
Technical Report

Formal Security Analysis of the Transmitter
Configuration Discovery of the OpenID Shared

Signals Framework
Final Report on WP 4.1 (a)

Pedram Hosseyni Ralf Küsters Tim Würtele
{pedram.hosseyni, ralf.kuesters, tim.wuertele}@sec.uni-stuttgart.de

Institute of Information Security – University of Stuttgart, Germany

April 9, 2024

We here report on our results for Work Package 4.1 (a), i.e., the creation of a formal
model of the SSF Configuration Discovery specification, as well as the identification and
formalization of relevant security properties and necessary assumptions.

1. Introduction

Security Event Tokens (SETs) as defined in RFC 8417 [RFC8417] are a JWT-based [RFC7519]
data structure designed for transmitting information on security- and identity-related events, e.g.,
regarding resource management, token revocation, or changes related to user accounts. However,
RFC 8417 does not define concrete events normatively and leaves concrete events open for SET
profiles, which “SHOULD define syntax, semantics, subject identification, and validation” (see
[RFC8417, Section 3]).

The OpenID Shared Signals Framework (SSF) [10] is a SET profile and specifies subject-related
claims. In addition, it defines a configuration discovery mechanism for obtaining metadata about
the SET Transmitter, and an event stream management API.

As agreed upon with the OIDF, this work is focused on the configuration discovery mechanism,
although it also covers (a representative) part of the event stream management API. Furthermore,
as agreed upon, this work is based on the second implementer’s draft of the SSF specification [10].

We note that the remaining parts of SSF, as well as the CAEP and RISC specifications, do, in
large part, only specify data structures (i.e., events), but do not define their semantics on either
end, i.e., they neither define who exactly sends what kind of event to whom and when, nor do they
define the behavior of the SET Receiver upon receiving these events. Hence, any semantic security
properties would necessarily rely on assumptions regarding event semantics and thus only apply to
implementations sharing these assumptions. Therefore – and as agreed upon – these are omitted
from this work.

1

mailto:pedram.hosseyni@sec.uni-stuttgart.de
mailto:ralf.kuesters@sec.uni-stuttgart.de
mailto:tim.wuertele@sec.uni-stuttgart.de
https://datatracker.ietf.org/doc/html/rfc8417#section-3

2. Modeling Decisions and Assumptions

In the following, we describe our key modeling decisions and assumptions. We generally try to keep
assumptions as minimal as possible, especially regarding security, i.e., we model the specifications
with the “minimal” security allowed by the relevant specifications in mind in order to not miss
possible attacks. This in particular applies to optional security measures. Where the specifications
leave things to implementations or profiles, we try to make sensible assumptions on parties’ behavior,
balancing possible “false” attacks due to unreasonable assumptions against the potential to miss
attacks due to too strong assumptions (e.g., related to what checks a party performs during a
protocol execution).

In some cases, we also introduce what we call over-approximations, i.e., cases where our model
is – if anything – less secure than a real (specification-following) implementation. Such over-
approximations usually allow for a simpler model without jeopardizing the expressiveness of security
proofs. However, they need to be chosen carefully, to not lead to false positives, i.e., attacks on the
model which would not work in a real implementation.

Before explaining our SSF-specific assumptions, we give some background information and de-
scriptions of assumptions inherent to the WIM methodology – while some of these are rather strong
assumptions, we note that the WIM methodology has been successfully applied to a wide range
of protocols like OAuth 2.0, OIDC, both FAPI versions, Mozilla’s (now inactive) BrowserID, etc.
Hence, the WIM methodology (evidently) provides useful, yet sufficiently precise, abstractions.

Cryptography. The WIM is a symbolic, Dolev-Yao-style model, i.e., bytestrings of any kind
are represented as formal terms over a set of function symbols (e.g., sig(·, ·), encs(·, ·)), nonces, and
constants. The nonces are considered to be infinite-entropy random values, which means they can
never be guessed, and must instead be learned, e.g., from received messages. Constants, on the other
hand, are considered to be publicly known. Additionally, the semantics of cryptographic primitives
are defined by an equational theory (see Definition 13 in the appendix).

The latter implies that cryptography is considered to be perfect: the attacker cannot break any
cryptographic primitive unless it learns the necessary keys (which are usually nonces).

Attacker Model. The WIM supports two types of attackers: Network attackers, and Web
attackers. Network attackers are the original Dolev-Yao attacker model; such an attacker controls
the network, i.e., can eavesdrop on all sent messages, can block or re-route messages, and inject
arbitrary messages into the network, as long as it can derive (according to the equational theory)
the message contents from its knowledge. A Web attacker is basically a corrupted endpoint in
the network that may collude with other corrupted parties, send (derivable) messages with spoofed
addresses, and so on. Of course, a network attacker always implies all possible Web attackers. Hence,
one usually considers a network attacker unless a certain security property can only be proven under
the assumption that there are only Web attackers.

Time. The WIM does not include any notion of time. Consequently, all time-based claims,
values, and checks are omitted from WIM models, for example, not-before and expiration times of
JWTs and tokens. Instead, one considers all these values as being valid forever.

Note that strictly speaking, this is not an over-approximation: the WIM is a possibilistic model,
i.e., anything that can happen – no matter how improbable – is considered to happen. Hence, even
if we had a notion of time, the possibilistic nature of the model would still allow for arbitrarily
complex attacks to happen in any non-zero time frame.

2

2.1. Event Types

We do not model event types and instead treat all events as being of the same type. For example,
this means that we omit the corresponding claims, i.e., events_supported, events_requested, and
events_delivered from stream configurations.

Note that this does not affect security results: event types’ semantics w.r.t. the security properties
are outside the scope of the analyzed specifications.

2.2. Security Event Token Delivery Methods

Our model supports both the push (urn:ietf:rfc:8935) and poll (urn:ietf:rfc:8936) SET delivery
methods. Hence, our security properties apply to those delivery methods when used (stand-alone
or in parallel) as defined by [RFC8935, RFC8936] (with the respective URLs, etc. being exchanged
via the event stream management API defined in [10, Section 7]). We note that this in particular
implies that SETs are only transmitted via transport-protected connections, e.g., HTTPS.

2.3. Transmitter and Receiver Protocol Roles

In our model, each modeled entity, basically a single Internet-connected machine that listens to a
number of IP addresses and “owns” a set of domains, can be both, Transmitter and Receiver at the
same time. We chose to not separate these roles to make sure our model cannot miss mix-up attacks
in which a single party plays both roles and gets confused between them.

We assume that under each domain, there is at most one issuer (whose issuer identifier URL
contains an empty path element). However, we note that in our model, each entity owns multiple
domains, i.e., we cover the case where one entity represents multiple issuers.

2.4. Stream Management API

While according to the contracted work items, our analysis only covers the configuration discovery
subprotocol, we chose to include representative parts of the stream management API as well – after
all, the discovery protocol serves the purpose of supplying the Receiver with information on the
Transmitter, including important endpoint URLs for the stream management API. Including parts
of the stream management API also allows us to define much more natural security properties that
are directly related to emitted and accepted SETs.

That said, we chose to limit our model of the stream management API to stream creation and
subject adding. This selection is due to several considerations:

Firstly, these two management actions are the most security-critical, whoever can create a stream
can – at least with the urn:ietf:rfc:8935 delivery method – also receive SETs for that stream;
and of course, adding subjects to existing streams can not only leak information when a sensitive
subject is added to a stream of an attacker, but may also lead to honest Receivers receiving
“unwanted” events (which may also leak information, e.g., if the honest Receiver publishes the
received events). From a security standpoint, the other specified stream management actions can
be somewhat subsumed by these (if the other stream management API endpoints employ the same
kind of authentication/authorization).

Secondly, these two management actions are the minimal set of actions required to sensibly model
(and formulate security properties on) the actual delivery of SETs when starting with configuration
discovery.

In addition to the claims listed in Section 2.1, we also omit the description claim from stream
configurations since it does not serve any “functional” purpose.

3

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7

2.4.1. Authorization During Stream Creation and SET Delivery

Since the specifications do not require any authentication or authorization for the whole stream
management API, we assume that anyone can request the creation of a stream. Such a fresh stream
will not deliver any events unless subjects are added to it (see below).

However, we do link stream creation to authorization during SET delivery using the created
stream: If the request to create a stream with the poll delivery method contains an Authorization

header, the Transmitter stores that header’s value and expects it to be present on each subsequent
poll request for that stream. Likewise, if the request to create a stream with push delivery contains
the optional authorization_header claim (see [10, Section 10.2.1.1]), the Transmitter will – as
required by the specification – include that claim’s value in each subsequent push request for that
stream (and if a Receiver includes such a claim, it will only accept pushed SETs if they are delivered
in a request with an appropriate Authorization header).

2.4.2. Authorization at the Add Subject Endpoint

As described above, we assume that everyone can create a stream, but such streams are initially
“empty”, i.e., no events will ever be delivered until at least one subject is added to the stream. This
allows us to capture fine-grained access control to subject information. While the specification does
not require authentication or authorization at this endpoint, we require authorization to prevent
trivial attacks.

Specifically, we model authorization at the add subject endpoint by means of pre-shared (bearer)
access tokens. These tokens are pre-shared such that each token represents the authorization to
access information for a (disjoint) set of subjects; all subjects “within” any given token must be
managed by a single issuer – that issuer is then initialized with the token. For Receivers, our model
randomly distributes these tokens such that no token is distributed twice (most of the security
properties that we propose to analyze below will of course only hold for SETs for a given subject
where all Receivers that have tokens for this subject are honest).

Finally, Receivers select the appropriate token to include in a request based on the service, i.e.,
endpoint, to which the request is sent.

2.5. Configuration Discovery

For our model of configuration discovery, we assume (1) Receivers do not have any prior information
on Transmitters (except for issuer identifiers); (2) Receivers only use issuer identifiers with the
HTTPS scheme to assemble the configuration discovery endpoint URL; (3) all endpoints (including
the jwks_uri) in an honest Transmitter’s configuration document use the HTTPS scheme (but the
Receiver treats these URLs as opaque, i.e., does not perform any checks, including the scheme).

Since our model of the stream management API only supports the configuration and add subject
endpoints, our Transmitter model omits the other endpoints from its configuration document.

Note: Assumption (1) implies that no streams are pre-configured or created out-of-band (this is in
line with [10, Section 7.1.1.1]). I.e., all streams in our model are set up via the stream management
API (we allow an infinite number of streams for each Transmitter/Receiver pair).

Furthermore, from the point of view of a Transmitter, its Receivers are identified by dynamically
created nonces, issued by the Transmitter when responding to a configuration discovery request. This
is due to the lack of authentication of the Receiver at the Transmitter, in combination with SSF’s
requirement for Transmitters to be able to distinguish between Receivers at the stream management
API endpoints [10, Section 7.1].1 Hence, we chose to model Transmitters such that they can indeed

1“An Event Transmitter MAY use the same URLs as endpoints for multiple Event Receivers, provided that the
Event Transmitter has some mechanism through which they can identify the applicable set of Event Streams for
any given request [...]. The definition of such mechanisms is outside the scope of this specification.”

4

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-10.2.1.1
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1.1
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1-14

distinguish different Receivers at the stream management API endpoints by handing out fresh
endpoint URLs for each configuration discovery request. Since we do not assume these URLs to be
secrets, this modeling choice uses minimal assumptions (e.g., using some authentication scheme to
distinguish between Receivers would be a strong assumption, potentially masking security issues).

And finally, according to [10, Section 10.2.1.2], polling endpoint URLs “MAY be reused across
Receivers, but MUST be unique per stream for a given Receiver.” To satisfy this requirement while
still allowing Transmitters to reuse URLs for different Receivers, our Transmitter model makes use
of the Receiver-identification nonces mentioned above to ensure it does not reuse a polling endpoint
URL for the same Receiver (but may reuse it for different Receivers).

2.6. Signed SETs

Since [RFC8417] requires implementations to either sign SETs or provide integrity protection and
issuer authentication in another way, our Transmitter model always signs SETs and our Receiver
model accepts SETs only if they carry a valid signature (valid w.r.t. a SET’s claimed issuer, the
verification keys are retrieved from the issuer’s jwks_uri endpoint as specified in the issuer’s
configuration document).

2.7. Specification Version

We model the SSF specification in its second implementer’s draft version [10], i.e., we assume that
both Transmitters and Receivers behave according to that specification version.

3. Notes on the SSF Specification

Based on our work with the SSF specification, we suggest the working group consider the following
changes. Most of these are based on (necessary) assumptions explained in Section 2 and we note
that our model reflects the specification with these changes.

Issuer Identifier Validation. While the configuration discovery specification mandates Transmit-
ters to only use issuer identifiers with the https scheme [10, Section 6.1], there is no requirement
for Receivers to only request configuration documents from https URLs. If a Receiver requests a
Transmitter’s configuration document from an http URL, a network attacker may launch an MitM
attack, resulting in the Receiver accepting arbitrary, attacker-chosen configuration data (including
JWKs) and arbitrary, attacker-chosen SETs. We, therefore, recommend explicitly mandating Re-
ceivers to (1) obtain Transmitters’ issuer identifiers from trusted sources, and (2) verify that these
issuer identifiers use the https scheme.

In our model, we assume that these recommendations are implemented (see Section 2.5).

Stream Configuration Management API Endpoints. The current SSF specification does not
mandate the use of https for any of the stream configuration management API endpoints. We
note that for SET delivery, [RFC8935, RFC8936] mandate the use of https URLs, and of course
recommend mandating Transmitters to use https URLs for all stream management API endpoints
and the JWKs endpoint.

In our model, we assume that this recommendation is implemented (see Section 2.5).

Requirements on Additional SET Delivery Methods. In our model, we only consider the push
and poll delivery methods as defined in [RFC8935, RFC8936] (see Section 2.2). This implies that
in our model, SET delivery always takes place via TLS-protected connections. However, the SSF

5

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-10.2.1.2
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-6.1-8

specification does not limit allowed delivery methods to these two. Hence, we recommend requiring
the use of SET delivery methods that ensure SET confidentiality and integrity.

4. Informal Security Properties

In the following, we give an informal overview of the security properties that we propose to analyze.
See Appendix C for the formalized properties.

4.1. Configuration Discovery Integrity

This integrity property considers the discovery mechanism in isolation and states that Receivers
get the correct configuration documents (from honest Transmitters). I.e., when an honest Receiver
accepts a configuration document whose issuer claim contains the identifier of an honest Transmitter,
then all data in that configuration document is correct.

Note: After accepting a Transmitter’s configuration document, the Receiver in our model requests
the Transmitter’s JWK Set (using the jwks_uri claim in the configuration document), and this
property includes the correctness of the returned keys.

For example, this property captures attacks in which an attacker can trick a Receiver into using
an attacker-controlled configuration endpoint.

4.2. Session Integrity for SETs

With this property, we capture that if an honest Receiver accepts a SET (regardless of the delivery
method) whose iss claim contains the identifier of an honest Transmitter, then (1) that issuer did
indeed issue the SET, and (2) the SET was indeed issued for that Receiver.

For example, this property captures injection attacks in which an attacker can trick a Receiver
into accepting SETs that have been created by the attacker or at least have not been intended for
that Receiver.

4.3. Confidentiality of SETs

Since SETs may contain sensitive data, this property captures that any SET whose iss claim
contains the identifier of an honest Transmitter, that has a valid signature (w.r.t. that issuer), and
whose aud claim refers to an honest Receiver, can not leak to the attacker.

Note that we have to limit this property to honest Transmitters and Receivers – a corrupted
Transmitter can of course leak any SET it issues, and a corrupted Receiver can leak any SET it
receives.

4.4. Authorization

With this property, we capture that whenever an honest Transmitter issues a SET for some subject,
then the Receiver (as identified by the SET’s aud claim) is authorized to receive information on
that subject.

6

References

[RFC7519] M. B. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC 7519. May
2015. doi: 10.17487/RFC7519. url: https://www.rfc-editor.org/info/rfc7519.

[RFC7617] J. Reschke. The ’Basic’ HTTP Authentication Scheme. RFC 7617. Sept. 2015. doi:
10.17487/RFC7617. url: https://www.rfc-editor.org/info/rfc7617.

[RFC8417] P. Hunt, M. B. Jones, W. Denniss, and M. Ansari. Security Event Token (SET). RFC
8417. July 2018. doi: 10.17487/RFC8417. url: https://www.rfc-editor.org/info/
rfc8417.

