets an application id, corresponding application secret key also will be provided.

InstanceID

This value specifies the application instance id that represents purpose of the application. If application

developer wants to get a new instance id, please contact to the Convergence Development Group of the MSC

division.

Above three values shall be set from application using their respective setter APIs, for reference,

RemoteAccessConfig::setAppId() , RemoteAccessConfig::setAppSecret(), AND

RemoteAccessConfig::setInstanceId().

2.4.9. Setting of Authorization Grant Type

Please note that user must create a Samsung Account to utilize a remote access feature. Please visit

"https://account.samsung.com/membership/signUp.do" to sign up to Samsung Account.

Application should set required authorization grant type by using the API below:

C++ API: void RemoteAccessConfig::setAuthorizationType(const AuthorizationType authType)

The application shall provide all mandatory details as part of the SHP framework initialization based on

Authorization Grant Type. If any mandatory details are missing, framework throw error and stop framework. Please

find mandatory parameters details for each Authorization Grant Type in table. And Instance ID with zero is not

allowed by framework.

Authorization Grant Type Mandatory Details From App
C++ API for setting required

details

Resource Owner Password

Credentials

(AUTH_GRANT_TYPE_PASS

WORD_CRED)

AppId , AppSecret, InstanceId, Email & Password.

Framework will retrieve authcode, accessToken,

RefreshToken & UserID by using provided

credentials.

Whenever current access token is expired,

framework retrieves new access token by using

refresh token.

RemoteAccessConfig::setEmail()

for setting email id.

RemoteAccessConfig::setPassword

() for setting password.

RemoteAccessConfig::setAppId()

for setting App ID.

RemoteAccessConfig::setAppSecr

et() for setting App Secret.

RemoteAccessConfig::setInstanceI

d() for setting Instance ID.

Authorization Code

(AUTH_GRANT_TYPE_AUTH

)

AppId , AppSecret, InstanceId, Email, [AuthCode].

Framework will retrieve accessToken, RefreshToken

& UserID by using provided credentials.

If application does not set “AuthCode” as part of

initialization, framework will call

ISHPListener::getAuthCode() callback for getting

“AuthCode” from application.

Whenever current access token is expired,

framework retrieves new access token by using

refresh token.

https://account.samsung.com/membership/signUp.do

Implicit Grant

(AUTH_GRANT_TYPE_IMPLI

CIT)

AppId , AppSecret, InstanceId, Email,

[AccessToken] & [UserID].

If application does not set “AccessToken” or

“UserID” as part of initialization, framework will

call ISHPListener:: getAccessToken() callback for

getting “AccessToken” and

ISHPListener::getUserID() for “UserID” from

application.

Whenever current access token is expired,

framework will call ISHPListener::getAccessToken

() callback for getting “AccessToken” and

ISHPListener::getUserID() for “UserID” from

application.

RemoteAccessConfig::setAuthCod

e() for setting Auth Code.

RemoteAccessConfig::setAccessT

oken() for setting Access Token.

RemoteAccessConfig::setRefreshT

oken() for setting Refresh Token.

RemoteAccessConfig::setUserID()

for setting User ID.

RemoteAccessConfig::getAuthCod

e() for getting Auth Code.

RemoteAccessConfig::

getUserID() for getting User ID.

RemoteAccessConfig::getAccessT

oken() for getting Access Token.

RemoteAccessConfig::getRefreshT

oken() for getting refresh token.

Access Token & Refresh Token

(AUTH_GRANT_TYPE_EXTE

NDED_TOKEN)

AppId , AppSecret, InstanceId, Email,

[AccessToken], [RefreshToken] & [UserID].

If application does not set “AccessToken”,

RefreshToken or “UserID” as part of initialization,

framework will call ISHPListener::

getAccessToken() callback for getting

“AccessToken”, ISHPListener::getRefreshToken()

callback for getting “RefreshToken” and

ISHPListener::getUserID() for “UserID” from

application.

Whenever current access token is expired,

framework retrieves new access token by using

refresh token.

2.4.10. Easy Setup, Registration and Remote Access

Smart Home devices shall be connected to the Smart Home Network (Cloud Server) for providing Smart Home

services. All Smart Home Devices needs to be registered with Cloud Server beforehand, EITHER for accessing /

monitoring / controlling (Controller devices) other SHP devices information OR for being accessible / to be

controlled (Controlled device) by other SHP devices.

All devices needs to connect to Home Access Point (‘Home AP’ – which is expected provide external connectivity)

firstly and then register with the Cloud Server. But generally most of Home appliances just have limited user

interface like display and/or user input method comparing to mobile phone and PC, so that it would be not easy to

type password for connection to the home network.

SHP Specification provides ‘Easy Setup’ procedure for Smart Home Appliances which has limited user interface to

connect to the Smart Home network with help of a mobile device like a smart phone.

‘Easy Setup’ process is required for those kind of devices which cannot connect to ‘Home AP’ on their own OR for

those devices which are not having provision (Display GUI) to key in ‘Home AP’ details by users. For example,

most of the Controlled devices (home appliances) which are not having display need ‘Easy Setup’ process. Since

the Controller device (smart phone or tablet) can connect to the ‘Home AP’ by itself, ‘Easy Setup’ process

procedure is not needed beforehand. Registration process of the Controller device with the Cloud Server is almost

same as the Controlled device registration except that the Controller device can perform registration process by

itself without help of other devices.

Devices which can connect to ‘Home AP’ by themselves (Controller devices) can also help devices which cannot

connect on their own (Controlled devices). ‘Easy Setup’ process does facilitate the same, in this process Controller

device helps Controlled devices provisioning and eventually their registration with Cloud Server.

‘Easy Setup’ process mainly comprises of three phases:

1. ‘Easy Setup’,

2. ‘Registration’, and

3. ‘SCS Login’

2.4.10.1. Easy Setup Phase

In ‘Easy Setup’ phase,

 Firstly, Controller (helper) device shall pair with the Controlled (device which needs external help for

registration) device, SHP Specification supports two types of pairing:

 Soft-AP connection mode, in which Controlled device acts as an AP and Controller device

connects to Controlled device

 Wi-Fi P2P connection mode, in which Controller device and the Controlled device make a

direct connection with each other

 Controller device shall discover Controlled device

 Once discovered, Controller device provisions Controlled device by sharing details of ‘Home AP’

 And in return, Controlled device sends its device information to Controller for registration with Smart

Home Server (SHS)

 Both Controller and Controlled device application receives onEasySetupModeCompleted() call back –

this marks completion of ‘Easy Setup’ phase

2.4.10.2. Registration Phase

In ‘Registration’ phase,

 Firstly, upon reception of onEasySetupModeCompleted() call back, both (Controller and Controlled)

devices shall teardown their connection in Soft-AP mode (application needs to implement

SHPUtils::disableSoftAPMode()) and connect back to the Home AP. Later, they are expected

to initiate ‘Registration’ phase by setting SHP-Framework mode to REGISTRATION_MODE

 Controller device shall discover Controlled device

 From Samsung Account server, Controller (helper) gets necessary credentials and sends (for example,

Authorization Code and E-mail ID) to Controlled device – this will initiate Account server registration

request on Controlled device

 Then Controlled device performs Account server registration and shares the response with Controller

 Upon the response, Controller performs Controlled device registration with Smart Home Server (SHS)

by using the device details which are already retrieved in ‘Easy Setup’ phase

 Upon successful registration, SHS server will return an ID (peerID) to the Controller

 Then, Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.)

required for Controlled device to perform login with Samsung Smart Connectivity Server (SCS) – this

will initiate SCS server registration request on Controlled device – this marks completion of

‘Registration’ phase

2.4.10.3. SCS Login Phase

In ‘SCS Login’ phase,

 Controlled device performs SCS server registration using collected details in above two phases.

Controlled device attempts SCS Login and update the same to Controller device, this marks

completion of Easy Setup process. Controlled device makes use of these details for further

initialization as well

2.4.10.4. Remote Access

In ‘Remote Access’,

 Upon successful SCS login, using ‘Remote Access’ feature Controller device can manage

(monitor/control) all registered Controlled devices through remote channel

Note: For complete details and usage of Remote Access feature, refer to Section 3.4.18

2.4.10.5. Easy Setup Notifications

As mentioned earlier during the Easy Setup process, SHP-Framework notifies each progress to the respective

application (assumed to be having a listener by implementing Sec:Shp::SHP::ISHPListener) at each phase. This

enables application developers to have their custom implementation (or actions to be done) based on the notification

received. For example, upon reception of EASY_SETUP_REQUIRED, application developers are expected to

initiate Easy Setup up process by enabling the device into Soft-AP mode and etc.

Note: Complete details about Easy Setup notifications are detailed in SHP-API documentation

Following are the possible notifications from SHP-Framework during Easy Setup process along with their

explanation:

Easy Setup Notification Description

DEVICE_TOKEN_REQUEST_TIMEOUT Represents Device Token Request Timeout

EASY_SETUP_REQUIRED Represents Easy setup is required.

DIFFERENT_COUNTRY_CODE Represents Different Country Code.

AUTH_CODE_EXPIRED Represents Authentication code is expired.

MISSING_MANDATORY_PARAMS Represents Missing Mandatory Parameters.

LOCAL_SERVER_ERROR Represents Local server ERROR.

NO_AUTHORIZATION_DETAILS Represents No Authorization details.

CONNECTION_ERROR Represents Connection ERROR.

REMOTE_SERVER_ERROR Represents Remote Server ERROR.

INVALID_REQUEST Represents Invalid Request.

CONNECTION_TIMEOUT Represents Connection Time Out.

REFRESH_TOKEN_EXPIRED Represents Refresh Token expired.

DEVICE_LOGIN_FAILED_TO_SCS Represents Device Login failed to SCS.

FAILED_TO_START_TIMER Represents Failed to start Timer.

FAILED_TO_REGISTER_DEVICE_TO_SHS Represents Failed to register device to SHS.

FAILED_TO_FETCH_INFORMATION_FROM_

SHS_CR

Represents Failed to fetch information from

SHS.

FAILED_TO_UPDATE_REFRESH_TOKEN Represents Failed to update refresh token.

ACCESS_TOKEN_EXPIRED Represents Access token expired.

FAILED_TO_GET_TOKEN_DETAILS Represents Failed to get Token details.

FAILED_TO_GET_AUTH_CODE_CR Represents Failed to get Authentication Code.

EASY_SETUP_TIME_OUT_CR Represents Easy setup Time Out.

DEVICE_NOT_REGISTERED Represents Device not registered.

WAITING_FOR_HELPING_DEVICE_TO_BE_D

ISCOVERED_CR

Represents Waiting for helping device to be

discovered.

AWAITING_WIFI_DETAILS_CD Represents Awaiting WIFI details.

SENDING_WIFI_DETAILS_CR Represents sending WIFI details.

WIFI_DETAILS_SENT_CR Represents WIFI details sent.

REQUESTING_CONTROLLER_UUID_CD Represents Requesting controller UUID.

SENDING_UUID_CR Represents Sending UUID.

AWAITING_DEVICE_DETAILS_CR Represents Awaiting device details.

SENDING_DEVICE_DETAILS_CD Represents Sending device details.

EASY_SETUP_COMPLETED Represents Easy setup completed.

REQUESTING_DEVICE_TOKEN_CR Represents Requesting device token.

REGISTRATION_INITIATED Represents Registration initiated.

GETTING_AUTH_CODE_FROM_SERVER_CR Represents Getting Authentication code from

server.

AWAITING_AUTHCODE_DETAILS_CD Represents Awaiting authentication details.

SENDING_AUTHCODE_DETAILS_CR Represents Sending authentication details.

GETTING_TOKEN_DETAILS_FROM_SERVER Represents Getting token details from server.

GETTING_DEVICE_LIST_FROM_SHS_CR Represents Getting device list from SHS.

GETTING_USER_INFO_FROM_SHS_CR Represents Getting User info from SHS.

GETTING_PEERID_LIST_FROM_SHS_CR Represents Getting peerID list from SHS.

DEVICE_REGISTERED_TO_SHS_CR Represents Device registered to SHS.

WAITING_FOR_PEERID_DETAILS_CD Represents Waiting for peer ID details.

SENDING_PEERID_DETAILS_CR Represents Sending peer ID details.

ATTEMPTING_REGISTRATION_WITH_SCS Represents Attempting registration with SCS.

DEVICE_LOGGED_INTO_SCS Represents Device logged into SCS.

ALREADY_REGISTERED_TO_SHS_CR Represents Already registered to SHS.