[RFC8935] A. Backman, M. B. Jones, M. Scurtescu, M. Ansari, and A. Nadalin. Push-Based
Security Event Token (SET) Delivery Using HTTP. RFC 8935. Nov. 2020. doi: 10.
17487/RFC8935. url: https://www.rfc-editor.org/info/rfc8935.

[RFC8936] A. Backman, M. B. Jones, M. Scurtescu, M. Ansari, and A. Nadalin. Poll-Based
Security Event Token (SET) Delivery Using HTTP. RFC 8936. Nov. 2020. doi: 10.
17487/RFC8936. url: https://www.rfc-editor.org/info/rfc8936.

[1] R. Berjon et al., eds. HTML5, W3C Recommendation. Oct. 28, 2014. url: http:
//www.w3.org/TR/html5/.

[2] L. Chen, S. Englehardt, M. West, and J. Wilander. Cookies: HTTP State Management
Mechanism. Internet-Draft draft-ietf-httpbis-rfc6265bis-09. Work in Progress. Internet
Engineering Task Force, Oct. 2021. 59 pp. url: https://datatracker.ietf.org/
doc/html/draft-ietf-httpbis-rfc6265bis-09.

[3] D. Fett. “An Expressive Formal Model of the Web Infrastructure”. PhD thesis. 2018.

[4] D. Fett, P. Hosseyni, and R. Kusters. “An Extensive Formal Security Analysis of the
OpenID Financial-Grade API”. In: 2019 IEEE Symposium on Security and Privacy
(SP). May 2019. doi: 10.1109/sp.2019.00067.

[5] D. Fett, R. Küsters, and G. Schmitz. “An Expressive Model for the Web Infrastruc-
ture: Definition and Application to the BrowserID SSO System”. In: IEEE S&P. 2014,
pp. 673–688.

[6] D. Fett, R. Küsters, and G. Schmitz. “Analyzing the BrowserID SSO System with
Primary Identity Providers Using an Expressive Model of the Web”. In: ESORICS.
Vol. 9326. LNCS. 2015, pp. 43–65.

[7] D. Fett, R. Küsters, and G. Schmitz. “SPRESSO: A Secure, Privacy-Respecting Single
Sign-On System for the Web”. In: ACM CCS. 2015, pp. 1358–1369.

[8] D. Fett, R. Küsters, and G. Schmitz. “A Comprehensive Formal Security Analysis of
OAuth 2.0”. In: ACM CCS. 2016, pp. 1204–1215.

[9] D. Fett, R. Küsters, and G. Schmitz. “The Web SSO Standard OpenID Connect:
In-Depth Formal Security Analysis and Security Guidelines”. In: CSF. 2017.

[10] A. Tulshibagwale, T. Cappalli, M. Scurtescu, A. Backman, J. Bradley, and S. Miel.
OpenID Shared Signals Framework Specification 1.0. 2nd Implementer’s Draft. OpenID
Foundation, Oct. 9, 2023. url: https://openid.net/specs/openid-sharedsignals-
framework-1_0-02.html.

7

https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.17487/RFC7617
https://www.rfc-editor.org/info/rfc7617
https://doi.org/10.17487/RFC8417
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8417
https://doi.org/10.17487/RFC8935
https://doi.org/10.17487/RFC8935
https://www.rfc-editor.org/info/rfc8935
https://doi.org/10.17487/RFC8936
https://doi.org/10.17487/RFC8936
https://www.rfc-editor.org/info/rfc8936
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-09
https://doi.org/10.1109/sp.2019.00067
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html

A. SSF Configuration Discovery Model

In the following, we define our formal model of the SSF configuration discovery (and parts of
the event stream management API). Note that we use notation defined by the generic WIM (see
Appendix D) without further introduction.

A.1. Protocol Participants

Let SSFTR be the (finite) set of atomic DY processes representing SSF Transceivers. We define
these processes in Appendix A.4.

A.2. Identifiers in the Protocol

A.2.1. Receiver Identification

From the point of view of a Transmitter, its Receivers are identified by dynamically created nonces,
issued by the Transmitter when responding to a configuration discovery request. This is due to the
lack of authentication of the Receiver at the Transmitter (not only during configuration discovery,
but also at the stream management API and the SET polling endpoint), in combination with SSF’s
requirement on Transmitters to be able to distinguish between Receivers at the stream management
API endpoints [10, Section 7.1]. Hence, the only way for a Transmitter to make sure it can indeed
distinguish different Receivers at the stream management API endpoints is to hand out fresh endpoint
URLs for each configuration discovery request.

A.2.2. Transmitter Identification

Transmitters, on the other hand, are identified by issuer identifiers [10, Section 7.1.1] that we model
as follows:

Definition 1 (Issuer Identifiers). We define the (finite) set IssIDs of issuer identifiers as IssIDs ⊂
URLs such that ∀i ∈ IssIDs : i ∼ ⟨URL, S, ∗, ε, ⟨⟩,⊥⟩.

Note that in conjunction with the dom mapping, this definition induces the set issIDsp of all
issuer identifiers of a process p as issIDsp := {d | d ∈ dom(p) ∧ ∃i ∈ IssIDs : i.host ≡ d}.

A.2.3. Subject Identification

In our model, we use a simplified form of the sub_id claim to identify a SET’s subject. Specifically,
such claims only contain a single string that fully identifies the subject.

Definition 2 (Subject Identifiers). We define the (finite) set SubIDs of subject identifiers as
SubIDs ⊊ S. Furthermore, we define a mapping issuerOf : SubIDs → IssIDs that assigns an issuer
identifier to each subject identifier. Given iss = issuerOf(subjID), we say that iss manages subjID .

A.3. Keys and Secrets

The set N of nonces is partitioned into disjoint sets, an infinite set N , and finite sets KTLS, Ksign,
and MgmtATs:

N = N ⊎KTLS ⊎Ksign ⊎MgmtATs

These sets are used as follows:

• The set N contains the nonces that are available for the DY processes.

8

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1-14
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1-4

• The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→ KTLS
be an injective mapping that assigns a (different) private key to every domain. For an atomic
DY process p we define tlskeysp = ⟨{⟨d, tlskey(d)⟩ | d ∈ dom(p)}⟩ (a sequence of pairs, i.e., a
dictionary that maps domains to their respective private keys).

• The set Ksign contains the (private) keys that will be used by Transmitters to sign SETs. Let
signkey : IssIDs→ Ksign be an injective mapping that assigns a (different) signing key to each
issuer identifier.

• The set MgmtATs is a set of shared secrets used as authorization tokens at some of the stream
management API endpoints. Let atSubjects : MgmtATs → 2SubIDs be an injective mapping
that assigns a (disjoint) set of subject identifiers to each token. Moreover, we require that all
subject identifiers associated with a given token are managed by the same issuer. Put more
formally, we require all of the following:

∀at , at ′ ∈ MgmtATs : at ̸= at ′ ⇒ atSubjects(at) ∩ atSubjects(at ′) = ∅ (1)
∀at ∈ MgmtATs ∃iss ∈ IssIDs s.t. ∀subjID ∈ atSubjects(at) : issuerOf(subjID) = iss (2)

For convenience, we make atSubjects available to our DY processes’ relations, where, when
called as a function with argument at , it returns the sequence ⟨atSubjects(at)⟩. Derived from
this mapping, we define the set tokensOf iss of all tokens for subjects managed by issuer iss
as (note that iss is not a process but an issuer identifier)

tokensOf iss :=
{
at | ∃subjID ∈ atSubjects(at) : issuerOf(subjID) = iss

}
Furthermore, we need to initialize Receivers with (disjoint) sets of tokens. Hence, we define
the mapping recTokens : SSFTR→ 2MgmtATs such that

∀ssftr1, ssftr2 ∈ SSFTR : ssftr1 ̸= ssftr2 ⇒ recTokens(ssftr1) ∩ recTokens(ssftr2) = ∅

To sort these by managing issuer domain, we further define atIssuer : MgmtATs→ IssIDs such
that

∀at ∈ MgmtATs ∀subjID ∈ atSubjects(at) : atIssuer(at) = issuerOf(subjID)

A.4. SSF Transceiver Model

An SSF Transceiver ssftr ∈ SSFTR is a Web server modeled as an atomic DY process (Issftr, Zssftr,
Rssftr, sssftr0) with the addresses Issftr := addr(ssftr). We define the set Zssftr of states of ssftr and the
initial state sssftr0 as follows:

Definition 3 (SSF Transceiver State). A state s ∈ Zssftr of an SSF Transceiver ssftr is a term
of the form ⟨DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys, TXjwks,
pendingStreamIds, TXstreams, TXconfigurations, TXtokens, RXstreams, RXissuers, RXtokens,
RXsets, RXpushEP⟩ with DNSaddress ∈ IPs, pendingDNS ∈

[
N × TN

]
, pendingRequests ∈ TN ,

corrupt ∈ TN , keyMapping ∈
[
Doms× TN

]
, tlskeys ∈ [Doms×KTLS] (all former components as

in Definition 57), TXjwks ∈ [IssIDs×Ksign], pendingStreamIds ∈ TN , TXstreams ∈
[
TN × TN

]
,

TXconfigurations ∈
[
IssIDs× TN

]
, TXtokens ∈

[
IssIDs× TN

]
, RXstreams ∈

[
TN × TN

]
, RXissuers

∈
[
URLs× TN

]
, RXtokens ∈

[
Doms× TN

]
, RXsets ∈

[
URLs× TN

]
, and RXpushEP ∈ URLs.

An initial state sssftr0 of ssftr is a state of ssftr with

• sssftr0 .DNSaddress ∈ IPs,

• sssftr0 .pendingDNS ≡ ⟨⟩,

9

• sssftr0 .pendingRequests ≡ ⟨⟩,

• sssftr0 .corrupt ≡ ⊥,

• sssftr0 .keyMapping ≡
〈{
⟨d, pub(tlskey(d))⟩ | d ∈ Doms

}〉
,

• sssftr0 .tlskeys ≡ tlskeysssftr (see Appendix A.3),

• sssftr0 .TXjwks ≡
〈{
⟨d, signkey(d)⟩ | d ∈ issIDsssftr

}〉
(a dictionary that maps from issuer identi-

fiers managed by this process to signing keys, see also Definition 1 and Appendix A.3),

• sssftr0 .pendingStreamIds ≡ ⟨⟩,

• sssftr0 .TXstreams ≡ ⟨⟩,

• sssftr0 .TXconfigurations ≡
〈{
⟨d, ⟨⟩⟩ | d ∈ issIDsssftr

}〉
Mapping from issuer identifier to

sequences of Transmitter configuration uniqueness (see Appendix A.2.1 on why we need this),

• sssftr0 .TXtokens ≡
〈{
⟨d, ⟨tokensOf d⟩⟩ | d ∈ issIDsssftr

}〉
(a dictionary that maps from issuer

identifiers managed by this process to sequences of authorization tokens, see also Definition 1
and Appendix A.3),

• sssftr0 .RXstreams ≡ ⟨⟩,

• sssftr0 .RXissuers ≡ ⟨⟩,

• sssftr0 .RXtokens ≡ rxTokens where rxTokens[d] is a sequence ⟨at1, at2, . . . , atn⟩ of authoriza-
tion tokens such that ∀i = 1, . . . , n : d = atIssuer(at i).host (for a domain d). In addition,⋃

d∈Doms rxTokens = ⟨recTokens(ssftr)⟩ (for a suitable ordering of the sequences). In other
words, rxTokens contains all authorization tokens for ssftr (according to the recTokens map-
ping), and these tokens are stored under the domain of the issuer associated with each token.,

• sssftr0 .RXsets ≡ ⟨⟩, and

• sssftr0 .RXpushEP ≡ ⟨URL, S, d, /push-ep, ⟨⟩,⊥⟩ for a domain d ∈ dom(ssftr).

The only thing left to define for the SSF Transceiver model is its relation Rssftr. This relation is
based on the WIM’s generic HTTPS server model (see Appendix D.12). Hence, we only need to
define those parts (functions) of Rssftr that differ from (or do not exist in) the generic server model;
we provide these in the following algorithms. Note that these algorithms contain placeholders (that
we write as νx for some x) to model generation of fresh nonces.

10

Algorithm 1 Relation of an SSF Transceiver Rssftr – Processing HTTPS requests
→ Process an incoming HTTPS request. Other message types are handled in separate functions. m

is the incoming message (decrypted), k is the encryption key for the response, a is the receiver, f the
sender of the message. s′ is the current state of the atomic DY process ssftr.

1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
Transmitter: Configuration Discovery and JWKS Endpoints

2: if m.path ≡ /.well-known/ssf-configuration then
3: let issuer := ⟨URL, S,m.host, ε, ⟨⟩,⊥⟩
4: if issuer ̸∈ s′.TXjwks then
5: stop → m.host is not an issuer identifier of this Transmitter.
6: let u := νnewAud → See Appendix A.2.1.
7: let trConf := [issuer : issuer]
8: let trConf [jwks_uri] := ⟨URL, S,m.host, /jwks, ⟨⟩,⊥⟩
9: let trConf [configuration_endpoint] := ⟨URL, S,m.host, /configure-stream, [rec : u],⊥⟩

10: let trConf [add_subject_endpoint] := ⟨URL, S,m.host, /add-subject, [rec : u],⊥⟩
11: let trConf [authorization_schemes] := ⟨[spec_urn : urn:ietf:rfc:6749]⟩
12: let s′.TXconfigurations[issuer] := s′.TXconfigurations[issuer] +⟨⟩ u
13: let m′ := encs(⟨HTTPResp, m.nonce, 200, ⟨⟩, trConf ⟩, k)
14: stop ⟨⟨f, a,m′⟩, ⟨a, a, u⟩⟩, s′ → Note that we leak u here.
15: else if m.path ≡ /jwks then
16: let issuer := ⟨URL, S,m.host, ε, ⟨⟩,⊥⟩
17: if issuer ̸∈ s′.TXjwks then
18: stop → m.host is not an issuer identifier of this Transmitter.
19: let jwks := pub(s′.TXjwks[issuer])
20: let m′ := encs(⟨HTTPResp, m.nonce, 200, ⟨⟩, jwks⟩, k)
21: stop ⟨⟨f, a,m′⟩⟩, s′

Transmitter: Configuration Endpoint
22: else if m.path ≡ /configure-stream then
23: if m.method ≡ POST then → Create a new stream [10, Section 7.1.1.1].
24: call CREATE_STREAM(m, k, a, f , s′) → See Algorithm 2.
25: else
26: stop → Not modeled, see Section 2.4.

Transmitter: Other Endpoints
27: else if m.path ≡ /add-subject then
28: call PROCESS_ADD_SUBJECT_REQUEST(m, k, a, f , s′) → See Algorithm 3.
29: else if m.path ≡ /poll then
30: call PROCESS_POLL_REQUEST(m, k, a, f , s′) → See Algorithm 4.

Receiver Endpoints
31: else if m.path ≡ /push-ep ∧m.method ≡ POST then
32: call PROCESS_PUSH_REQUEST(m, k, a, f , s′) → See Algorithm 6.
33: else
34: stop → Unknown endpoint.

11

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1.1

Algorithm 2 Relation of an SSF Transceiver Rssftr – Processing a stream creation request
→ Create a new stream. m is the HTTP POST request, k is the encryption key for the response, a is

the receiver, f the sender of the message. s′ is the current state of the atomic DY process ssftr.
1: function CREATE_STREAM(m, k, a, f , s′)
2: let issuer := ⟨URL, S,m.host, ε, ⟨⟩,⊥⟩
3: if rec ̸∈ m.parameters ∨m.parameters[rec] ̸∈⟨⟩ s′.TXconfigurations[issuer] then
4: stop → Invalid configuration endpoint URL.
5: let u := m.parameters[rec] → See Appendix A.2.1 and Line 6 of Algorithm 1.
6: if m.body ≡ ⟨⟩ ∨m.body ≡ [delivery : [method : urn:ietf:rfc:8936]] then

→ Receiver requested poll or did not specify a delivery method → poll delivery [10, Section
7.1.1.1].

7: let deliveryMethod := urn:ietf:rfc:8936
8: let pollRand ← S such that → See [10, Section 10.2.1.2] and Section 2.5.