RETRYING_REGISTRATION_WITH_SCS Represents Retrying registration with SCS.

2.4.10.6. Steps for Easy setup and Registration of Controlled Device

The SHP Framework should be started only when Controlled device’s interface has proper IP Address. The

application developer should follow steps for Easy setup and Registration.

1. Stop SHP Framework by calling stop (true) method of SHP class in case of SHP Framework is already started.

As part of this method SHP-Framework stops all its Server Connectors and Remote Connectors.

2. Soft AP operation shall be started in the Controlled device whenever user pushes Soft AP enabling button.

3. Set SHP mode to Easy Setup Mode by calling Sec::Shp::SHP::setSHPMode() method of SHP class. The first

argument value should be “EASY_SETUP_MODE” and second argument value should be IP address of Interface.

SHPUtils::restartSHP(Sec::Shp::SHPModes mode) is the method in file <Project_Name>/SHPUtils.cpp

which performs internal stop [stop(true)] and takes Sec::Shp::SHPMode as parameters which will be passed as an

argument to Sec::Shp::SHP::setSHPMode() method. Same method can be used for setting Easy Setup and

registration routines. C++ application developers are expected to make use of this.

SHPUtils::enableSoftAPMode() is the method in file <Project_Name>/SHPUtils.cpp which needs to be

implemented for enabling Soft AP during Step 2

4. Once receive “EASY_SETUP_COMPLETED” easySetupNotification through registered SHP listener

easySetupNotification() method, stop SHP Framework by calling stop (true) method of SHP class.

SHPUtils::processNotification() is the method in file <Project_Name>/SHPUtils.cpp which handles all

required easy setup notifications from SHP Framework. This method takes necessary action based on notification

received, for example this method initiates registration process after receiving EASY_SETUP_COMPLETED

notification from SHP Framework in Step 4

5. De-activate Soft AP operation and connect to Home AP using AP access information received from controlled

Device.

SHPUtils::disableSoftAPMode() is the method in file <Project_Name>/SHPUtils.cpp which needs to be

implemented for disabling Soft AP during Step 5

6. Set SHP mode to Registration Mode by calling Sec::Shp::SHP::setSHPMode() method of SHP class. The first

argument value should be “REGISTRATION_MODE” and second argument value should be IP address of

Interface. As part of registration procedure, SHP Framework will invoke “getMyDeviceToken()” method of

registered SHP listener for getting Device Token, so application developer should implement “getMyDeviceToken()”

method.

2.4.10.6.1. Function call constraints

It is strictly prohibited for application developers to call any framework API (especially start() and stop()

methods) from framework callbacks to the application. They are requested to make use of their Application

thread to perform any sort action OR write any implementation (GUI logic) which is time consuming.

Note: Doing some action on framework callback thread make SHP-Framework to be blocked till the finish of

custom implementation.

For example, as aforementioned, during Easy Setup process and as part of few notifications, application is

expected to restart SHP-Framework. However, application should not restart SHP framework from the callback

thread (notification receiver).

One way of handling this by application developers is by setting some variable or state or by notifying application

threads about the framework callback and relieve call back thread. Later, have implementation which does some

action based on the variable/state/notification received on application thread only.

SHP-SDK handles this by making use of Conditional wait logic.

All generated C++ Controlled applications (generated using SHP-SDK-Plugin) will have a generated class

‘ConditionUtility’ which implements functions related to Conditional wait logic. This is kind of conditional variable

wrapper class. ‘SHPUtility’ class of the generated application has ‘ConditionUtility’ as a member, which means

main thread will wait for the condition.

For example, upon reception of any Easy Setup notification (say, EASY_SETUP_COMPLETED, which expects

application to restart framework) from framework it just notifies (condition) the application and relieves framework

callback thread. And application will handle (restarts SHP-Framework by calling sp_shp->stop(true)) the received

notification in its own thread.

class SHPUtils

{

public:

.

.

static ConditionUtility *sp_condition; /**< Represents object of ConditionUtility class.
*/

};

void
SHPListener::easySetupNotification(int eNotification)
{
 std::cout << "SHPListener::easySetupNotification(): => " << "Received Easy Set-up
Notification from Framework " << eNotification << std::endl;

 if (m_shpNotification != eNotification) {
 std::cout << "SHPListener::easySetupNotification(): => " << m_shpNotification <<
" : " << eNotification << std::endl;
 m_shpNotification = eNotification;
 std::cout << "SHPListener::easySetupNotification() => " << "Notifying Condition"
<< std::endl;
 SHPUtils::sp_condition->notify();
 }

 /**
 * TODO: Application developers are expected to implement logic to handle
notifications from SHP-Framework and take necessary action.
 * @n
 * @note By default code generator doesn't send anything
 */
}

bool
SHPUtils::processNotification()
{
#ifdef REMOTE_ACCESS_SUPPORT
 std::cout << "SHPUtils::processNotification() => " << "Called with Notification " <<
sp_shpListener->m_shpNotification << std::endl;

 /**
 * TODO: In this method, we are handling only easy setup process notification, if
application developer wants to
 * cover other notification, then he has to implement those.
 */
 if ((sp_shpListener->m_shpNotification == (int)Sec::Shp::NO_AUTHORIZATION_DETAILS) ||
 (sp_shpListener->m_shpNotification == (int)Sec::Shp::EASY_SETUP_REQUIRED))
 {
 std::cout << "SHPUtils::processNotification() => " << "No Authorization Details,
hence Device needs Easy Setup process..."

 << "Do you want to start Easy Setup Process (Y/N)? : " << std::endl;
.

.

 restartSHP(Sec::Shp::EASY_SETUP_MODE);
 }
 else if (sp_shpListener->m_shpNotification == (int)Sec::Shp::EASY_SETUP_COMPLETED)
 {
 if (easySetupRequired == true) {
.

.

 restartSHP(Sec::Shp::EASY_SETUP_MODE);
 }

#endif
 return true;
}

2.5. Build and Run SHP Project

Before Building the project it needs to be ensured that all necessary library files are copied into the Project

workspace

• SHP Eclipse plug-in does not provide any build & run tools. It invokes the build tools which are already

installed in Eclipse

• After finishing the development build the project using Build menu command (Project Build Project)

2.5.1. Execute the application

Unless user modify the default created functions processNotification() and performEasySetupProcess() in the

SHPUtils.cpp, in case the application requires an Easy Setup, application must be executed on the shell to get the

user input (Yes or No). Please set the LD_LIBRARY_PATH environment variable to corresponding libraries folder

before executing the application.