↪→ ∄sc ∈ s′.TXstreams : sc[aud] ≡ u ∧ sc[endpoint_url].parameters[rand] ≡ pollRand
↪→ if possible; otherwise stop

9: let deliveryEP := ⟨URL, S,m.host, /poll, [rand : pollRand],⊥⟩
10: if Authorization ∈ m.headers then
11: let token := m.headers[Authorization]
12: else
13: stop → We require an authorization token.
14: else if m.body ∼ [delivery : [method : urn:ietf:rfc:8935, endpoint_url : ∗]] then
15: let deliveryMethod := urn:ietf:rfc:8935
16: let deliveryEP := m.body[delivery][endpoint_url] → Required, see [10, Section 7.1.1].
17: if authorization_header ∈ m.body then
18: let token := m.body[authorization_header]
19: else
20: stop → We require an authorization token.
21: else
22: stop ⟨⟨f, a, encs(⟨HTTPResp, m.nonce, 400, ⟨⟩, ⟨⟩⟩, k)⟩⟩, s′ → Invalid request.

→ Stream IDs are provided by the attacker, see Algorithm 13.
23: let streamID ← s′.pendingStreamIds if possible; otherwise stop
24: let s′.pendingStreamIds := s′.pendingStreamIds −⟨⟩ streamID
25: let streamConf := [stream_id : streamID , iss : issuer]
26: let streamConf [aud] := u
27: let streamConf [delivery] := [method : deliveryMethod , endpoint_url : deliveryEP]

→ Note: We do not model event types, verification interval, and the description claim in stream
configurations. See Section 2.

28: let m′ := encs(⟨HTTPResp, m.nonce, 201, ⟨⟩, streamConf ⟩, k)
29: let streamConf [subjects] := ⟨⟩
30: let streamConf [token] := token
31: let s′.TXstreams[streamID] := streamConf
32: stop ⟨⟨f, a,m′⟩, ⟨a, a, streamID⟩⟩, s′ → Note that we leak the streamID here.

12

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1.1-5
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1.1-5
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-10.2.1.2-4
https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1-18.1.1

Algorithm 3 Relation of an SSF Transceiver Rssftr – Processing an add subject request
→ Add subject to a stream. m is the HTTP request, k is the encryption key for the response, a is the

receiver, f the sender of the message. s′ is the current state of the atomic DY process ssftr.
1: function PROCESS_ADD_SUBJECT_REQUEST(m, k, a, f , s′)
2: if m.method ̸≡ POST then
3: stop
4: let accessToken := m.headers[Authorization][Bearer]
5: let streamID := m.body[stream_id]
6: let subjectID := m.body[subject]
→ Check if Transmitter is managing this access token and if the token authorizes operations related to the

subject identifier:
7: if accessToken ̸∈⟨⟩ s′.TXtokens[⟨URL, S,m.host, ε, ⟨⟩,⊥⟩] then
8: stop
9: if subjectID ̸∈⟨⟩ atSubjects(accessToken) then

10: stop
→ Add this subject identifier to the list of subjects of the stream:
11: let s′.TXstreams[streamID][subjects] := s′.TXstreams[streamID][subjects] +⟨⟩ subjectID
12: let m′ := encs(⟨HTTPResp, m.nonce, 200, ⟨⟩, ⟨⟩⟩, k)
13: stop ⟨⟨f, a,m′⟩⟩, s′

Algorithm 4 Relation of an SSF Transceiver Rssftr – Processing a SET polling request
→ Process a SET polling request. m is the HTTP request, k is the encryption key for the response, a

is the receiver, f the sender of the message. s′ is the current state of the atomic DY process ssftr.
1: function PROCESS_POLL_REQUEST(m, k, a, f , s′)
2: if Authorization ̸∈ m.headers then
3: stop
4: let token := m.headers[Authorization]
5: let epUrl := ⟨URL, S,m.host,m.path,m.parameters,⊥⟩
6: let streamConfig ← s.TXstreams such that

↪→ streamConfig [delivery] ≡ [method : urn:ietf:rfc:8936, endpoint_url : epUrl] ∧
↪→ streamConfig [token] ≡ token if possible; otherwise stop

7: let set := CREATE_SET(streamConfig , s′) → See Algorithm 5.
8: let m′ := encs(⟨HTTPResp, m.nonce, 200, ⟨⟩, [sets : [set [jti] : set]]⟩, k)
9: stop ⟨⟨f, a,m′⟩⟩, s′

Algorithm 5 Relation of an SSF Transceiver Rssftr – Create/Issue a SET
→ Create/Issue a SET. streamConfig is the configuration of the stream for which a SET is to be issued

and s′ is the current state of the atomic DY process ssftr. This function returns a signed SET and does
not modify the state.

1: function CREATE_SET(streamConfig , s′)
2: let u := streamConfig [endpoint_url].parameters[rec]
3: let issuer := streamConfig [issuer]
4: let jti := νSETjti
5: let subjectID ← streamConfig [subjects] → If subjects ≡ ⟨⟩: no processing step (Appendix D.6).
6: let setBody := [iss : issuer , jti : jti , aud : u, sub_id : subjectID , events : ⟨⟩]
7: let signKey := s′.TXjwks[issuer]
8: let set := sig(setBody , signKey)
9: return set

13

Algorithm 6 Relation of an SSF Transceiver Rssftr – Process a pushed SET
→ Process a pushed SET. m is the HTTP POST request, k is the encryption key for the response, a is

the receiver, f the sender of the message. s′ is the current state of the atomic DY process ssftr.
1: function PROCESS_PUSH_REQUEST(m, k, a, f , s′)
2: let set := m.body
3: let setBody := extractmsg(set)
4: let iss := setBody [iss]
5: let aud := setBody [aud]
6: let verificationKey := s′.RXissuers[iss][jwks]
7: if checksig(set , verificationKey) ̸≡ ⊤ then
8: stop
9: let token := m.headers[Authorization]

10: let streamID ← TN such that
↪→ streamID ∈ s′.RXstreams ∧
↪→ s′.RXstreams[streamID][issuer] ≡ iss ∧
↪→ s′.RXstreams[streamID][token] ≡ token
↪→ if possible; otherwise stop

11: let u := s′.RXissuers[iss][configuration_endpoint].parameters[rec]
12: if u ̸≡ aud then → As required by [RFC7519, Section 4.1.3].
13: stop
14: let s′.RXsets[iss] := s′.RXsets[iss] +⟨⟩ setBody
15: stop ⟨⟩, s′

14

https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.3

Algorithm 7 Relation of an SSF Transceiver Rssftr – Processing HTTPS responses
→ Process an incoming HTTPS response. m is the incoming message (decrypted), reference is the ref-

erence term stored when sending the corresponding HTTPS request (usually via HTTPS_SIMPLE_SEND,
see Algorithm 26), request is that request (prior to encryption), a is the receiver address, and f the sender
address of the message. s′ is the current state of the atomic DY process ssftr.

1: function PROCESS_HTTPS_RESPONSE(m, reference, request , a, f , s′)
Receiver: Configuration Discovery and JWKS Responses

2: if reference[responseTo] ≡ DISCOVERY then
3: let issuer := m.body[issuer]
4: if issuer ̸≡ reference[iss] then
5: stop → Issuer does not match discovery request target, see [10, Section 6.2.4].
6: let s′.RXissuers[issuer] := m.body
7: let jwksUri := m.body[jws_uri]
8: let req := ⟨HTTPReq, νjwks, GET, jwksUri .host, jwksUri .path, jwksUri .parameters, ⟨⟩, ⟨⟩⟩
9: call HTTPS_SIMPLE_SEND([responseTo : JWKS, issuer : issuer], req , a, s′)

10: else if reference[responseTo] ≡ JWKS then
11: let s′.RXissuers[reference[issuer]][jwks] := m.body
12: stop ⟨⟩, s′

Receiver: Response to Create Stream Request
13: else if reference[responseTo] ≡ CREATE_STREAM then
14: let streamID := m.body[stream_id]
15: let s′.RXstreams[streamID] := m.body
16: let s′.RXstreams[streamID][token] := reference[token]
17: stop ⟨⟩, s′

Receiver: Response to Poll Request
18: else if reference[responseTo] ≡ POLL then
19: let expectedIssuer := reference[issuer]
20: let verificationKey := s′.RXissuers[expectedIssuer][jwks]
21: let u := request .parameters[rec]
22: for jti ∈ m.body[sets] do
23: let set := m.body[sets][jti]
24: if checksig(set , verificationKey) ̸≡ ⊤ then
25: stop
26: let setBody := extractmsg(set)
27: if setBody [aud] ̸≡ u ∨ setBody [iss] ̸≡ expectedIssuer then
28: stop
29: let s′.RXsets[expectedIssuer] := s′.RXsets[expectedIssuer] +⟨⟩ setBody

30: stop ⟨⟩, s′

15

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-6.2.4-2

Algorithm 8 Relation of an SSF Transceiver Rssftr – Handle trigger events
→ Perform random/asynchronous actions when triggered. a is the address on which the SSF

Transceiver received the trigger event, and s′ is the current state of the atomic DY process ssftr.
1: function PROCESS_TRIGGER(a, s′)
2: let action ← {RX_DISCOVERY, RX_CREATE_STREAM, RX_ADD_SUB_REQ, RX_POLL, TX_PUSH}
3: switch action do
4: case RX_DISCOVERY → Initiate configuration discovery.
5: let issDom ← Doms
6: let req := ⟨HTTPReq, νdisc, GET, issDom, /.well-known/ssf-configuration, ⟨⟩, ⟨⟩, ⟨⟩⟩
7: let iss := ⟨URL, S, issDom, ε, ⟨⟩,⊥⟩
8: call HTTPS_SIMPLE_SEND([responseTo : DISCOVERY, iss : iss], req , a, s′)
9: case RX_CREATE_STREAM → Request creation of a new stream.

10: call REQUEST_NEW_STREAM(a, s′) → See Algorithm 9.
11: case RX_ADD_SUB_REQ → Request addition of a subject to an existing stream.
12: call SEND_ADD_SUBJECT_REQUEST(a, s′) → See Algorithm 10.
13: case RX_POLL → Poll SETs for an existing stream.
14: call SEND_POLL_REQUEST(a, s′) → See Algorithm 11.
15: case TX_PUSH → Push SETs for an existing stream.
16: call SEND_PUSH_REQUEST(a, s′) → See Algorithm 12.

Algorithm 9 Relation of an SSF Transceiver Rssftr – Request creation of a new stream
1: function REQUEST_NEW_STREAM(a, s′)
2: let issuer ← TN such that issuer ∈ s′.RXissuers if possible; otherwise stop
3: let issConf := s′.RXissuers[issuer]
4: let deliveryMethod ← {urn:ietf:rfc:8936, urn:ietf:rfc:8935}
5: if deliveryMethod ≡ urn:ietf:rfc:8935 then → Push delivery.
6: let epUrl := s′.RXpushEP
7: let token := νpushTok
8: let body := [authorization_header : token]
9: let body [delivery] := [method : deliveryMethod , endpoint_url : epUrl]

10: let headers := ⟨⟩
11: else → Poll delivery.
12: let token := ⟨Bearer, νstrTok⟩ → Will be used to authorize polling SETs.
13: let headers := [Authorization : token]

14: let confEP := issConf [configuration_endpoint]
15: let req := ⟨HTTPReq, νcrStr, POST, confEP .host, confEP .path, confEP .parameters, headers, body⟩
16: call HTTPS_SIMPLE_SEND([responseTo : CREATE_STREAM, token : token], req , a, s′)

16

Algorithm 10 Relation of an SSF Transceiver Rssftr – Send add subject request
→ Send a request to the add subject endpoint of an issuer (for some existing stream).
1: function SEND_ADD_SUBJECT_REQUEST(a, s′)
2: let streamID ← TN such that streamID ∈ s′.RXstreams if possible; otherwise stop
3: let streamConfig := s′.RXstreams[streamID]
4: let issuer := streamConfig [issuer]
5: let addSubEP := s′.RXissuers[issuer][add_subject_endpoint]
6: let accessToken ← s′.RXtokens[issuer .host]
7: let subject ← atSubjects(accessToken)
8: let headers := [Authorization : ⟨Bearer, accessToken⟩]
9: let body := [stream_id : streamID , subject : subject]

10: let req := ⟨HTTPReq, νaddSubReq, POST, addSubEP .host, addSubEP .path, addSubEP .parameters,
↪→ headers, body⟩

11: call HTTPS_SIMPLE_SEND([responseTo : ADD_SUB_REQUEST], req , a, s′)

Algorithm 11 Relation of an SSF Transceiver Rssftr – Poll SETs of an existing stream
1: function SEND_POLL_REQUEST(a, s′)
2: let streamID ← TN such that

↪→ streamID ∈ s′.RXstreams ∧ s′.RXstreams[streamID][delivery][method] ≡ urn:ietf:rfc:8936
↪→ if possible; otherwise stop

3: let streamConfig := s′.RXstreams[streamID]
4: let issuer := streamConfig [issuer]
5: let pollEP := streamConfig [delivery][endpoint_url]
6: let streamToken := streamConfig [token] → See Line 16 of Algorithm 7.
7: let headers := [Authorization : streamToken]
8: let req := ⟨HTTPReq, νpoll, GET, pollEP .host, pollEP .path, pollEP .parameters, headers, ⟨⟩⟩
9: call HTTPS_SIMPLE_SEND([responseTo : POLL, issuer : issuer], req , a, s′)

Algorithm 12 Relation of an SSF Transceiver Rssftr – Push SETs of an existing stream
1: function SEND_PUSH_REQUEST(a, s′)
2: let streamID ← TN such that

↪→ streamID ∈ s′.TXstreams ∧ s′.TXstreams[streamID][delivery][method] ≡ urn:ietf:rfc:8935
↪→ if possible; otherwise stop

3: let streamConfig := s′.TXstreams[streamID]
4: let pushEP := streamConfig [delivery][endpoint_url]
5: let authzHeader := streamConfig [token]
6: let headers := [Authorization : authzHeader]
7: let set := CREATE_SET(streamConfig , s′) → See Algorithm 5.
8: let req := ⟨HTTPReq, νpush, POST, pushEP .host, pushEP .path, pushEP .parameters, headers, set⟩
9: call HTTPS_SIMPLE_SEND([responseTo : PUSH], req , a, s′)

17

Algorithm 13 Relation of an SSF Transceiver Rssftr – Processing other messages
→ Any message/event that is not an HTTP(S) or DNS message is processed here. For our model of an SSF

Transceiver, we use such messages as stream IDs, thus allowing the attacker to choose the stream IDs for
streams of both honest and dishonest receivers.

1: function PROCESS_OTHER(m, a, f , s′)
2: let streamID :=m →We interpret m as a stream ID chosen by and sent by an attacker process (see

also Line 23 of Algorithm 2).
3: if streamID ∈ s′.TXstreams ∨ streamID ∈⟨⟩ s′.pendingStreamIds then

→ Even though the attacker chooses the stream IDs, we have to prevent duplicate stream IDs as
per [10, Section 7.1.1].

4: stop
5: let s′.pendingStreamIds := s′.pendingStreamIds +⟨⟩ streamID
6: stop ⟨⟩, s′

18

https://openid.net/specs/openid-sharedsignals-framework-1_0-02.html#section-7.1.1-2

B. SSF Web System

Our formal model of the SSF is a Web system as defined in Definition 56.

Definition 4 (SSF Web System). We say that SSF := (W , S , script, E0) is an SSF Web System
with a network attacker, and define its components as follows:

• W = SSFTR ∪ Net consists of the network attacker process (in Net) and a (finite) set of SSF
Transceivers SSFTR. We note that DNS servers are subsumed by the network attacker, i.e.,
DNS is controlled by the attacker, and are therefore not modeled explicitly.

• S = ∅, and hence, script’s relation is empty.
• E0 is an infinite set of trigger events, with infinitely many events of the form ⟨a, a, TRIGGER⟩

for each address a ∈ IPs.

C. Formal Security Properties

In this appendix, we show the formal security properties and refer to Section 4 for a detailed informal
description. For formalizing the properties, we first introduce the following definitions:

Issuance of Identifier. Within the model, the Transmitter includes an identifier (a fresh nonce)
to the endpoints URLs of the configuration response, which serves for identifying the Receiver (see
Section 2.5 for details). The following definition captures that a Transmitter has issued a certain
identifier to a Receiver in a certain processing step.

Definition 5 (Identifier Issued to Receiver by Transmitter). We say that an identifier u
has been issued to ssftr r by ssftr t in processing step P in a run ρ (of an SSF web system SSF), with
ssftr r ∈W and ssftr t ∈ SSFTR, if all of the following hold true:

(i) P = (Sp, Ep, Np)
ePin→ssftr t−−−−−−−→
ssftr t→EP

out

(Sp+1, Ep+1, Np+1)

(ii) ePin = ⟨xP , yP ,mP ⟩, with mP = enca(⟨confReq , k⟩, pk t), where confReq is the term
⟨HTTPReq, n, GET, dt , /.well-known/ssf-configuration, ⟨⟩, ⟨⟩, ⟨⟩⟩, for some terms k, pk t , n,
and dt .

(iii) There is a processing step Q = (Sq, Eq, N q)
eQin→ssftrr−−−−−−−−→
ssftrr→EQ

out

(Sq+1, Eq+1, N q+1) prior to P in ρ

such that there is an event ⟨x, y,mP ⟩ ∈ EQ
out, i.e., ssftr r emits mP in Q (Definition 58) and

k ∈ d∅(S
q+1(ssftr r)), with mP and k being the same values as in (ii).

(iv) EP
out = ⟨⟨yP , xP , resp⟩⟩, with resp = encs(⟨HTTPResp, n, 200, ⟨⟩, confResp⟩, k) (i.e., a response

to the request in mP), with confResp[configuration_endpoint].parameters[rec] = u.

Issuance of SETs. The following definition captures that a Transmitter issues a SET in a certain
processing step.

Definition 6 (SET Issued by Transmitter). We say that set ∈ TN is a SET that has been
issued by ssftr t ∈ SSFTR in processing step P in a run ρ (of an SSF web system SSF), if

(i) P = (Sp, Ep, Np)
ePin→ssftr t−−−−−−−→
ssftr t→EP

out

(Sp+1, Ep+1, Np+1), and

(ii) in P , ssftr t executes Algorithm 5 (CREATE_SET), and the return value of the function is
set .

19

C.1. Configuration Discovery Integrity

Definition 7 (Configuration Discovery Integrity). We say that an SSF Web System with a
network attacker SSF provides configuration discovery integrity iff for every run ρ of SSF , every
configuration (S,E,N) in ρ, every SSF transceiver ssftr ∈ SSFTR that is honest in S, every issuer
identifier iss ∈ IssIDs, if t := dom−1(iss.host) is honest in S and iss ∈ S(ssftr).RXissuers, then,
with config := S(ssftr).RXissuers[iss], all of the following hold true:

(I) ∃u ∈⟨⟩ S(t).TXconfigurations[iss]

(II) config [issuer] ≡ iss

(III) config [jwks_uri] ≡ ⟨URL, S, iss.host, /jwks, ⟨⟩,⊥⟩

(IV) config [configuration_endpoint] ≡ ⟨URL, S, iss.host, /configure-stream, [rec : u],⊥⟩

(V) config [add_subject_endpoint] ≡ ⟨URL, S, iss.host, /add-subject, [rec : u],⊥⟩

(VI) jwks ∈ config ⇒ config [jwks] ≡ pub(signkey(iss))

C.2. Session Integrity for SETs

Definition 8 (SET Session Integrity). We say that an SSF Web System with a network attacker
SSF provides session integrity for SETs iff for every run ρ of SSF , every configuration (S,E,N)
in ρ, every pair of SSF transceivers ssftr r, ssftr t ∈ SSFTR that are honest in S, every pair of
terms set , x ∈ TN , if set ∈⟨⟩ S(ssftr r).RXsets[x] and ssftr t = dom−1(set [iss].host), then all of the
following hold true:

(I) set is a SET that has been issued by ssftr t in a processing step P ′ prior to the configuration
(S,E,N) (see Definition 6).

(II) set [aud] is an identifier issued to ssftr r by ssftr t in a processing step P ′′ prior to P ′ (see
Definition 5).

C.3. Confidentiality of SETs

Definition 9 (SET Confidentiality). We say that an SSF Web System with a network attacker
SSF provides confidentiality for SETs iff for every run ρ of SSF , every configuration (S,E,N) in ρ,
every pair of SSF transceivers ssftr r, ssftr t ∈ SSFTR that are honest in S, and every term set ∈ TN ,
if

(1) ssftr t = dom−1(set [iss].host), and

(2) checksig(set , signkey(set [iss])) ≡ ⊤, and

(3) set [aud] is an identifier issued to ssftr r by ssftr t in a processing step P prior to the configuration
(S,E,N) in ρ (see Definition 5),

then set is not derivable by the attacker, i.e., for the attacker process att , it holds true that
set ̸∈ d∅(S(att)).

20

C.4. Authorization

Definition 10 (Authorization). We say that an SSF Web System with a network attacker SSF
provides authorization iff for every run ρ of SSF , every processing step P = (Sp, Ep, Np) −→
(Sp+1, Ep+1, Np+1) in ρ, every SSF transceiver ssftr t ∈ SSFTR that is honest in Sp+1, every term
set ∈ TN , if set is a SET that has been issued by ssftr t in P (see Definition 6), then all of the
following hold true:

(I) ∃ssftr r ∈ W such that set [aud] is an identifier issued to ssftr r by ssftr t in a processing step
P ′ prior to P (see Definition 5).

(II) ∃ssftr ′r ∈ SSFTR and ∃at ∈ MgmtATs such that at ∈ recTokens(ssftr ′r) and set [sub_id] ∈
atSubjects(at).

(III) If ssftr ′r is honest in Sp+1, then ssftr r = ssftr ′r.

D. Technical Definitions

Here, we provide technical definitions of the WIM. These follow the descriptions in [3–9].

D.1. Terms and Notations

As usual in Dolev-Yao-style models, there is an underlying term algebra, with formal terms over
a signature Σ, and an equational theory defined by a set of equations over these terms. Messages,
internal state, and protocol events are then expressed as terms.

Definition 11 (Signature). In the case of the WIM, the signature Σ consists of the following
pairwise disjoint sets:

Constants C = S ∪ IPs ∪ {⊥,⊤,3} with the three sets pairwise disjoint. S is the set of all (ASCII)
strings, including the empty string ε. We write string values in a typewriter font. IPs is the
set of IP addresses.

Function Symbols to represent public keys, asymmetric encryption and decryption, symmetric en-
cryption and decryption, signatures, signature verification, MACs, MAC verification, message
extraction from signatures and MACs, and hashing, respectively: pub(·), enca(·, ·), deca(·, ·),
encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·), mac(·, ·), checkmac(·, ·), extractmsg(·), hash(·).

Sequences of any length ⟨⟩, ⟨·⟩, ⟨·, ·⟩, ⟨·, ·, ·⟩, etc. Note that formally, these sequence “constructors”
are also function symbols.

Projection Symbols to access sequence elements: πi(·) for all i ∈ N∅. Note that formally, projection
symbols are also function symbols.

Definition 12 (Nonces and Terms). Given this signature, we define X = {x1, x2, . . .} to be an
infinite set of variables, and N to be an infinite set of constants (nonces) such that Σ, X,N are
pairwise disjoint. With these, we can now define the set of terms TN (X) over Σ ∪X ∪N for any
set N ⊆ N inductively as follows:

• If t ∈ C ∪N ∪X, then t ∈ TN (X).

• If f ∈ Σ is an n-ary function symbol for some n ∈ N0, and t1, . . . , tn ∈ TN (X), then
f(t1, . . . , tn) ∈ TN (X).

21

Definition 13 (Equational Theory and Term Equivalence). Furthermore, we associate an
equational theory with Σ, modeling the semantics of the function symbols. Our equational theory
is defined by the following equations:

deca(enca(x, pub(y)), y) = x (3)
decs(encs(x, y), y) = x (4)

checksig(sig(x, y), pub(y)) = ⊤ (5)
extractmsg(sig(x, y)) = x (6)

checkmac(mac(x, y), y) = ⊤ (7)
extractmsg(mac(x, y)) = x (8)

πi(⟨x1, . . . , xn⟩) = xi if 1 ≤ i ≤ n (9)
πj(⟨x1, . . . , xn⟩) = 3 if j ̸∈ {1, . . . , n} (10)

πj(t) = 3 if t is not a sequence (11)

By ≡ we denote the congruence relation on TN (X) induced by the equational theory associated
with Σ. For example, we have that π1(deca(enca(⟨a, b⟩, pub(k)), k)) ≡ a.

Definition 14 (Ground Terms, Messages, Placeholders, Protomessages). TN = TN (∅) de-
notes the set of all terms over Σ∪N without variables, called ground terms. The set M of messages
(over N) is defined to be the set of ground terms TN .

We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders). The set M ν :=
TN (Vprocess) is called the set of protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key
and pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈ N , the message
enca(⟨a, b, c⟩, pub(k)) is interpreted to be the message ⟨a, b, c⟩ (the sequence of constants a, b, c)
encrypted by the public key pub(k).

Definition 15 (Events and Protoevents). An event (over IPs and M) is a term of the form
⟨a, f,m⟩, for a, f ∈ IPs and m ∈ M , where a is interpreted to be the receiver address and f is
the sender address. We denote by E the set of all events. Events over IPs and M ν are called
protoevents and are denoted Eν . By 2E⟨⟩ (or 2Eν⟨⟩, respectively) we denote the set of all sequences
of (proto)events, including the empty sequence (e.g., ⟨⟩, ⟨⟨a, f,m⟩, ⟨a′, f ′,m′⟩, . . . ⟩, etc.).

Definition 16 (Normal Form). Let t be a term. The normal form of t is acquired by reducing
the function symbols from left to right as far as possible using the equational theory shown in
Definition 13. For a term t, we denote its normal form as t↓.

Definition 17 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard
(variable ∗). We say that a term t matches pattern iff t can be acquired from pattern by replacing
each occurrence of the wildcard with an arbitrary term (which may be different for each instance of
the wildcard). We write t ∼ pattern. For a sequence of patterns patterns we write t ∼̇ patterns to
denote that t matches at least one pattern in patterns.

For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all
immediate subterms of t′ that do not match pattern.

Example 2. For example, for a pattern p = ⟨⊤, ∗⟩ we have that ⟨⊤, 42⟩ ∼ p, ⟨⊥, 42⟩ ̸∼ p, and

⟨⟨⊥,⊤⟩, ⟨⊤, 23⟩, ⟨a, b⟩, ⟨⊤,⊥⟩⟩| p = ⟨⟨⊤, 23⟩, ⟨⊤,⊥⟩⟩ .

22

Definition 18 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}) a term, and t1, . . . ,
tn ∈ TN ground terms. By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by
replacing all occurrences of xi in τ by ti, for all i ∈ {1, . . . , n}.

Definition 19 (Sequence Notations). Let t = ⟨t1, . . . , tn⟩ and r = ⟨r1, . . . , rm⟩ be sequences, s
a set, and x, y terms. We define the following operations:

• t ⊂⟨⟩ s ⇐⇒ t1, . . . , tn ∈ s

• x ∈⟨⟩ t ⇐⇒ ∃i : ti = x

• t+⟨⟩ y := ⟨t1, . . . , tn, y⟩

• t ∪ r := ⟨t1, . . . , tn, r1, . . . , rm⟩

• t−⟨⟩ y :=

{
⟨t1, . . . , ti−1, ti+1, . . . , tn⟩ if ∃i : ti = x (i.e., y ∈⟨⟩ t)
t otherwise (i.e., y ̸∈⟨⟩ t)

If y occurs more than once in t, t−⟨⟩ y non-deterministically removes one of the occurrences.

• t−⟨⟩∗ y is t with all occurrences of y removed.

• |t| := n. If t′ is not a sequence, we set |t′| := 3.

• For a finite set M with M = {m1, . . . ,mn} we use ⟨M⟩ to denote the term of the form
⟨m1, . . . ,mn⟩. The order of the elements does not matter; one is chosen arbitrarily.

Definition 20 (Dictionaries). A dictionary over X and Y is a term of the form

⟨⟨k1, v1⟩, . . . , ⟨kn, vn⟩⟩

where k1, . . . , kn ∈ X, v1, . . . , vn ∈ Y . We call every term ⟨ki, vi⟩, i ∈ {1, . . . , n}, an element of
the dictionary with key ki and value vi. We often write [k1 : v1, . . . , kn : vn] instead of ⟨⟨k1, v1⟩, . . . ,
⟨kn, vn⟩⟩. We denote the set of all dictionaries over X and Y by [X × Y]. Note that the empty
dictionary is equivalent to the empty sequence, i.e., [] = ⟨⟩; and dictionaries as such may contain
duplicate keys (however, all dictionary operations are only defined on dictionaries with unique keys).

Definition 21 (Operations on Dictionaries). Let z = [k1 : v1, k2 : v2, . . . , kn : vn] be a dictio-
nary with unique keys, i.e., ∀i, j : ki ̸= kj . In addition, let t and v be terms. We define the following
operations:

• t ∈ z ⇐⇒ ∃i ∈ {1, . . . , n} : ki = t

• z[t] :=

{
vi if ∃ki ∈ z : t = ki

⟨⟩ otherwise (i.e., if t ̸∈ z)

• z − t :=

{
[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1, . . . , kn : vn] if ∃ki ∈ z : t = ki

z otherwise (i.e., if t ̸∈ z)

• In our algorithm descriptions, we often write let z[t] := v. If t ̸∈ z prior to this operation, an
element ⟨t, v⟩ is appended to z. Otherwise, i.e., if there already is an element ⟨t, x⟩ ∈⟨⟩ z, this
element is updated to ⟨t, v⟩.

We emphasize that these operations are only defined on dictionaries with unique keys.

23

Given a term t = ⟨t1, . . . , tn⟩, we can refer to any subterm using a sequence of integers. The
subterm is determined by repeated application of the projection πi for the integers i in the sequence.
We call such a sequence a pointer :

Definition 22 (Pointers). A pointer is a sequence of non-negative integers. We write τ.p for the
application of the pointer p to the term τ . This operator is applied from left to right. For pointers
consisting of a single integer, we may omit the sequence braces for brevity.

Example 3. For the term τ = ⟨a, b, ⟨c, d, ⟨e, f⟩⟩⟩ and the pointer p = ⟨3, 1⟩, the subterm of τ at
the position p is c = π1(π3(τ)). Also, τ.3.⟨3, 1⟩ = τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we
will use the names of the components of a sequence that is of a defined form as pointers that point
to the corresponding subterms. E.g., if an Origin term is defined as ⟨host , protocol⟩ and o is an
Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 4.

Definition 23 (Concatenation of Sequences). For a sequence a = ⟨a1, . . . , ai⟩ and a sequence
b = ⟨b1, b2, . . . ⟩, we define the concatenation as a · b := ⟨a1, . . . , ai, b1, b2, . . . ⟩.

Definition 24 (Subtracting from Sequences). For a sequence X and a set or sequence Y we
define X \ Y to be the sequence X where for each element in Y , a non-deterministically chosen
occurence of that element in X is removed.

D.2. Message and Data Formats

We now provide some more details about data and message formats that are needed for the formal
treatment of the Web model presented in the following.

D.2.1. URLs

Definition 25. A URL is a term of the form

⟨URL, protocol , host , path, parameters, fragment⟩

with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S,
parameters ∈

[
S× TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to
be ⊥. We sometimes also write URLhostpath to denote the URL ⟨URL, S, host , path, ⟨⟩,⊥⟩.

As mentioned above, for specific terms, such as URLs, we typically use the names of its components
as pointers (see Definition 22):

Example 4. For the URL u = ⟨URL, a, b, c, d⟩, u.protocol = a. If, in the algorithms described
later, we say u.path := e then u = ⟨URL, a, b, c, e⟩ afterwards.

D.2.2. Origins

Definition 26. An origin is a term of the form ⟨host , protocol⟩ with host ∈ Doms and protocol ∈
{P, S}. We write Origins for the set of all origins.

Example 5. For example, ⟨FOO, S⟩ is the HTTPS origin for the domain FOO, while ⟨BAR, P⟩ is the
HTTP origin for the domain BAR.

24

D.2.3. Cookies

Definition 27. A cookie is a term of the form ⟨name, content⟩ where name ∈ TN , and content is
a term of the form ⟨value, secure, session, httpOnly⟩ where value ∈ TN , secure, session, httpOnly ∈
{⊤,⊥}. As name is a term, it may also be a sequence consisting of two parts. If the name consists
of two parts, we call the first part of the sequence (i.e., name.1) the prefix of the name. We write
Cookies for the set of all cookies and Cookiesν for the set of all cookies where names and values are
defined over TN (V).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted
HTTP connections.2 If the session flag is set, this cookie will be deleted as soon as the browser is
closed. The httpOnly attribute controls whether scripts have access to this cookie.

When the __Host prefix (see [2]) of a cookie is set (i.e., name consists of two parts and name.1 ≡
__Host), the browser accepts the cookie only if the secure attribute is set. As such cookies are only
transferred over secure channels (i.e., with TLS), the cookie cannot be set by a network attacker.
Note that the WIM does not model the domain attribute of the Set-Cookie header, so cookies in
the WIM are always sent to the originating domain and not some subdomain. Therefore, the WIM
models only the __Host prefix, but not the __Secure prefix.