For example, setting LD_LIBRARY_PATH environment variable in Linux 32 Bit Platform

$export LD_LIBRARY_PATH=<SHP_SDK_PATH>/SHP_Framework/Linux_32_Bit/sdk/cpp/lib

2.5.2. Fast Compilation in Eclipse

For fast compilation – ‘build parallel compilation’ option should be enabled in the eclipse build configurations.

2.6. Sample Application

The provided sample application show developers shows how to use The Smart Home SDK. For running the sample

application, developers are expected to ensure existence/availability of the following on their development

environment:

 Eclipse installation

 SHP-Plugin installation

o Availability of SHP-libraries

 Required Tools installation

o Compiler – G++/GCC

o SQLite3 installation

 Installation guides are in Chapter 1.

2.6.1. Features

Sample application has following additional features.

 - How to implement a state machine with database. Please see the "DeviceManager.cpp" and files under the

"/ShpGen/Database" directory to find out ways to manipulate database.

 - How to handle REST calls. Additional code is implemented to the following files.

 "/ShpGen/Server/DeviceResourceHandler.cpp"

 "/ShpGen/Server/DevicesResourceHandler.cpp"

 "/ShpGen/Server/InformationResourceHandler.cpp"

 "/ShpGen/Server/OperationResourceHandler.cpp"

 "/ShpGen/Server/TemperatureResourceHandler.cpp"

 "/ShpGen/Server/TemperaturesResourceHandler.cpp"

 "/ShpGen/Server/VersionResourceHandler.cpp"

 "/ShpGen/Server/VersionsResourceHandler.cpp"

2.6.2. Build and run sample application

After importing the sample application project into the eclipse, it can be executed. Refer to ‘Import existing SHP

Projects into the Eclipse workspace’ and ‘Build and Run SHP Project’ chapters.

2.6.3. Testing sample application with Simulator

SHP Eclipse plug-in provides simulators which simulates the behavior of real SHP devices. Developer can use these

simulators to test their application. Controlled application developers can use Controller Simulator for testing.

 Use “SHP Simulator perspective” to manage simulators. Please refer to section – ‘Launching SHP Test

Tool’ and launch “SHP Simulator perspective”

 The provided sample application is ‘Controlled’ application, so launch ‘Controller’ Simulator, Please refer

to section – ‘Controller Test Tool’ and select ‘Controller’ Simulator, for example:

NOTE 1: Assuming that the provided sample application is ‘Controlled-Generic Sensor’ application and

rest of the screen shots describes further steps involved in testing sample SHP ‘Controlled’ application using

‘Controller’ simulators.

NOTE 2: It is assumed that the sample application is launched and running

 Upon launching ‘Controller’ simulator successfully, it shall discover and show developed ‘Controlled’

application in the following way:

NOTE: Developers can verify whether IP Address and port of the developed application (device) are shown

correctly on ‘Controller’ simulator or not

 Supported resources by the discovered device can be viewed on ‘Controller’ simulator by expanding

(clicking) on the device tree, it shall show resources of discovered device as follows:

NOTE: Developers can verify whether the displayed resources are indeed supported by the developed application

(device) on ‘Controller’ simulator are correct or not

 Access/control developed application (device) from ‘Controller’ simulator:

o Select any one of the supported resources and try to get retrieve details, for example:

1. Select ‘Capability’ resource

2. Select GET request on ‘HTTP Method’

3. Click on ‘Send’ button

NOTE: Please refer to section – ‘Controller Test Tool’ for sequence of steps to be followed for ‘Controlling’

resources (Request method as: PUT/POST/DELETE)

 Response from developed application (device) shall be 200, for example:

 Actual response (payload) for the request can be viewed on ‘Simulator SHP Verification’ panel and request

and response details can also be viewed separately on ‘Simulator TimeStamp’ panel, for example:

This finishes testing (discovery, monitor, and access) of sample ‘Controlled’ application (Generic Sensor) using

‘Controller’ simulators on SHP-SDK Simulator perspective.

3. Test Tool Usage
SHP Eclipse plug-in provides simulators which simulates the behavior of real SHP devices. Developer can use these

simulators to test their application. Controller application developer can use Controlled Simulators for testing. Also

Controlled application developers can use Controller Simulator for testing. Use “SHP Simulator perspective” to

manage simulators.

3.1. Launching SHP Test Tool

 Select Window Open Perspective Other

 Select “SHP Simulator”

3.2. Controller Test Tool

 Click on ‘Add New Device’ button of ‘Simulator View’ to select and activate a SHP Simulator

 Select a Simulator to activate and press ‘OK’ button

* When the Mozilla path error below occurs in Linux, install ‘webkitgtk-1.0-0’.

 : sudo apt-get install libwebkitgtk-1.0-0

 SHP Controller Simulator can detect SHP Controlled devices.

 Discovered devices will be shown in a tree view

 To Send a request,

1. Select a device from device list

2. Select a resource and method to execute

3. Set Request Payload, if request needs if any

4. Press “Send” button to send the request

5. Response payload will be displayed.

3.3. Controlled Test Tool

SHP Controlled Simulator simulates the behavior of a SHP controlled device. Controlled Simulator provides UI

to configure current values of a resource. Simulator uses these values as response to requests received.

 To configure a resource

1. Select a resource

2. Fill the required details

3. Click on Save to save details

3.4. Easy Setup, registration, and Remote Access Test Tool

SHP Simulators (both Controlled and Controller) support simulation of complete Easy Setup routine along with

Remote Access feature. Applications can make use of these simulators for verifying their Easy Setup or

Remote Access specific functionality (either for Controller or Controlled).

Easy Setup process mainly comprises of three phases, ‘Easy Setup’, ‘Registration’, and ‘SCS Login’.

In ‘Easy Setup’ phase,

 Controller (helper) device discovers Controlled device (device which needs external help for

registration)

 Controller device provisions Controlled device by sharing details of ‘Home AP’.

 And in return, Controlled device sends its device information to Controller for registration with Smart

Home Server (SHS)

In ‘Registration’ phase,

 Controller (helper) sends necessary credentials (for example, Authorization Code and E-mail ID) to

Controlled device

 Then Controller performs Controlled device registration with Smart Home Server (SHS) by using the

device details which are already retrieved in ‘Easy Setup’ phase

 Upon successful registration, SHS server will return an ID (peerID) to the Controller.