Also note that cookies of the form described here are only contained in HTTP(S) responses. In
HTTP(S) requests, only the components name and value are transferred as a pairing of the form
⟨name, value⟩.

D.2.4. HTTP Messages

Definition 28. An HTTP request is a term of the form shown in (12). An HTTP response is a
term of the form shown in (13).

⟨HTTPReq, nonce, method , host , path, parameters, headers, body⟩ (12)
⟨HTTPResp, nonce, status, headers, body⟩ (13)

The components are defined as follows:

• nonce ∈ N serves to map each response to the corresponding request.

• method ∈ Methods is one of the HTTP methods.

• host ∈ Doms is the host name in the HOST header of HTTP/1.1.

• path ∈ S indicates the resource path at the server side.

• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the
HTTP standard).

• parameters ∈
[
S× TN

]
contains URL parameters.

• headers ∈
[
S× TN

]
contains request/response headers. The dictionary elements are terms of

one of the following forms:

– ⟨Origin, o⟩ where o is an origin,

– ⟨Set-Cookie, c⟩ where c is a sequence of cookies,

– ⟨Cookie, c⟩ where c ∈
[
TN × TN

]
(note that in this header, only names and values of

cookies are transferred, i.e., no attributes),
2Note that secure cookies can be set over unencrypted connections (c.f. RFC 6265).

25

– ⟨Location, l⟩ where l ∈ URLs,

– ⟨Referer, r⟩ where r ∈ URLs,

– ⟨Strict-Transport-Security,⊤⟩,
– ⟨Authorization, ⟨username, password⟩⟩ where username, password ∈ S (this header

models the ‘Basic’ HTTP Authentication Scheme, see [RFC7617]),

– ⟨ReferrerPolicy, p⟩ where p ∈ {noreferrer, origin}.

• body ∈ TN in requests and responses.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Request and Response).

r :=⟨HTTPReq, n1, POST, example.com, /show, ⟨⟨index, 1⟩⟩,
[Origin : ⟨example.com, S⟩], ⟨foo, bar⟩⟩ (14)

s :=⟨HTTPResp, n1, 200, ⟨⟨Set-Cookie, ⟨⟨SID, ⟨n2,⊥,⊥,⊤⟩⟩⟩⟩⟩, ⟨somescript, x⟩⟩ (15)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (14), with
an Origin header and a body that contains ⟨foo, bar⟩. A possible response is shown in (15), which
contains an httpOnly cookie with name SID and value n2 as well as a string somescript representing
a script that can later be executed in the browser (see Section D.11) and the scripts initial state x.

Encrypted HTTP Messages For HTTPS, requests are encrypted using the public key of the server.
Such a request contains an (ephemeral) symmetric key chosen by the client that issued the request.
The server is supposed to encrypt the response using the symmetric key.

Definition 29. An encrypted HTTP request is of the form enca(⟨m, k′⟩, k), where k ∈ terms,
k′ ∈ N , and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the
form encs(m

′, k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests
and responses HTTPSRequests or HTTPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms
contain the same nonce.

Example 7.

enca(⟨r, k′⟩, pub(kexample.com)) (16)
encs(s, k

′) (17)

The term (16) shows an encrypted request (with r as in (14)). It is encrypted using the public key
pub(kexample.com). The term (17) is a response (with s as in (15)). It is encrypted symmetrically
using the (symmetric) key k′ that was sent in the request (16).

D.2.5. DNS Messages

Definition 30. A DNS request is a term of the form ⟨DNSResolve, domain,nonce⟩ where domain
∈ Doms, nonce ∈ N . We call the set of all DNS requests DNSRequests.

Definition 31. A DNS response is a term of the form ⟨DNSResolved, domain, result ,nonce⟩ with
domain ∈ Doms, result ∈ IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS response
that they send back so that the party which issued the request can match it with the request.

26

http://example.com/show?index=1

D.3. Atomic Processes, Systems and Runs

Entities that take part in a network are modeled as atomic processes. An atomic process takes a
term that describes its current state and an event as input, and then (non-deterministically) outputs
a new state and a sequence of events.

Definition 32 (Generic Atomic Processes and Systems). A (generic) atomic process is a tu-
ple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E ×Zp)× (2Eν⟨⟩× TN (Vprocess)) (input event and
old state map to sequence of output events and new state), and sp0 ∈ Zp is the initial state of p. For
any new state s and any sequence of nonces (η1, η2, . . .) we demand that s[η1/ν1, η2/ν2, . . .] ∈ Zp.
A system P is a (possibly infinite) set of atomic processes.

Definition 33 (Configurations). A configuration of a system P is a tuple (S,E,N) where the
state of the system S maps every atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence
of waiting events E is an infinite sequence3 (e1, e2, . . .) of events waiting to be delivered, and N is
an infinite sequence of nonces (n1, n2, . . .).

Definition 34 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−−→
p→Eout

(S′, E′, N ′)

where

1. (S,E,N) and (S′, E′, N ′) are configurations of P ,

2. ein = ⟨a, f,m⟩ ∈ E is an event,

3. p ∈ P is a process,

4. Eout is a sequence (term) of events

such that there exists

1. a sequence (term) Eν
out ⊆ 2Eν⟨⟩ of protoevents,

2. a term sν ∈ TN (Vprocess),

3. a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eν
out (ordered lexicographically),

4. a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with

1. ((ein, S(p)), (E
ν
out, s

ν)) ∈ Rp and a ∈ Ip,

2. Eout = Eν
out[η1/v1, . . . , ηi/vi],

3. S′(p) = sν [η1/v1, . . . , ηi/vi] and S′(p′) = S(p′) for all p′ ̸= p,

4. E′ = Eout · (E \ {ein}),

5. N ′ = N \Nν .

3Here: Not in the sense of terms as defined earlier.

27

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the
events in the list of waiting events E. In its output (new state and output events), we replace any
occurences of placeholders νx by “fresh” nonces from N (which we then remove from N). The output
events are then prepended to the list of waiting events, and the state of the process is reflected in
the new configuration.

Definition 35 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of
nonces. A run ρ of a system P initiated by E0 with nonces N0 is a finite sequence of configurations
((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite sequence of configurations ((S0, E0, N0), . . .) such
that S0(p) = sp0 for all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) for all 0 ≤ i < n (finite run) or
for all i ≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a finite run ρ by ρ(p).

When we write that a processing step P = (S,E,N) −→ (S′, E′, N ′) is in a run ρ of some

system, we mean that there is an index i such that (S,E,N) = (Si, Ei, N i) ∈ ρ and (S′, E′, N ′) =
(Si+1, Ei+1, N i+1) ∈ ρ.

Usually, we initiate runs with a set E0 containing infinite trigger events of the form ⟨a, a, TRIGGER⟩
for each a ∈ IPs, interleaved by address.

D.4. Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states that
they output can be computed (more formally, derived) from the current input event and state. For
this purpose, we first define what it means to derive a message from given messages.

Definition 36 (Deriving Terms). Let M be a set of ground terms. We say that a term m
can be derived from M with variables V if there exist m1, . . . ,mn ∈ M with n ≥ 0, and τ ∈
T∅({x1, . . . , xn} ∪ V) such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dV (M) the set of all
messages that can be derived from M with variables V .

For example, the term a can be derived from the set of terms {enca(⟨a, b, c⟩, pub(k)), k}, i.e., a ∈
d∅({enca(⟨a, b, c⟩, pub(k)), k}).

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms),
an initial state, and a relation that takes an event and a state as input and (non-deterministically)
returns a new state and a sequence of events. The relation models a computation step of the process.
It is required that the output can be derived from the input event and the state.

Definition 37 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY
process) is a tuple p = (Ip, Zp, Rp, sp0) such that p is an atomic process and for all events e ∈ E ,
sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e, s), (E, s′)) ∈ Rp it holds true that
E, s′ ∈ dVprocess({e, s}).

D.5. Attackers

The so-called attacker process is a Dolev-Yao process which records all messages it receives and
outputs any finite sequence of events it can possibly derive from its recorded messages. Hence, an
attacker process carries out all attacks any Dolev-Yao process could possibly perform. Attackers
can corrupt other parties (using corrupt messages).

28

Definition 38 (Atomic Attacker Process). An (atomic) attacker process for a set of sender
addresses A ⊆ IPs is an atomic DY process p = (I, Z,R, s0) such that for all events e, and s ∈ TN we
have that ((e, s), (E, s′)) ∈ R iff s′ = ⟨e, E, s⟩ and E = ⟨⟨a1, f1,m1⟩, . . . , ⟨an, fn,mn⟩⟩ with n ∈ N,
a1, . . . , an ∈ IPs, f1, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}).

Note that in a Web system, we distinguish between two kinds of attacker processes: Web attackers
and network attackers. Both kinds match the definition above, but differ in the set of assigned
addresses in the context of a Web system. While for Web attackers, the set of addresses Ip is disjoint
from other Web attackers and honest processes, i.e., Web attackers participate in the network as any
other party, the set of addresses Ip of a network attacker is not restricted. Hence, a network attacker
can intercept events addressed to any party as well as spoof all addresses. Note that one network
attacker subsumes any number of Web attackers as well as any number of network attackers.

D.6. Notations for Functions and Algorithms

When describing algorithms, we use the following notations:

D.6.1. Non-deterministic choosing and iteration

The notation let n← N is used to describe that n is chosen non-deterministically from the set (or
sequence) N . If N is empty, the corresponding processing step in which this selection happens does
not finish. We write for s ∈ M do to denote that the following commands are repeated for every
element in M , where the variable s is the current element. The order in which the elements are
processed is chosen non-deterministically. We write, for example,

let x, y such that ⟨Constant, x, y⟩ ≡ t if possible; otherwise doSomethingElse
for some variables x, y, a string Constant, and some term t to express that x := π2(t), and
y := π3(t) if Constant ≡ π1(t) and if |⟨Constant, x, y⟩| = |t|, and that otherwise x and y are not
set and doSomethingElse is executed.

D.6.2. Function calls

When calling functions that do not return anything, we write
call FUNCTION_NAME(x, y)

to describe that a function FUNCTION_NAME is called with two variables x and y as parameters.
If that function executes the command stop E, s′, the processing step terminates, where E is the
sequence of events output by the associated process and s′ is its new state. If that function does not
terminate with a stop, the control flow returns to the calling function at the next line after the call.

When calling a function that has a return value, we omit the call and directly write
let z := FUNCTION_NAME(x, y)

to assign the return value to a variable z after the function returns. Note that the semantics for
execution of stop within such functions is the same as for functions without a return value.

D.6.3. Stop without output

We write stop (without further parameters) to denote that there is no output and no change in the
state.

D.6.4. Placeholders

In several places throughout the algorithms we use placeholders to generate “fresh” nonces as
described in our communication model (see Definition 12). Table 1 shows a list of some of the

29

Placeholder Usage
ν1 Algorithm 22, new window nonces
ν2 Algorithm 22, new HTTP request nonce
ν3 Algorithm 22, lookup key for pending HTTP requests entry
ν4 Algorithm 20, new HTTP request nonce (multiple lines)
ν5 Algorithm 20, new subwindow nonce
ν6 Algorithm 21, new HTTP request nonce
ν7 Algorithm 21, new document nonce
ν8 Algorithm 17, lookup key for pending DNS entry
ν9 Algorithm 14, new window nonce
ν10, . . . Algorithm 20, replacement for placeholders in script output

Table 1: List of placeholders used in browser algorithms.

placeholders, generally denoted by ν with some subscript to distinguish between multiple fresh
values.

D.6.5. Abbreviations for URLs and Origins

We sometimes use an abbreviation for URLs. We write URLdpath to describe the following URL
term: ⟨URL, S, d, path, ⟨⟩⟩. If the domain d belongs to some distinguished process P and it is the only
domain associated to this process, we may also write URLPpath . For a (secure) origin ⟨d, S⟩ of some
domain d, we also write origind. Again, if the domain d belongs to some distinguished process P and
d is the only domain associated to this process, we may write originP.

D.7. Browsers

Here, we present the formal model of browsers.

D.7.1. Scripts

Recall that a script models JavaScript running in a browser. Scripts are defined similarly to Dolev-
Yao processes. When triggered by a browser, a script is provided with state information. The script
then outputs a term representing a new internal state and a command to be interpreted by the
browser (see also the specification of browsers below).

Definition 39 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of
variables used in scripts.

Definition 40 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN ,
s′ ∈ TN (Vscript) with (s, s′) ∈ R it follows that s′ ∈ dVscript(s).

A script is called by the browser which provides it with state information (such as the script’s
last scriptstate and limited information about the browser’s state) s. The script then outputs
a term s′, which represents the new scriptstate and some command which is interpreted by the
browser. The term s′ may contain variables λ1, . . . which the browser will replace by (otherwise
unused) placeholders ν1, . . . which will be replaced by nonces once the browser DY process finishes
(effectively providing the script with a way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is derivable
from the input.

30

Definition 41 (Attacker Script). The attacker script Ratt outputs everything that is derivable
from the input, i.e., Ratt = {(s, s′) | s ∈ TN , s′ ∈ dVscript(s)}.

D.7.2. Web Browser State

Before we can define the state of a Web browser, we first have to define windows and documents.

Definition 42. A window is a term of the form w = ⟨nonce, documents, opener⟩ with nonce ∈ N ,
documents ⊂⟨⟩ Documents (defined below), opener ∈ N ∪ {⊥} where d.active = ⊤ for exactly one
d ∈⟨⟩ documents if documents is not empty (we then call d the active document of w). We write
Windows for the set of all windows. We write w.activedocument to denote the active document
inside window w if it exists and ⟨⟩ else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously

viewed documents (available to the user via the “back” button) and the documents in the window
term to the right of the currently active document are documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a
document term). In this case, the opener part of the term b is the nonce of a, i.e., b.opener = a.nonce.

Definition 43. A document d is a term of the form

⟨nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active⟩

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂⟨⟩ Windows, active ∈ {⊤,⊥}. A limited doc-
ument is a term of the form ⟨nonce, subwindows⟩ with nonce, subwindows as above. A window
w ∈⟨⟩ subwindows is called a subwindow (of d). We write Documents for the set of all documents.
For a document term d we write d.origin to denote the origin of the document, i.e., the term
⟨d.location.host, d.location.protocol⟩ ∈ Origins.

We will refer to the document nonce as (document) reference.

Definition 44. For two window terms w and w′ we write

w
childof−−−−→ w′

if w ∈⟨⟩ w′.activedocument.subwindows. We write childof+−−−−−→ for the transitive closure and we write
childof∗−−−−−→ for the reflexive transitive closure.

In the Web browser state, HTTP(S) messages are tracked using references, where we distinguish
between references for XMLHttpRequests and references for normal HTTP(S) requests.

Definition 45. A reference for a normal HTTP(S) request is a sequence of the form ⟨REQ,nonce⟩,
where nonce is a window reference. A reference for a XMLHttpRequest is a sequence of the form
⟨XHR,nonce, xhrreference⟩, where nonce is a document reference and xhrreference is some nonce
that was chosen by the script that initiated the request.

We can now define the set of states of Web browsers. Note that we use the dictionary notation
that we introduced in Definition 20.

31

Definition 46. The set of states Zwebbrowser of a Web browser atomic Dolev-Yao process consists
of the terms of the form

⟨windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping ,

sts,DNSaddress, pendingDNS , pendingRequests, isCorrupted⟩

with the subterms as follows:

• windows ⊂⟨⟩ Windows contains a list of window terms (modeling top-level windows, or browser
tabs) which contain documents, which in turn can contain further window terms (iframes).

• ids ⊂⟨⟩ TN is a list of identities that are owned by this browser (i.e., belong to the user of the
browser).

• secrets ∈
[
Origins× TN

]
contains a list of secrets that are associated with certain origins (i.e.,

passwords of the user of the browser at certain websites). Note that this structure allows to
have a single secret under an origin or a list of secrets under an origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored
for specific domains.

• localStorage ∈
[
Origins× TN

]
stores the data saved by scripts using the localStorage API

(separated by origins).

• sessionStorage ∈
[
OR × TN

]
for OR := {⟨o, r⟩| o ∈ Origins, r ∈ N } similar to localStorage,

but the data in sessionStorage is additionally separated by top-level windows.

• keyMapping ∈
[
Doms× TN

]
maps domains to TLS encryption keys.

• sts ⊂⟨⟩ Doms stores the list of domains that the browser only accesses via TLS (strict transport
security).

• DNSaddress ∈ IPs defines the IP address of the DNS server.

• pendingDNS ∈
[
N × TN

]
contains one pairing per unanswered DNS query of the form

⟨reference, request , url⟩. In these pairings, reference is an HTTP(S) request reference (as
above), request contains the HTTP(S) message that awaits DNS resolution, and url con-
tains the URL of said HTTP request. The pairings in pendingDNS are indexed by the DNS
request/response nonce.

• pendingRequests ∈ TN contains pairings of the form ⟨reference, request , url , key , f⟩ with the
terms reference, request , and url as in pendingDNS , key is the symmetric encryption key if
HTTPS is used or ⊥ otherwise, and f is the IP address of the server to which the request was
sent.

• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.

In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to
store all observed messages).

D.7.3. Web Browser Relation

We will now define the relation Rwebbrowser of a standard HTTP browser. We first introduce some
notations and then describe the functions that are used for defining the browser main algorithm.
We then define the browser relation.

32

Helper Functions In the following description of the Web browser relation Rwebbrowser we use the
helper functions Subwindows, Docs, Clean, CookieMerge, AddCookie, and NavigableWindows.

Subwindows and Docs. Given a browser state s, Subwindows(s) denotes the set of all pointers4

to windows in the window list s.windows and (recursively) the subwindows of their active documents.
We exclude subwindows of inactive documents and their subwindows. With Docs(s) we denote the
set of pointers to all active documents in the set of windows referenced by Subwindows(s).

Definition 47. For a browser state s we denote by Subwindows(s) the minimal set of pointers that
satisfies the following conditions: (1) For all windows w ∈⟨⟩ s.windows there is a p ∈ Subwindows(s)
such that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of the window s.p and
every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that s.p ′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such
that for every p ∈ Subwindows(s) with s.p.activedocument ̸≡ ⟨⟩, there exists a pointer p ′ ∈ Docs(s)
with s.p′ = s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive
documents and their subwindows.

Clean. The function Clean will be used to determine which information about windows and
documents the script running in the document d has access to.

Definition 48. Let s be a browser state and d a document. By Clean(s, d) we denote the term that
equals s.windows but with (1) all inactive documents removed (including their subwindows etc.),
(2) all subterms that represent non-same-origin documents w.r.t. d replaced by a limited document
d′ with the same nonce and the same subwindow list, and (3) the values of the subterms headers
for all documents set to ⟨⟩. (Note that non-same-origin documents on all levels are replaced by their
corresponding limited document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When
used in the browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a
sequence of new cookies that was output by some script. The sequences are merged into a set of
cookies using an algorithm that is based on the Storage Mechanism algorithm described in RFC6265.

Definition 49. For a sequence of cookies (with pairwise different names) oldcookies, a sequence
of cookies newcookies, and a string protocol ∈ {P, S}, the set CookieMerge(oldcookies,newcookies,
protocol) is defined by the following algorithm: From newcookies remove all cookies c that have
c.content.httpOnly ≡ ⊤ or where (c.name.1 ≡ __Host) ∧ ((protocol ≡ P) ∨ (c.secure ≡ ⊥)). For
any c, c′ ∈⟨⟩ newcookies, c.name ≡ c′.name, remove the cookie that appears left of the other in
newcookies. Let m be the set of cookies that have a name that either appears in oldcookies
or in newcookies, but not in both. For all pairs of cookies (cold, cnew) with cold ∈⟨⟩ oldcookies,
cnew ∈⟨⟩ newcookies, cold.name ≡ cnew.name, add cnew to m if cold.content.httpOnly ≡ ⊥ and add
cold to m otherwise. The result of CookieMerge(oldcookies,newcookies, protocol) is m.

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the
sequence of cookies contained in the sequence oldcookies. It is again based on the algorithm
described in RFC6265 but simplified for the use in the browser model.

4Recall the definition of a pointer in Definition 22.

33

Algorithm 14 Web Browser Model: Determine window for navigation.
1: function GETNAVIGABLEWINDOW(w , window , noreferrer , s′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡ ⊤ then
4: let w′ := ⟨ν9, ⟨⟩,⊥⟩
5: else
6: let w′ := ⟨ν9, ⟨⟩, s′.w .nonce⟩
7: let s′.windows := s′.windows +⟨⟩ w′

↪→ and let w ′ be a pointer to this new element in s′

8: return w ′

9: let w ′ ← NavigableWindows(w , s′) such that s′.w ′.nonce ≡ window
↪→ if possible; otherwise return w

10: return w ′

Algorithm 15 Web Browser Model: Determine same-origin window.
1: function GETWINDOW(w , window , s′)
2: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window

↪→ if possible; otherwise return w
3: if s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin then
4: return w ′

5: return w

Definition 50. For a sequence of cookies (with pairwise different names) oldcookies, a cookie c, and
a string protocol ∈ {P, S} (denoting whether the HTTP response was received from an insecure or a
secure origin), the sequence AddCookie(oldcookies, c, protocol) is defined by the following algorithm:
Let m := oldcookies. If (c.name.1 ≡ __Host)∧¬((protocol ≡ S)∧ (c.secure ≡ ⊤)), then return m,
else: Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return m.

NavigableWindows. The function NavigableWindows returns a set of windows that a document
is allowed to navigate. We closely follow [1], Section 5.1.4 for this definition.

Definition 51. The set NavigableWindows(w , s′) is the set W ⊆ Subwindows(s′) of pointers to
windows that the active document in w is allowed to navigate. The set W is defined to be the
minimal set such that for every w ′ ∈ Subwindows(s′) the following is true:

• If s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin (i.e., the active documents
in w and w ′ are same-origin), then w ′ ∈W , and

• If s′.w
childof∗−−−−−→ s′.w ′ ∧ ∄w ′′ ∈ Subwindows(s′) with s′.w ′ childof∗−−−−−→ s′.w ′′ (w ′ is a top-level

window and w is an ancestor window of w ′), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′ childof+−−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w .activedocument.origin (w ′ is not a top-level window
but there is an ancestor window p of w ′ with an active document that has the same origin as
the active document in w), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′.opener = s′.p.nonce ∧ p ∈ W (w ′ is a top-level
window—it has an opener—and w is allowed to navigate the opener window of w ′, p), then
w ′ ∈W .

Functions

34

Algorithm 16 Web Browser Model: Cancel pending requests for given window.
1: function CANCELNAV(reference, s′)
2: remove all ⟨reference, req , url , key , f ⟩ from s′.pendingRequests for any req , url , key , f
3: remove all ⟨x, ⟨reference,message, url⟩⟩ from s′.pendingDNS

↪→ for any x , message, url
4: return s′

Algorithm 17 Web Browser Model: Prepare headers, do DNS resolution, save message.
1: function HTTP_SEND(reference, message, url , origin, referrer , referrerPolicy , a, s′)
2: if message.host ∈⟨⟩ s′.sts then
3: let url .protocol := S

4: let cookies := ⟨{⟨c.name, c.content.value⟩ | c ∈⟨⟩ s′.cookies [message.host]
↪→ ∧ (c.content.secure ≡ ⊤ =⇒ (url .protocol ≡ S))}⟩

5: let message.headers[Cookie] := cookies
6: if origin ̸≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥

10: if referrer ̸≡ ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := ⟨URL, referrer .protocol, referrer .host, /, ⟨⟩,⊥⟩

→ Referrer stripped down to origin.
13: let referrer .fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := ⟨reference,message, url⟩
16: stop ⟨⟨s′.DNSaddress, a, ⟨DNSResolve,message.host, ν8⟩⟩⟩, s′

Algorithm 18 Web Browser Model: Navigate a window backward.
1: function NAVBACK(w ′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w ′.documents.j .active ≡ ⊤ then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j − 1).active := ⊤
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop ⟨⟩, s′

Algorithm 19 Web Browser Model: Navigate a window forward.
1: function NAVFORWARD(w ′, s′)
2: if ∃ j ∈ N such that s′.w ′.documents.j .active ≡ ⊤

↪→ ∧ s′.w ′.documents.(j + 1) ∈ Documents then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j + 1).active := ⊤
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

6: stop ⟨⟩, s′

35

Algorithm 20 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , a, s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := ⟨{⟨c.name, c.content.value⟩|c ∈⟨⟩ s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly ≡ ⊥
↪→ ∧

(
c.content.secure ≡ ⊤ =⇒

(
s′.d .origin.protocol ≡ S

))
}⟩

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
⟨s′.d .origin, tlw .nonce⟩

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R := script−1(s′.d .script) if possible; otherwise stop
9: let in := ⟨tree, s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage, sessionStorage, s′.ids, secrets⟩
10: let state ′ ← TN (Vprocess), cookies ′ ← Cookiesν , localStorage ′ ← TN (Vprocess),

↪→ sessionStorage ′ ← TN (Vprocess), command ← TN (Vprocess),
↪→ out := ⟨state ′, cookies ′, localStorage ′, sessionStorage ′, command⟩
↪→ such that out := outλ[ν10/λ1, ν11/λ2, . . .] with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ ⟨CookieMerge(s′.cookies
[
s′.d .origin.host

]
, cookies ′, s′.d .origin.protocol)⟩

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
⟨s′.d .origin, tlw .nonce⟩

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: let referrer := s′.d .location
16: let referrerPolicy := s′.d .headers[ReferrerPolicy]
17: let docorigin := s′.d .origin
18: switch command do
19: case ⟨HREF, url , hrefwindow ,noreferrer⟩
20: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , noreferrer , s′)
21: let reference := ⟨REQ, s′.w ′.nonce⟩
22: let req := ⟨HTTPReq, ν4, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
23: if noreferrer ≡ ⊤ then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(reference, s′)
26: call HTTP_SEND(reference, req , url , ⊥, referrer , referrerPolicy , a, s′)
27: case ⟨IFRAME, url ,window⟩
28: if window ≡ _SELF then
29: let w ′ := w
30: else
31: let w ′ := GETWINDOW(w ,window , s′)

32: let req := ⟨HTTPReq, ν4, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
33: let w′ := ⟨ν5, ⟨⟩,⊥⟩
34: let s′.w ′.activedocument.subwindows := s′.w ′.activedocument.subwindows+⟨⟩ w′

35: call HTTP_SEND(⟨REQ, ν5⟩, req , url , ⊥, referrer , referrerPolicy , a, s′)
This algorithm is continued on the next page.

36

36: case ⟨FORM, url ,method , data, hrefwindow⟩
37: if method ̸∈ {GET, POST} then
38: stop
39: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
40: let reference := ⟨REQ, s′.w ′.nonce⟩
41: if method = GET then
42: let body := ⟨⟩
43: let parameters := data
44: let origin := ⊥
45: else
46: let body := data
47: let parameters := url .parameters
48: let origin := docorigin

49: let req := ⟨HTTPReq, ν4, method , url .host, url .path, parameters, ⟨⟩, body⟩
50: let s′ := CANCELNAV(reference, s′)
51: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
52: case ⟨SETSCRIPT,window , script⟩
53: let w ′ := GETWINDOW(w ,window , s′)
54: let s′.w ′.activedocument.script := script
55: stop ⟨⟩, s′

56: case ⟨SETSCRIPTSTATE,window , scriptstate⟩
57: let w ′ := GETWINDOW(w ,window , s′)
58: let s′.w ′.activedocument.scriptstate := scriptstate
59: stop ⟨⟩, s′

60: case ⟨XMLHTTPREQUEST, url ,method , data, xhrreference⟩
61: if method ∈ {CONNECT, TRACE, TRACK} ∨ xhrreference ̸∈ Vprocess ∪ {⊥} then
62: stop
63: if url .host ̸≡ docorigin.host ∨ url .protocol ̸≡ docorigin.protocol then
64: stop
65: if method ∈ {GET, HEAD} then
66: let data := ⟨⟩
67: let origin := ⊥
68: else
69: let origin := docorigin

70: let req := ⟨HTTPReq, ν4, method , url .host, url .path, url .parameters, ⟨⟩, data⟩
71: let reference := ⟨XHR, s′.d .nonce, xhrreference⟩
72: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
73: case ⟨BACK,window⟩
74: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
75: call NAVBACK(w ′, s′)
76: case ⟨FORWARD,window⟩
77: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
78: call NAVFORWARD(w ′, s′)
79: case ⟨CLOSE,window⟩
80: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
81: remove s′.w ′ from the sequence containing it
82: stop ⟨⟩, s′

83: case ⟨POSTMESSAGE,window ,message, origin⟩
84: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window
85: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ ⊤

↪→ ∧ (origin ̸≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
86: let s′.w ′.documents.j .scriptinputs := s′.w ′.documents.j .scriptinputs

↪→ +⟨⟩ ⟨POSTMESSAGE, s′.w .nonce, docorigin,message⟩
87: stop ⟨⟩, s′

88: case else
89: stop

37

Algorithm 21 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response, reference, request , requestUrl , a, f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈⟨⟩ response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host]

↪→ := AddCookie(s′.cookies [request .host] , c, requestUrl .protocol)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +⟨⟩ request .host

7: if Referer ∈ request .headers then
8: let referrer := request .headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if Origin ∈ request .headers

↪→ ∧ request .headers[Origin] ̸= 3

↪→ ∧ (⟨url .host, url .protocol⟩ ≡ ⟨request .host, requestUrl .protocol⟩
↪→ ∨ ⟨request .host, requestUrl .protocol⟩ ≡ request .headers[Origin]) then

18: let origin := request .headers[Origin]
19: else
20: let origin := 3

21: if response.status ≡ 303 ∧ request .method ̸∈ {GET, HEAD} then
22: let method ′ := GET

23: let body ′ := ⟨⟩
24: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ π2(reference) then → Do not redirect XHRs.
25: let req := ⟨HTTPReq, ν6, method ′, url .host, url .path, url .parameters, ⟨⟩, body ′⟩
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference, req , url , origin, referrer , referrerPolicy , a, s′)
28: else
29: stop ⟨⟩, s′

This algorithm is continued on the next page.

38

30: switch π1(reference) do
31: case REQ

32: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference) if possible;
↪→ otherwise stop → normal response

33: if response.body ̸∼ ⟨∗, ∗⟩ then
34: stop ⟨⟩, s′

35: let script := π1(response.body)
36: let scriptstate := π2(response.body)
37: let d := ⟨ν7, requestUrl , response.headers, referrer , script , scriptstate, ⟨⟩, ⟨⟩,⊤⟩
38: if s′.w .documents ≡ ⟨⟩ then
39: let s′.w .documents := ⟨d⟩
40: else
41: let i ← N such that s′.w .documents.i .active ≡ ⊤
42: let s′.w .documents.i .active := ⊥
43: remove s′.w .documents.(i + 1) and all following documents

↪→ from s′.w .documents
44: let s′.w .documents := s′.w .documents +⟨⟩ d

45: stop ⟨⟩, s′

46: case XHR

47: let w ← Subwindows(s′), d such that s′.d .nonce ≡ π2(reference)
↪→ ∧ s′.d = s′.w .activedocument if possible; otherwise stop
→ process XHR response

48: let headers := response.headers− Set-Cookie
49: let s′.d .scriptinputs := s′.d .scriptinputs +⟨⟩

⟨XMLHTTPREQUEST, headers, response.body, π3(reference)⟩
50: stop ⟨⟩, s′

• The function GETNAVIGABLEWINDOW (Algorithm 14) is called by the browser to determine
the window that is actually navigated when a script in the window s′.w provides a window
reference for navigation (e.g., for opening a link). When it is given a window reference (nonce)
window , this function returns a pointer to a selected window term in s′:

– If window is the string _BLANK, a new window is created and a pointer to that window
is returned.

– If window is a nonce (reference) and there is a window term with a reference of that
value in the windows in s′, a pointer w ′ to that window term is returned, as long as the
window is navigable by the current window’s document (as defined by NavigableWindows
above).

In all other cases, w is returned instead (the script navigates its own window).

• The function GETWINDOW (Algorithm 15) takes a window reference as input and returns a
pointer to a window as above, but it checks only that the active documents in both windows
are same-origin. It creates no new windows.

• The function CANCELNAV (Algorithm 16) is used to stop any pending requests for a specific
window. From the pending requests and pending DNS requests it removes any requests with
the given window reference.

• The function HTTP_SEND (Algorithm 17) takes an HTTP request message as input, adds
cookie and origin headers to the message, creates a DNS request for the hostname given in the
request and stores the request in s′.pendingDNS until the DNS resolution finishes. reference is
a reference as defined in Definition 45. url contains the full URL of the request (this is mainly
used to retrieve the protocol that should be used for this message, and to store the fragment

39

identifier for use after the document was loaded). origin is the origin header value that is to
be added to the HTTP request.