 Then, Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.)

required for Controlled device to perform login with Samsung Smart Connectivity Server (SCS)

In ‘SCS Login’ phase,

 Using collected details in above two phases Controlled device attempts SCS Login and update the

same to Controller device, this marks completion of Easy Setup process. Controlled device makes use

of these details for further initialization as well

In ‘Remote Access’,

 Upon successful SCS login, using ‘Remote Access’ feature Controller device can manage

(monitor/control) all registered Controlled devices through remote channel.

Note:

1. Currently, Remote Access feature cannot be tested from the same instance of Eclipse; they are

expected to launch Eclipse application for each simulated device, i.e., Controller on one Eclipse

application and Controlled device on another instance of Eclipse application.

2. Before launch the SHP Simulator with Remote Access feature enabled, 2.4.8. Remote Access

Configuration Files must be set appropriately in advance.

Following are the sequence of steps involved in simulation of Easy Setup process, in which a Controller

simulator (which has already been registered with the cloud) device helps in Controlled simulator device

provisioning (Home AP details) and eventually empower Controlled devices to register themselves to the cloud.

Note: Please refer to SHP-Architecture artifact for complete details on Easy Setup process

3.4.2. Step 1 – Enable Remote Access for Controller Simulator

As shown in the below figure, enable Remote Access for Controller simulator by selecting Controller for ‘Enable

Remote Access for simulator’ option on Windows Preferences page.

Note 1: It is advised to rename current Controller eclipse configuration and save, so that the same configuration can

be re-used for further launches. If not, further launches of Controller Simulator do get different UUID

Note 2: As mentioned in the below figure, one can enable Remote Access for Controller only if there is no active

instance of Controller with Remote Access had already been enabled. At a time only one instance of device type

simulator can have Remote Access being enabled.

3.4.3. Step 2 – Launch/activate Controller Simulator

As shown in the below figure, launch/activate Controller simulator by clicking ‘Add New Device’ button on

‘Simulator View’ and by selecting Controller on ‘Select Simulator’ window.

Note: Refer to Section 3.1 to launch ‘SHP Simulator’

3.4.4. Step 3 – Provide User Credentials

As shown in the below figure, launch/activation of Controller simulator probes for user credentials (Samsung

account), users are expected to key in E-mail address and password to be used for registering the device.

3.4.5. Step 4 – Ensure that Controller simulator is registered successfully

As shown in the below figure, ensure that Controller simulator got registered successfully, users shall verify that

‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar. Also ensure that ‘Easy Setup’ button has been

enabled.

3.4.6. Step 5 – Enable Remote Access for Controlled Simulator

As shown in the below figure, now enable Remote Access for any Controlled simulator by selecting any one device

type other than Controller for ‘Enable Remote Access for simulator’ option on Windows Preferences page.

Note 1: It is advised to rename current Controlled eclipse configuration and save, so that the same configuration can

be re-used for further launches. If not, further launches of Controlled Simulator do get different UUID

Note 2: As mentioned in the below figure, one can enable Remote Access for Controlled (any device type) only if

there is no active instance of same device type simulator with Remote Access had already been enabled. At a time

only one instance of device type simulator can have Remote Access being enabled.

Note 3: For further explanation of Easy Setup, device type ‘CoffeePot’ has been selected as Controlled Simulator.

This means using Easy Setup routine, Controller device simulator which had been successfully registered in Step 4

will help provisioning of Controlled Simulator (‘CoffeePot’).

3.4.7. Step 6 – Launch/activate Controlled (‘CoffeePot’) Simulator
As shown in the below figure, launch/activate Controlled simulator (‘CoffeePot’) by clicking ‘Add New Device’

button on ‘Simulator View’ and by selecting ‘CoffeePot’ on ‘Select Simulator’ window.

3.4.8. Step 7 – Ensure that Controlled (‘CoffeePot’) simulator launched
successfully but it is not registered

As shown in the below figure, ensure that Controlled (‘CoffeePot’) simulator has been launched successfully and it

is not registered, users shall verify that ‘NO_AUTHORIZATION_DETAILS’ has been shown on status bar.

Controller will help Controlled device getting necessary authorization details. And also ensure that ‘Easy Setup’

button has been enabled.

Note 1: If ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar then users are expected repeat Steps 5

and 6 for any other device type.

3.4.9. Step 8 – Initiate Easy Setup process on Controlled (‘CoffeePot’) device
simulator

For simulation of ‘Easy Setup’ process (for details refer to Section 3.4) all device simulators (Controller and

Controlled) are provided with two buttons ‘Easy Setup’ and ‘Registration’. ‘Easy Setup’ button will initiate ‘Easy

Setup’ phase and ‘Registration’ button will initiate ‘Registration’ phase of ‘Easy Setup’ process.

As shown in the below figure, first initiate ‘Easy Setup’ phase on Controlled (‘CoffeePot’) device simulator by

clicking on ‘Easy Setup’ button present. Initiation of ‘Easy Setup’ phase can be ensured by checking status bar for:

If easy setup is not initiated at Controller side then look for ‘Waiting to be discovered’.

If easy setup is initiated at Controller side (Step 9) after initiated at Controllable side, then look for

‘AWAITING_WIFI_DETAILS_CD’

Note 1: Sequence/order of initiation is a must, initiation on Controlled device shall always be first and then

only on Controller

Note 2: ‘Easy Setup’ phase comprises of different stages (for details refer to Section 3.4), initially Controlled

device does wait for Home AP (Wi-Fi) details from Controller device

3.4.10. Step 9 – Initiate Easy Setup process on Controller device simulator

‘SHP Simulator’ provides two ways of initiating ‘Easy Setup’ on Controller device. Users can either opt for Easy

Setup through Controlled device discovery OR directly (without discovery).

After clicking ‘Easy Setup’ button on Controlled device, users are expected (sequence/order is a must, initiation

on Controlled device shall always be first and then only on Controller) to click same button on Controller (helper)

device as well. As shown in below figure, users need to choose whether Easy Setup shall be initiated through

Controlled device discovery OR directly (by selecting Yes – through discovery / No – for direct).

As shown in below figure, selection of ‘Yes’ expects users to specify the UUID of non-registered Controlled device

which needs to be discovered by the Controller device:

And as shown in below figure, selection of ‘No’ expects users to specify details like IP-Address, Port, and Protocol

(http/https) of the Controlled device which needs to be reached directly by Controller device:

Based on above selection Controller device provisions Controlled device, if the selected option is through discovery

then Controller device waits for the Controlled device to be discovered and then sends Wi-Fi details. Otherwise, it

will directly sends without waiting for discovery.

Note for Application Development: Devices which can support device discovery (SSDP) during Easy Setup

phase can opt for ‘Easy Setup through discovery’. Devices’ which cannot support any sort device discovery needs

to opt for ‘Direct Easy Setup’ option only.

3.4.11. Step 10 – Ensure that Easy Setup phase is completed on Controller
device Simulator

As shown in the below figure, ensure that ‘Easy Setup’ phase has been completed successfully on Controller device

simulator, users shall verify that ‘EASY_SETUP_COMPLTED’ has been shown on status bar. And also ensure

that ‘Registration’ button has been enabled.

Note: ‘EASY_SETUP_COMPLTED’ will not be displayed on status bar if what so ever reason the Controlled

device is not discovered or not able to reached by Controller device. Refer to Section 3.4.19 for error details and

respective display on status bar

3.4.12. Step 11 – Ensure that Easy Setup phase is completed on Controlled
(‘CoffeePot’) device Simulator

As shown in the below figure, ensure that ‘Easy Setup’ phase has been completed successfully on Controlled

(‘CoffeePot’) device simulator, users shall verify that ‘EASY_SETUP_COMPLTED’ has been shown on status bar.

And also ensure that ‘Registration’ button has been enabled.

Note 1: ‘EASY_SETUP_COMPLTED’ will not be displayed on status bar if what so ever reason the Controlled

device is not discovered or not able to reached by Controller device. Refer to Section 3.4.20 for error details and

respective display on status bar

Note 2: After completion of ‘Easy Setup’ phase, ‘Home AP – WiFi’ details are available at Controlled device.

Using these details Controlled device can connect to Home AP

3.4.12.1. Steps for initiating and/or using ‘Easy Setup’ phase in SHP-
Application Development:

 Before setting SHP-Framework to ‘Easy Setup’ mode

(Sec::Shp::SHP::setSHPMode(EASY_SETUP_MODE)), application has to ensure that Soft-AP

(application needs to implement SHPUtils::enableSoftAPMode()) mode has been started on

Controlled device and Controller should connect to the same Soft-AP

 In the Easy Setup mode, whenever Controller discovers Controlled device which is in Easy Setup mode

through SSDP Device Discovery, it will send Home AP details by doing a PUT on

/deivces/0/configuration/networks/0/wifi

 Then, Controlled device sends its device information by doing POST on /devices/ of Controller device

 Once both the devices exchange required information, then both will send onEasySetupModeCompleted()

callback to the application, which will mark end of ‘Easy Setup’ phase

 Once both Controller and Controlled device application receives onEasySetupModeCompleted() call back,

both devices shall teardown their connection in Soft-AP mode (application needs to implement

SHPUtils::disableSoftAPMode()) and connect back to the Home AP. Later, they are expected to

initiate ‘Registration’ phase by setting SHP-Framework mode to REGISTRATION_MODE

3.4.13. Step 12 – Initiate Registration phase on Controlled (‘CoffeePot’) device
simulator

As shown in the figure below, upon successful ‘Easy Setup’ phase, initiate ‘Registration’ phase on Controlled

(‘CoffeePot’) device simulator by clicking on ‘Registration’ button present. Initiation of ‘Registration’ phase can

be ensured by checking status bar for ‘REGISTRATION_INITIATED’

Note 1: Sequence/order of initiation is a must, initiation on Controlled device shall always be first and then

only on Controller

Note 2: ‘Registration’ phase comprises of different stages (for details refer to Section 3.4), initially Controlled

device does wait for required credentials like Authorization Code and E-mail ID from Controller device

3.4.14. Step 13 – Initiate Registration phase on Controller device simulator

As shown in the below figure, upon successful ‘Easy Setup’ phase initiate ‘Registration’ phase on Controller

device simulator (sequence/order is a must, initiation on Controlled device shall always be first and then only

on Controller) by clicking on ‘Registration’ button present. Initiation of ‘Registration’ phase can be ensured by

checking status bar for ‘REGISTRATION_INITIATED’ and/or

‘WAITING_FOR_HELPING_DEVICE_TO_BE_DISCOVERED_CR’ and/or

‘GETTING_AUTH_CODE_FROM_SERVER_CR’.

Note 1: ‘Registration’ phase comprises of different stages (for details refer to Section 3.4), initially Controller

device wait for Controlled device to be discovered. And respective status on status bar would be

‘WAITING_FOR_HELPING_DEVICE_TO_BE_DISCOVERED_CR’,

Error Case 1: For what so ever reason, if Controller device fail to discover Controlled device then Controller

device will continue to be in above state and eventually times out, refer to Section 3.4.20 for error details and

respective display on status bar

Note 2: Once Controlled device is discovered, Controller device gets required credentials for Controlled device like

Authorization Code and from Samsung Account Server using user credentials provided by user in Step and sends

them to Controlled device

Error Case 2: For what so ever reason, if Controller device fail to get required credentials for Controlled device

then Controller device will continue to be in one of the states (DIFFERENT_COUNTRY_CODE,

AUTH_CODE_EXPIRED,MISSING_MANDATORY_PARAMS,LOCAL_SERVER_ERROR,

NO_AUTHORIZATION_DETAILS,CONNECTION_ERROR,REMOTE_SERVER_ERROR) and eventually

times out, refer to Section 3.4.20 for error details and respective display on status bar. Refer to API documentation

for complete details on possible error cases during registration phase

Note 3: Please refer to SHP-Architecture artifact for completed details on ‘Registration’ phase, and please refer to

SHP-API Documentation for complete details on all possible Easy Setup notifications through ‘Registration’ phase

3.4.15. Step 14 – Ensure that Registration phase is completed on Controller
device Simulator

As shown in the below figure, ensure that ‘Registration’ phase has been completed successfully on Controller

device simulator, users shall verify that ‘DEVICE_REGISTERED_TO_SHS_CR’ has been shown on status bar.