• The functions NAVBACK (Algorithm 18) and NAVFORWARD (Algorithm 19), navigate a win-
dow backward or forward. More precisely, they deactivate one document and activate that
document’s preceding document or succeeding document, respectively. If no such predeces-
sor/successor exists, the functions do not change the state.

• The function RUNSCRIPT (Algorithm 20) performs a script execution step of the script in the
document s′.d (which is part of the window s′.w). A new script and document state is chosen
according to the relation defined by the script and the new script and document state is saved.
Afterwards, the command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm 21) is responsible for processing an HTTP
response (response) that was received as the response to a request (request) that was sent
earlier. reference is a reference as defined in Definition 45. requestUrl contains the URL used
when retrieving the document.

The function first saves any cookies that were contained in the response to the browser state,
then checks whether a redirection is requested (Location header). If that is not the case, the
function creates a new document (for normal requests) or delivers the contents of the response
to the respective receiver (for XHR responses).

Browser Relation We can now define the relation Rwebbrowser of a Web browser atomic process as
follows:

Definition 52. The pair ((⟨a, f,m⟩, s) , (M, s′)) belongs to Rwebbrowser iff the non-deterministic
Algorithm 22 (or any of the functions called therein), when given (⟨a, f,m⟩, s) as input, terminates
with stop M , s′, i.e., with output M and s′.

Recall that ⟨a, f,m⟩ is an (input) event and s is a (browser) state, M is a sequence of (output)
protoevents, and s′ is a new (browser) state (potentially with placeholders for nonces).

D.8. Definition of Web Browsers

Finally, we define Web browser atomic Dolev-Yao processes as follows:

Definition 53 (Web Browser atomic Dolev-Yao Process). A Web browser atomic Dolev-
Yao process is an atomic Dolev-Yao process of the form p = (Ip, Zwebbrowser, Rwebbrowser, s

p
0) for a set

Ip of addresses, Zwebbrowser and Rwebbrowser as defined above, and an initial state sp0 ∈ Zwebbrowser.

Definition 54 (Web Browser Initial State). An initial state sp0 ∈ Zwebbrowser for a browser
process p is a Web browser state (Definition 46) with the following properties:

• sp0.windows ≡ ⟨⟩

• sp0.ids ⊂⟨⟩ TN (intended to be constrained by instantiations of the Web Infrastructure Model)

• sp0.secrets ∈
[
Origins× TN

]
(intended to be constrained by instantiations of the Web Infra-

structure Model)

• sp0.cookies ≡ ⟨⟩

• sp0.localStorage ≡ ⟨⟩

40

• sp0.sessionStorage ≡ ⟨⟩

• sp0.keyMapping ∈
[
Doms× TN

]
(intended to be constrained by instantiations of the Web

Infrastructure Model)

• sp0.sts ≡ ⟨⟩

• sp0.DNSaddress ∈ IPs (note that this includes the possibility of using an attacker-controlled
address)

• sp0.pendingDNS ≡ ⟨⟩

• sp0.pendingRequests ≡ ⟨⟩

• sp0.isCorrupted ≡ ⊥

Note that instantiations of the Web Infrastructure Model may define different conditions for a Web
browser’s initial state.

D.9. Helper Functions

In order to simplify the description of scripts, we use several helper functions.

CHOOSEINPUT (Algorithm 23) The state of a document contains a term, say scriptinputs, which
records the input this document has obtained so far (via XHRs and postMessages). If the script of the
document is activated, it will typically need to pick one input message from scriptinputs and record
which input it has already processed. For this purpose, the function CHOOSEINPUT(s′, scriptinputs)
is used, where s′ denotes the scripts current state. It saves the indexes of already handled messages
in the scriptstate s′ and chooses a yet unhandled input message from scriptinputs. The index of
this message is then saved in the scriptstate (which is returned to the script).

CHOOSEFIRSTINPUTPAT (Algorithm 24) Similar to the function CHOOSEINPUT above, we
define the function CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs, which as
above records the input this document has obtained so far (via XHRs and postMessages, append-
only), and a pattern. If called, this function chooses the first message in scriptinputs that matches
pattern and returns it. This function is typically used in places, where a script only processes the
first message that matches the pattern. Hence, we omit recording the usage of an input.

PARENTWINDOW To determine the nonce referencing the parent window in the browser, the
function PARENTWINDOW(tree, docnonce) is used. It takes the term tree, which is the (partly
cleaned) tree of browser windows the script is able to see and the document nonce docnonce, which
is the nonce referencing the current document the script is running in, as input. It outputs the
nonce referencing the window which directly contains in its subwindows the window of the document
referenced by docnonce. If there is no such window (which is the case if the script runs in a document
of a top-level window), PARENTWINDOW returns ⊥.

PARENTDOCNONCE The function PARENTDOCNONCE(tree, docnonce) determines (similar to
PARENTWINDOW above) the nonce referencing the active document in the parent window in the
browser . It takes the term tree, which is the (partly cleaned) tree of browser windows the script is
able to see and the document nonce docnonce, which is the nonce referencing the current document
the script is running in, as input. It outputs the nonce referencing the active document in the window

41

Algorithm 22 Web Browser Model: Main Algorithm.
Input: ⟨a, f,m⟩, s
1: let s′ := s
2: if s.isCorrupted ̸≡ ⊥ then
3: let s′.pendingRequests := ⟨m, s.pendingRequests⟩ → Collect incoming messages
4: let m′ ← dV (s

′)
5: let a′ ← IPs
6: stop ⟨⟨a′, a,m′⟩⟩, s′

7: if m ≡ TRIGGER then → A special trigger message.
8: let switch ← {script, urlbar, reload, forward, back}
9: if switch ≡ script then → Run some script.

10: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩
↪→ if possible; otherwise stop → Pointer to some window.

11: let d := w +⟨⟩ activedocument

12: call RUNSCRIPT(w , d , a, s′)
13: else if switch ≡ urlbar then → Create some new request.
14: let newwindow ← {⊤,⊥}
15: if newwindow ≡ ⊤ then → Create a new window.
16: let windownonce := ν1
17: let w′ := ⟨windownonce, ⟨⟩,⊥⟩
18: let s′.windows := s′.windows +⟨⟩ w′

19: else → Use existing top-level window.
20: let tlw ← N such that s′.tlw .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some top-level window.
21: let windownonce := s′.tlw .nonce
22: let protocol ← {P, S}
23: let host ← Doms
24: let path ← S
25: let fragment ← S
26: let parameters ← [S× S]
27: let url := ⟨URL, protocol , host , path, parameters, fragment⟩
28: let req := ⟨HTTPReq, ν2, GET, host , path, parameters, ⟨⟩, ⟨⟩⟩
29: call HTTP_SEND(⟨REQ,windownonce⟩, req , url , ⊥, ⊥, ⊥, a, s′)
30: else if switch ≡ reload then → Reload some document.
31: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
32: let url := s′.w .activedocument.location
33: let req := ⟨HTTPReq, ν2, GET, url .host, url .path, url .parameters, ⟨⟩, ⟨⟩⟩
34: let referrer := s′.w .activedocument.referrer
35: let s′ := CANCELNAV(s′.w .nonce, s′)
36: call HTTP_SEND(⟨REQ, s′.w .nonce⟩, req , url , ⊥, referrer , ⊥, a, s′)
37: else if switch ≡ forward then
38: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
39: call NAVFORWARD(w , s′)
40: else if switch ≡ back then
41: let w ← Subwindows(s′) such that s′.w .documents ̸= ⟨⟩

↪→ if possible; otherwise stop → Pointer to some window.
42: call NAVBACK(w , s′)
43: else if m ≡ FULLCORRUPT then → Request to corrupt browser
44: let s′.isCorrupted := FULLCORRUPT

45: stop ⟨⟩, s′
46: else if m ≡ CLOSECORRUPT then → Close the browser
47: let s′.secrets := ⟨⟩
48: let s′.windows := ⟨⟩
49: let s′.pendingDNS := ⟨⟩

This algorithm is continued on the next page.

42

50: let s′.pendingRequests := ⟨⟩
51: let s′.sessionStorage := ⟨⟩
52: let s′.cookies ⊂⟨⟩ Cookies such that

↪→ (c ∈⟨⟩ s′.cookies)⇐⇒ (c ∈⟨⟩ s.cookies ∧ c.content.session ≡ ⊥)
53: let s′.isCorrupted := CLOSECORRUPT

54: stop ⟨⟩, s′
55: else if ∃ ⟨reference, request , url , key , f⟩ ∈⟨⟩ s′.pendingRequests such that

↪→ π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
56: let m′ := decs(m, key)
57: if m′.nonce ̸≡ request .nonce then
58: stop
59: remove ⟨reference, request , url , key , f⟩ from s′.pendingRequests
60: call PROCESSRESPONSE(m′, reference, request , url , a, f , s′)
61: else if π1(m) ≡ HTTPResp ∧ ∃ ⟨reference, request , url ,⊥, f⟩ ∈⟨⟩ s′.pendingRequests such that

↪→ m.nonce ≡ request .nonce then → Plain HTTP Response
62: remove ⟨reference, request , url ,⊥, f⟩ from s′.pendingRequests
63: call PROCESSRESPONSE(m, reference, request , url , a, f , s′)
64: else if m ∈ DNSResponses then → Successful DNS response
65: if m.nonce ̸∈ s.pendingDNS ∨m.result ̸∈ IPs

↪→ ∨ m.domain ̸≡ s.pendingDNS[m.nonce].request.host then
66: stop
67: let ⟨reference,message, url⟩ := s.pendingDNS[m.nonce]
68: if url .protocol ≡ S then
69: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference, message, url , ν3, m.result⟩
70: let message := enca(⟨message, ν3⟩, s′.keyMapping [message.host])
71: else
72: let s′.pendingRequests := s′.pendingRequests

↪→ +⟨⟩ ⟨reference, message, url , ⊥, m.result⟩
73: let s′.pendingDNS := s′.pendingDNS − m.nonce
74: stop ⟨⟨m.result, a,message⟩⟩, s′

75: stop

Algorithm 23 Function to retrieve an unhandled input message for a script.
1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|} ∧ iid ̸∈⟨⟩ s′.handledInputs if possible;

↪→ otherwise return (⊥, s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs+⟨⟩ iid
5: return (input , s′)

Algorithm 24 Function to extract the first script input message matching a specific pattern.
1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let i such that i = min{j : πj(scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)

43

which directly contains in its subwindows the window of the document referenced by docnonce. If
there is no such window (which is the case if the script runs in a document of a top-level window)
or no active document, PARENTDOCNONCE returns docnonce.

SUBWINDOWS This function takes a term tree and a document nonce docnonce as input just
as the function above. If docnonce is not a reference to a document contained in tree, then
SUBWINDOWS(tree, docnonce) returns ⟨⟩. Otherwise, let ⟨docnonce, location, ⟨⟩, referrer , script ,
scriptstate, scriptinputs, subwindows, active⟩ denote the subterm of tree corresponding to the
document referred to by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows.

AUXWINDOW This function takes a term tree and a document nonce docnonce as input as above.
From all window terms in tree that have the window containing the document identified by docnonce
as their opener, it selects one non-deterministically and returns its nonce. If there is no such window,
it returns the nonce of the window containing docnonce.

AUXDOCNONCE Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term
tree and a document nonce docnonce as input. From all window terms in tree that have the window
containing the document identified by docnonce as their opener, it selects one non-deterministically
and returns its active document’s nonce. If there is no such window or no active document, it
returns docnonce.

OPENERWINDOW This function takes a term tree and a document nonce docnonce as input as
above. It returns the window nonce of the opener window of the window that contains the document
identified by docnonce. Recall that the nonce identifying the opener of each window is stored inside
the window term. If no document with nonce docnonce is found in the tree tree or the document
with nonce docnonce is not directly contained in a top-level window, 3 is returned.

GETWINDOW This function takes a term tree and a document nonce docnonce as input as above.
It returns the nonce of the window containing docnonce.

GETORIGIN To extract the origin of a document, the function GETORIGIN(tree, docnonce) is
used. This function searches for the document with the identifier docnonce in the (cleaned) tree tree
of the browser’s windows and documents. It returns the origin o of the document. If no document
with nonce docnonce is found in the tree tree, 3 is returned.

GETPARAMETERS Works exactly as GETORIGIN, but returns the document’s parameters
instead.

D.10. DNS Servers

Definition 55. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an
atomic DY process (Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only)
state sd0 encodes a mapping from domain names to addresses of the form

sd0 = ⟨⟨domain1, a1⟩, ⟨domain2, a2⟩, . . .⟩ .

DNS queries are answered according to this table (if the requested DNS name cannot be found in
the table, the request is ignored).

The relation Rd ⊆ (E × {sd0})× (2E × {sd0}) of d above is defined by Algorithm 25.

44

Algorithm 25 Relation of a DNS server Rd.
Input: ⟨a, f,m⟩, s
1: let domain, n such that ⟨DNSResolve, domain, n⟩ ≡ m if possible; otherwise stop ⟨⟩, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := ⟨DNSResolved, domain, addr , n⟩
5: stop ⟨⟨f, a,m′⟩⟩, s
6: stop ⟨⟩, s

D.11. Web Systems

The Web infrastructure and Web applications are formalized by what is called a Web system. A Web
system contains, among others, a (possibly infinite) set of DY processes, modeling Web browsers,
Web servers, DNS servers, and attackers (which may corrupt other entities, such as browsers).

Definition 56. A Web system WS = (W , S , script, E0) is a tuple with its components defined as
follows:

The first component, W , denotes a system (a set of DY processes) and is partitioned into the sets
Hon, Web, and Net of honest, Web attacker, and network attacker processes, respectively.

Every p ∈Web ∪ Net is an attacker process for some set of sender addresses A ⊆ IPs. For a Web
attacker p ∈ Web, we require its set of addresses Ip to be disjoint from the set of addresses of all
other Web attackers and honest processes, i.e., Ip ∩ Ip′ = ∅ for all p′ ≠ p, p′ ∈ Hon ∪Web. Hence, a
Web attacker cannot listen to traffic intended for other processes. Also, we require that A = Ip, i.e.,
a Web attacker can only use sender addresses it owns. Conversely, a network attacker may listen to
all addresses (i.e., no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a Web server, a Web browser, or a DNS
server. Just as for Web attackers, we require that p does not spoof sender addresses and that its set
of addresses Ip is disjoint from those of other honest processes and the Web attackers.

The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script,
is an injective mapping from S to S, i.e., by script every s ∈ S is assigned its string representation
script(s).

Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the form
⟨a, a, TRIGGER⟩ for every a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.

D.12. Generic HTTPS Server Model

This base model can be used to ease modeling of HTTPS server atomic processes. It defines
placeholder algorithms that can be superseded by more detailed algorithms to describe a concrete
relation for an HTTPS server.

Definition 57 (Base state for an HTTPS server). The state of each HTTPS server that is an
instantiation of this relation must contain at least the following subterms: pendingDNS ∈

[
N × TN

]
,

pendingRequests ∈ TN (both containing arbitrary terms), DNSaddress ∈ IPs (containing the IP
address of a DNS server), keyMapping ∈

[
Doms× TN

]
(containing a mapping from domains to

public keys), tlskeys ∈ [Doms×N] (containing a mapping from domains to private keys), and
corrupt ∈ TN (either ⊥ if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to
extract information from these subterms or alter these subterms.

45

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation of
the server. We now define the default functions of the generic Web server in Algorithms 26–30, and
the main relation in Algorithm 31.