Note 1: Controller device makes use of device details which are retrieved in ‘Easy Setup’ phase and attempts

registration with SHS Server

Note 2: Upon successful registration, SHS server will return an ID (peerID) to the Controller device, and then the

Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.) required for Controlled

device to perform login with SCS Server

Note 3: ‘DEVICE_REGISTERED_TO_SHS_CR’ will not be displayed on status bar if what so ever reason the

Controller device is not able to register Controlled device to SHS Server. Refer to Section 3.4.19 for error details

and respective display on status bar

3.4.16. Step 15 – Ensure that Registration phase is completed on Controlled
(‘CoffeePot’) device Simulator

As shown in the below figure, ensure that the ‘Registration’ phase has been completed successfully on Controlled

(‘CoffeePot’) device simulator, users shall verify that ‘ATTEMPTING_REGISTRATION_WITH_SCS’ has been

shown on status bar.

Note 1: Controlled device makes use of credentials like Authorization Code and E-mail ID from Controller device

and attempts retrieving required access (access token) from Samsung Account Server

Note 2: Upon successful retrieval of access from Account Server, Controlled device to perform login with SCS

Server using retrieved details (peerID, peerGroupID, countryCode and etc.) from Controller device

Note 3: ‘DEVICE_REGISTERED_TO_SHS_CR’ will not be displayed on status bar if what so ever reason the

Controller device is not able to register Controlled device to SHS Server. Refer to Section 3.4.20 for error details

and respective display on status bar

3.4.17. Step 16 – Ensure that Controlled (‘CoffeePot’) device Simulator has
been successfully logged into SCS Server

As shown in the below figure, ensure that Controlled (‘CoffeePot’) device has been successfully logged onto SCS

Server, users shall verify that ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar.

Note: ‘DEVICE_LOGGED_INTO_SCS’ will not be displayed on status bar if what so ever reason the Controlled

device is not able to log onto SCS Server. Refer to Section 3.4.19 for error details and respective display on status

bar

3.4.18. Step 17 – Ensure that Controller device Simulator has been successfully
logged into SCS Server after helping Controlled device for provisioning

As shown in the below figure, ensure that Controller device has been successfully logged onto SCS Server, users

shall verify that ‘DEVICE_LOGGED_INTO_SCS’ has been shown on status bar.

Note 1: ‘DEVICE_LOGGED_INTO_SCS’ will not be displayed on status bar if what so ever reason the

Controller device is not able to log onto SCS Server. Refer to Section 3.4.19 for error details and respective display

on status bar

Note 2: Upon successful SCS login, Controller device shall see Controlled device amongst the list of the devices to

be controlled

3.4.18.1. Steps for initiating and/or using ‘Registration’ phase in SHP-
Application Development:

 Before setting SHP-Framework on both the devices (Controlled and Controller) to ‘Registration’ mode

(Sec::Shp::SHP::setSHPMode(REGISTRATION_MODE)), application has to ensure that Soft-AP

(application needs to implement SHPUtils::disableSoftAPMode()) mode has been tear down and

both are connected to Home AP (application are expected to implement SHPUtils::
connectToHomeAccessPoint())

 In the Registration mode, Controller get Authorization Code (authCode) for Controlled device from

Account Server

 Upon successful retrieval of authCode, it will send authCode, and accountID to Controlled device by doing

a PUT on /deivces/0/configuration/remote

 Controlled device attempts getting Access Token (accessToken) from Account Server using received

authCode, and accountID from Controller device. Controlled device also informs status (success/failure)

of the accessToken attempt as a response to PUT request on /deivces/0/configuration/remote

 Upon successful PUT response, Controller device attempts registration on behalf of Controlled device with

SHS Server by making use of Controlled device details which are retrieved during Easy Setup mode. For

this, Controller device will do a POST on /shs/devices/ to SHS Server

 Upon successful registration, SHS server will return an ID (peerID) to the Controller device, and then the

Controller device sends all necessary details (peerID, peerGroupID, countryCode and etc.) required for

Controlled device to perform login with SCS Server by doing a PUT on /deivces/0/configuration/remote

 Upon successful reception of remote information, Controlled device (application is expected to make

permanent store of this information) responds to the PUT request, this will mark completion of

‘Registration’ phase

 Upon successful finish of ‘Registration’ phase, both Controller and Controlled device automatically set

themselves normal mode and attempt SCS Login / registration with all the required details

 Upon successful login to SCS Server will mark completion of Easy Setup process

3.4.19. Monitor / Control / Access Remotely – Remote Access Feature (sending
a GET request through remote channel – SCS)

Remote Access feature of SHP allows Controller devices accessing / monitoring / control any Controlled device

remotely through SCS channel.

Upon successful SCS Login, Controller device shall see Controlled device (registered) amongst the list of the

devices to be controlled. And users shall be able to monitor / control / access these devices remotely by performing

respective operation from Controller GUI. For example, select a Controlled device and initiate a GET request.

Following figure displays the GET response from the Controlled (‘CoffePot’) device which is been registered above.

3.4.20. Easy Setup Timer Timeout

SHP Framework initiates a timer on both the devices (Controller and Controlled) upon initiation of ‘Easy Setup’

phase (Step 8 or Step 9). Default value of this timer is 300 seconds, and upon expiry of this timer SHP Framework

will forcefully set the mode to NORMAL_MODE. Any error scenario during Easy Setup process (Easy Setup or

Registration or SCL Login) will lead to expiry of the timer. And the same will be notified to the application as

‘EASY_SETUP_TIME_OUT_CR’, same has been displayed in the following figure:

3.5. Device Token

SHP mandates all Controller devices to be authorized by Controlled devices which it wants to

access/monitor/control. SHP does D2D (Device to Device) authentication and authorization in different phases. For,

SHP provides authorization by making use of the concept of issuing tokens to devices. All Smart Home Controller

(Smart Phone/Tablet) devices are expected to get authorized by all Smart Home appliances (Controlled devices) by

getting respective device tokens.

As per SHPs mandate all Controlled devices are expected to send error response (WWW-Authenticate: Bearer

error=”invalid_token” header) for any request from any Controller device which is not having proper authorization

(correct device token). Controller device attempts getting authorization (device token) from each Controlled device

right after finishing its D2D authentication.

SHP allows Controller devices to be authorized in two different ways:

1. During ‘Registration’ phase of Easy Setup process, and another way

2. By sending device token request along with their UUIDs upon getting error response

3.5.1. Device Token issuance during ‘Registration’ phase of Easy Setup

Following are the steps involved in getting device token from Controlled device during Easy Setup process:

 Firstly, during ‘Easy Setup’ phase, after getting Home AP details from Controller device (Step 6) of

Section 2.3.12.1 Controlled device requests device details (GET /devices) of Controller device and stores

UUID of the Controller device

 Then during ‘Registration’ phase, as a step next to D2D authentication, Controller device requests device

token to the Controlled device (GET /devicetoken/?UUID=<UUID of controller>)

 Then the Controlled device validates the Controller device using UUID acquired during ‘Easy Setup’

phase

 And upon successful of the UUID, Controlled device issues its device token as a response to the Controller

device.

Following is the excerpt from Section 7.2 of SHP-Architecture artifact which is the detailed procedure for Device

Token issuance by Controlled device:

Note 1: During ‘Registration’ phase, user consent is not required

Note 2: The Device token received from the Controlled device shall be included in all the request messages for

validation by the Controlled device whether the Controller device is authorized or not. Controlled device responds

to Controller device only if the device token in the request message is same with the device token which the

Controlled device issued. Otherwise, Controlled device sends an error response – “401 Unauthorized error” with

WWW-Authenticate: Bearer error=”invalid_token” header

Step 1: The Controller device requests device token to the Controlled device including the UUID of the

Controller device.

Note: In order to issue the device token by the Controlled device, user consent (e.g., button pushing of the

Controlled device or remote controller, etc.) is needed. If user consent is preceded in step 4 of Figure 4-4,

additional user consent can be omitted within expiration timer after pushing the button. Expiration timer can be

configured by the manufacturer of the Controlled device.

Step 2: The Controlled device compares the UUID from ‘Device Token Request’ message to the UUID acquired

from the Controller device during Easy setup procedure specified in section 4.2.2. If both UUIDs are same, the

Controller device is validated successfully

Step 3: If validation is done successfully, the Controlled device sends device token to the Controller device.

Below is an example message of Local token requested response message

3.5.2. Reissuance of Device Token upon ‘401 Unauthorized error’ – only for TV
(only local)

The Device token received from the Controlled device shall be included in all the request messages for validation by

the Controlled device whether the Controller device is authorized or not. Controlled device responds to Controller

device only if the device token in the request message is same with the device token which the Controlled device

issued. Otherwise, Controlled device sends an error response: WWW-Authenticate: Bearer error=”invalid_token”

Upon reception of “401 Unauthorized error” from Controlled device, SHP allows another way of acquiring device

token to Controller device from Controlled device, which is called getting authorized through reissuance of device

token.

Note: However, as on today, this process is allowed only for TV (only local)

Reissuance of device token process is as follows:

 Step 1: Firstly, after getting error response, Controller device requests device token to the Controlled

device (POST /devicetoken/request),

 Note: In this way of device token issuance, no UUID of the Controller device will be sent as part of

request to the Controlled device and starts token wait timer

 Step 2: Upon reception of the device token request, Controlled device acknowledges it and straight away

starts token wait timer and waits for user consent

 Note 1: In order to issue the device token by the Controlled device, user consent (e.g., button pushing

of the Controlled device or remote controller, etc.) is needed.

 Note 2: Expiration timer can be configured by the manufacturer of the Controlled device

 Step 3: If user consent preceding timer expiry and is affirmative then the Controlled device sends device

token to the Controller device

 Step 4: If user consent is not preceding timer expiration then the Controlled device sends error response to

the Controller device

3.5.3. Developer perspective of Device Token

Following is list of few of the functions which are involved in SHP-Application development related Device Token

feature of SHP:

 Sec::Shp::Device::initiateTokenRequestUsingUUID(const char *deviceUUID, bool
fromSimulator), is the function which can be used by Controller application to initiate token request

upon reception of error response from any device which it is interested in monitoring or controlling

o Developer Note: Once Controller sends the device token request, then Controller application has

to wait till either valid token received or request timed out.

 Upon successful reception of device token, Controller application will get a callback

(SHPListener::updateUUIDAndTokenMap()) from the framework

 Upon failure in getting device token, Controller application will get

"DEVICE_TOKEN_REQUEST_TIMEOUT" notification from the framework

 SHPListener::tokenRequestNotification(std::string uuid), is the function which will be

an application call back by SHP-Framework upon reception of device token request from Controller along

with Controllers UUID. Application is expected either to Grant or to revoke permission for the request:

o ::MySHPDevice::getInstance()->setTokenGrantStatus(bool true_false) is the

function which needs to called by the application based on users consent

 setTokenGrantStatus(true) allows Controlled device to stop its token wait timer

and send its device token to the caller as a response

 setTokenGrantStatus(false) forces Controlled device to stop its token wait timer

and send error response to the caller

 SHPListener::getMyDeviceToken(), is the method which will be an application call back by SHP-

Framework to know and store Controlled devices’ device token

o Note: This function is applicable only for Controlled device application

 std::string SHPListener::getUUIDAndTokenMap(), is another method which will be an

application call back by SHP-Framework, which will be called by Controller framework during its

initialization.

o Application developers are expected to implement this function to retrieve and return list of device

(Controlleds) token and their mapped UUIDs as a string back to framework

 Similarly, void SHPListener::updateUUIDAndTokenMap(uuid, deviceToken), is the call back

from Controllers SHP-framework to the application upon reception of any Controlled device token

o Application developers are expected to implement this function to store passed device token

mapped to UUID to a permanent storage, which needs to be retrieved later

o Note: Without this implementation, Controller application needs to go through complete process

mentioned in Section 3.5.1 or 3.5.2 to get device token of Controlled device

Note: Please refer to SHP-API documentation for complete list of APIs related Device Token feature of SHP

3.5.4. Device Token Test Tool

SHP-Simulator supports simulation of both the device token issuance procedures mentioned in Section 3.5.1 and

3.5.2. Following is the screen shot which describes SHP-Simulation for procedure mentioned in Section 3.5.2.

‘Controller’ simulation on SHP-SDK supports reissuance of Device Token upon ‘401 Unauthorized error’, by

providing an option to initiate token request. Users can initiate token request for a specific ‘Controlled’ device is by

right clicking on that device under discovered list and by selecting ‘Initiate Token Request’ option.

Note: In this mode, SHP-Simulator get users consent in form of a request popup, either to grant or revoke.