Algorithm 26 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending
an HTTPS message).
1: function HTTPS_SIMPLE_SEND(reference, message, a, s′)
2: let s′.pendingDNS[νn0] := ⟨reference,message⟩
3: stop ⟨⟨s′.DNSaddress, a, ⟨DNSResolve,message.host, νn0⟩⟩⟩, s′

Algorithm 27 Generic HTTPS Server Model: Default HTTPS response handler.
1: function PROCESS_HTTPS_RESPONSE(m, reference, request , a, f , s′)
2: stop

Algorithm 28 Generic HTTPS Server Model: Default trigger event handler.
1: function PROCESS_TRIGGER(a, s′)
2: stop

46

Algorithm 29 Generic HTTPS Server Model: Default HTTPS request handler.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: stop

Algorithm 30 Generic HTTPS Server Model: Default handler for other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: stop

Algorithm 31 Generic HTTPS Server Model: Main relation of a generic HTTPS server
Input: ⟨a, f,m⟩, s
1: let s′ := s
2: if s′.corrupt ̸≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := ⟨⟨a, f,m⟩, s′.corrupt⟩
4: let m′ ← dV (s

′)
5: let a′ ← IPs
6: stop ⟨⟨a′, a,m′⟩⟩, s′

7: if ∃mdec, k, k′, inDomain such that ⟨mdec, k⟩ ≡ deca(m, k′) ∧ ⟨inDomain, k′⟩ ∈ s.tlskeys then
8: let n, method , path, parameters, headers, body such that

↪→ ⟨HTTPReq, n,method , inDomain, path, parameters, headers, body⟩ ≡ mdec
↪→ if possible; otherwise stop

9: call PROCESS_HTTPS_REQUEST(mdec, k, a, f , s′)
10: else if m ∈ DNSResponses then → Successful DNS response
11: if m.nonce ̸∈ s.pendingDNS ∨m.result ̸∈ IPs

↪→ ∨ m.domain ̸≡ s.pendingDNS[m.nonce].2.host then
12: stop
13: let reference := s.pendingDNS[m.nonce].1
14: let request := s.pendingDNS[m.nonce].2
15: let s′.pendingRequests := s′.pendingRequests +⟨⟩ ⟨reference, request , νn1, m.result⟩
16: let message := enca(⟨request , νn1⟩, s′.keyMapping [request .host])
17: let s′.pendingDNS := s′.pendingDNS − m.nonce
18: stop ⟨⟨m.result, a,message⟩⟩, s′
19: else if ∃ ⟨reference, request , key , f⟩ ∈⟨⟩ s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
20: let m′ := decs(m, key)
21: if m′.nonce ̸≡ request .nonce then
22: stop
23: if m′ ̸∈ HTTPResponses then
24: call PROCESS_OTHER(m, a, f , s′)
25: remove ⟨reference, request , key , f⟩ from s′.pendingRequests
26: call PROCESS_HTTPS_RESPONSE(m′, reference, request , a, f , s′)
27: else if m ≡ TRIGGER then → Process was triggered
28: call PROCESS_TRIGGER(a, s′)
29: else
30: call PROCESS_OTHER(m, a, f , s′)
31: stop

D.13. General Security Properties of the WIM

We now repeat general application independent security properties of the WIM [6].
Let WS = (W , S , script, E0) be a Web system. In the following, we write sx = (Sx, Ex) for the

states of a Web system.

Definition 58 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ =

47

((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run ρ = ((S0, E0, N0), . . .) we say that p emits e iff
there is a processing step in ρ of the form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)

for some i ≥ 0 and a sequence of events E with e ∈⟨⟩ E. We also say that p emits m iff e = ⟨x, y,m⟩
for some addresses x, y.

Definition 59. We say that a term t is derivably contained in (a term) t′ for (a set of DY processes)
P (in a processing step si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′ with the knowledge
available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p))

Definition 60. We say that a set of processes P leaks a term t (in a processing step si → si+1)
to a set of processes P ′ if there exists a message m that is emitted (in si → si+1) by some p ∈ P
and t is derivably contained in m for P ′ in the processing step si → si+1. If we omit P ′, we define
P ′ := W \ P . If P is a set with a single element, we omit the set notation.

Definition 61. We say that a DY process p created a message m in a processing step

(Si, Ei, N i)
ein→p−−−−−→
p→Eout

(Si+1, Ei+1, N i+1)

of a run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) if all of the following hold true

• m is a subterm of one of the events in Eout

• m is and was not derivable by any other set of processes

m ̸∈ d∅
(⋃
p′∈W \{p}
0≤j≤i+1

Sj(p′)
)

We note a process p creating a message does not imply that p can derive that message.

Definition 62. We say that a browser b accepted a message (as a response to some request)
if the browser decrypted the message (if it was an HTTPS message) and called the function
PROCESSRESPONSE, passing the message and the request (see Algorithm 21).

Definition 63. We say that an atomic DY process p knows a term t in some state s = (S,E,N)
of a run if it can derive the term from its knowledge, i.e., t ∈ d∅(S(p)).

Definition 64. Let N ⊆ N , t ∈ TN (X), and k ∈ TN (X). We say that k appears only as a public
key in t, if

1. If t ∈ N ∪X, then t ̸= k

2. If t = f(t1, . . . , tn), for f ∈ Σ and ti ∈ TN (X) (i ∈ {1, . . . , n}), then f = pub or for all ti, k
appears only as a public key in ti.

Definition 65. We say that a script initiated a request r if a browser triggered the script (in Line 10
of Algorithm 20) and the first component of the command output of the script relation is either
HREF, IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request r in the same step
as a result.

48

Definition 66. We say that an instance of the generic HTTPS server s accepted a message (as
a response to some request) if the server decrypted the message (if it was an HTTPS message)
and called the function PROCESS_HTTPS_RESPONSE, passing the message and the request (see
Algorithm 31).

For a run ρ = s0, s1, . . . of any WS , we state the following lemmas:

Lemma 1. If in the processing step si → si+1 of a run ρ of WS an honest browser b

(I) emits an HTTPS request of the form

m = enca(⟨req , k⟩, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of
some other DY process u), and

(II) in the initial state s0, for all processes p ∈W \{u}, the private key k′ appears only as a public
key in S0(p), and

(III) u never leaks k′,

then all of the following statements are true:

(1) There is no state of WS where any party except for u knows k′, thus no one except for u can
decrypt m to obtain req .

(2) If there is a processing step sj → sj+1 where the browser b leaks k to W \ {u, b} there is a
processing step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, b} or the
browser is fully corrupted in sj .

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in
the browsers’ keymapping s0.keyMapping (in its initial state).

(4) If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b is honest in sj
and u did not leak the symmetric key k to W \ {u, b} prior to sj , then u created the HTTPS
response m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known
to any atomic process p, except for the atomic processes b and u.

Proof. (1) follows immediately from the preconditions.
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key x from
a public key pub(x), the other processes can never derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from
any network output of u, and k′ cannot be known to any other party. Thus, nobody except for u
can derive req from m.

(2) We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1 without u prior
leaking the key k to anyone except for u and b and that the browser is not fully corrupted in sj ,
and lead this to a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is always
chosen as a fresh nonce (placeholder ν3 in Lines 64ff. of Algorithm 22) that is not used anywhere
else. Further, the key is stored in the browser’s state in pendingRequests. The information from
pendingRequests is not extracted or used anywhere else (in particular it is not accessible by scripts).
If the browser becomes closecorrupted prior to sj (and after si), the key cannot be used anymore

49

(compare Lines 46ff. of Algorithm 22). Hence, b does not leak k to any other party in sj (except for
u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 22), a host header is always contained in HTTP
requests by browsers. From Line 70 of Algorithm 22 we can see that the encryption key for the
request req was chosen using the host header of the message. It is chosen from the keyMapping in
the browser’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with
k. The nonce k is stored by the browser in the pendingRequests state information. The browser
only stores freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes
than sending one specific request). The information cannot be altered afterwards (only deleted) and
cannot be read except when the browser checks incoming messages. The nonce k is only known to
u (which did not leak it to any other party prior to sj) and b (which did not leak it either, as u did
not leak it and b is honest, see (2)). The browser b cannot send responses. This proves (4).

Corollary 1. In the situation of Lemma 1, as long as u does not leak the symmetric key k to
W \ {u, b} and the browser does not become fully corrupted, k is not known to any DY process
p ̸∈ {u, b} (i.e., ∄ s′ = (S′, E′) ∈ ρ: k ∈ dNp(S′(p))).

Lemma 2. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows with
the origin ⟨dom, S⟩ where dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being
a private key, and there is only one DY process p that knows the private key k in all sj , j ≤ i, then
b extracted (in Line 37 in Algorithm 21) the script in that document from an HTTPS response that
was created by p.

Proof. The origin of the document d is set only once: In Line 37 of Algorithm 21. The values
(domain and protocol) used there stem from the information about the request (say, req) that led
to the loading of d. These values have been stored in pendingRequests between the request and
the response actions. The contents of pendingRequests are indexed by freshly chosen nonces and
can never be altered or overwritten (only deleted when the response to a request arrives). The
information about the request req was added to pendingRequests in Line 69 (or Line 72 which we can
exclude as we will see later) of Algorithm 22. In particular, the request was an HTTPS request iff a
(symmetric) key was added to the information in pendingRequests. When receiving the response to
req , it is checked against that information and accepted only if it is encrypted with the proper key
and contains the same nonce as the request (say, n). Only then the protocol part of the origin of
the newly created document becomes S. The domain part of the origin (in our case dom) is taken
directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 70 of Algorithm 22 we can see that the encryption key for the request req was actually
chosen using the host header of the message which will finally be the value of the origin of the docu-
ment d. Since b therefore selects the public key Si(b).keyMapping[dom] = S0(b).keyMapping[dom] ≡
pub(k) for p (the key mapping cannot be altered during a run), we can see that req was encrypted
using a public key that matches a private key which is only (if at all) known to p. With Lemma 1
we see that the symmetric encryption key for the response, k, is only known to b and the respective
Web server. The same holds for the nonce n that was chosen by the browser and included in the
request. Thus, no other party than p can encrypt a response that is accepted by the browser b and
which finally defines the script of the newly created document.

Lemma 3. If in a processing step si → si+1 of a run ρ of WS an honest browser b issues an HTTP(S)
request with the Origin header value ⟨dom, S⟩ where Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N
being a private key, and there is only one DY process p that knows the private key k in all sj , j ≤ i,
then

50

• that request was initiated by a script that b extracted (in Line 37 in Algorithm 21) from an
HTTPS response that was created by p, or

• that request is a redirect to a response of a request that was initiated by such a script.

Proof. The browser algorithms create HTTP requests with an origin header by calling the
HTTP_SEND function (Algorithm 17), with the origin being the fourth input parameter. This
function adds the origin header only if this input parameter is not ⊥.

The browser calls the HTTP_SEND function with an origin that is not ⊥ only in the following
places:

• Line 51 of Algorithm 20

• Line 72 of Algorithm 20

• Line 27 of Algorithm 21 ■

In the first two cases, the request was initiated by a script. The Origin header of the request
is defined by the origin of the script’s document. With Lemma 2 we see that the content of the
document, in particular the script, was indeed provided by p.

In the last case (Location header redirect), as the origin is not 3 , the condition of Line 17 of
Algorithm 21 must have been true and the origin value is set to the value of the origin header of the
request. In particular, this implies that an origin header does not change during redirects (unless set
to 3; in this case, the value stays the same in the subsequent redirects). Thus, the original request
must have been created by the first two cases shown above.

The following lemma is similar to Lemma 1, but is applied to the generic HTTPS server (instead
of the Web browser).

Lemma 4. If in the processing step si → si+1 of a run ρ of WS an honest instance s of the generic
HTTPS server model

(I) emits an HTTPS request of the form

m = enca(⟨req , k⟩, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of
some other DY process u), and

(II) in the initial state s0, for all processes p ∈W \{u}, the private key k′ appears only as a public
key in S0(p),

(III) u never leaks k′,

(IV) the instance model s does not read or write the pendingRequests subterm of its state,

(V) the instance model s does not emit messages in HTTPSRequests,

(VI) the instance model s does not change the values of the keyMapping subterm of its state, and

(VII) when receiving HTTPS requests of the form enca(⟨req ′, k2⟩, pub(k′)), u uses the nonce of the
HTTP request req ′ only as nonce values of HTTPS responses encrypted with the symmetric
key k2,

51

(VIII) when receiving HTTPS requests of the form enca(⟨req ′, k2⟩, pub(k′)), u uses the symmetric key
k2 only for symmetrically encrypting HTTP responses (and in particular, k2 is not part of a
payload of any messages sent out by u),

then all of the following statements are true:

(1) There is no state of WS where any party except for u knows k′, thus no one except for u can
decrypt m to obtain req .

(2) If there is a processing step sj → sj+1 where some process leaks k to W \ {u, s}, there is a
processing step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, s} or the
process s is corrupted in sj .

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in
S0(s).keyMapping (i.e., in the initial state of s).

(4) If s accepts a response (say, m′) to m in a processing step sj → sj+1 and s is honest in sj
and u did not leak the symmetric key k to W \ {u, s} prior to sj , then u created the HTTPS
response m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known
to any atomic process p, except for the atomic processes s and u.

Proof. (1) follows immediately from the preconditions. The proof is the same as for Lemma 1:
The process u never leaks k′, and initially, the private key k′ appears only as a public key in all

other process states. As the equational theory does not allow the extraction of a private key x from
a public key pub(x), the other processes can never derive k′.

Thus, even with the knowledge of all nonces (except for those of u), k′ can never be derived from
any network output of u, and k′ cannot be known to any other party. Thus, nobody except for u
can derive req from m.

(2) We assume that some process leaks k to W \ {u, s} in the processing step sj → sj+1 without
u prior leaking the key k to anyone except for u and s and that the process s is not corrupted in sj ,
and lead this to a contradiction.

The process s is honest in si. s emits HTTPS requests like m only in Line 18 of Algorithm 31:

• The message emitted in Line 3 of Algorithm 26 has a different message structure

• As s is honest, it does not send the message of Line 6 of Algorithm 31

• There is no other place in the generic HTTPS server model where messages are emitted and
due to precondition (V), the application-specific model does not emit HTTPS requests. ■

The value k, which is the placeholder νn1 in Algorithm 31, is only stored in the pendingRequests
subterm of the state of s, i.e., in Si+1(s).pendingRequests. Other than that, s only accesses this
value in Line 19 of Algorithm 31, where it is only used to decrypt the response in Line 20 (in
particular, the key is not propagated to the application-specific model, and the key cannot be
contained within the payload of an response due to (VIII)). We note that there is no other line in
the model of the generic HTTPS server where this subterm is accessed and the application-specific
model does not access this subterm due to precondition (IV). Hence, s does not leak k to any other
party in sj (except for u and s). This proves (2).

(3) From Line 16 of Algorithm 31 we can see that the encryption key for the message m was chosen
using the host header of the request. It is chosen from the keyMapping subterm of the state of s,
which is never changed during ρ by the HTTPS server and never changed by the application-specific
model due to precondition (VI). This proves (3).

(4)

52

Response was encrypted with k. An HTTPS response m′ that is accepted by s as a response
to m has to be encrypted with k:

The decryption key is taken from the pendingRequests subterm of its state in Line 19 of Algo-
rithm 31, where s only stores fresh nonces as keys that are added to requests as symmetric keys (see
also Lines 15 and 16). The nonces (symmetric keys) are not used twice, or for other purposes than
sending one specific request.

Only s and u can create the response. As shown previously, only s and u can derive the
symmetric key (as s is honest in sj). Thus, m′ must have been created by either s or u.

s cannot have created the response. We assume that s emitted the message m′ and lead this
to a contradiction.

The generic server algorithms of s (when being honest) emit messages only in two places: In
Line 3 of Algorithm 26, where a DNS request is sent, and in Line 18 of Algorithm 31, where a
message with a different structure than m′ is created (as m′ is accepted by the server, m′ must be a
symmetrically encrypted ciphertext).

Thus, the instance model of s must have created the response m′.
Due to Precondition (IV), the instance model of s cannot read the pendingRequests subterm of

its state. The symmetric key is generated freshly by the generic server algorithm in Lines 15 and 16
of Algorithm 31 and stored only in pendingRequests.

As the generic algorithms do not call any of the handlers with a symmetric key stored in
pendingRequests., it follows that the instance model derived the key from a message payload
in the instantiation of one of the handlers. Let m̃ denote this message payload.

As the server instance model cannot derive the symmetric key without processing a message from
which it can derive the symmetric key, and as the server algorithm only create the original request
m as the only message with the symmetric key as a payload, it follows that u must have created m̃,
as no other process can derive the symmetric key from m.

However, when receiving m, u will use the symmetric key only as an encryption key, and in
particular, will not create a message where the symmetric key is a payload (Precondition (VIII)).

Thus, the symmetric key cannot be derived by the instance of the server model, which is a
contradiction to the statement that the instance model of s must have created the response m′.

53

	Introduction
	Modeling Decisions and Assumptions
	Event Types
	Security Event Token Delivery Methods
	Transmitter and Receiver Protocol Roles
	Stream Management API
	Authorization During Stream Creation and SET Delivery
	Authorization at the Add Subject Endpoint

	Configuration Discovery
	Signed SETs
	Specification Version

	Notes on the SSF Specification
	Informal Security Properties
	Configuration Discovery Integrity
	Session Integrity for SETs
	Confidentiality of SETs
	Authorization

	SSF Configuration Discovery Model
	Protocol Participants
	Identifiers in the Protocol
	Receiver Identification
	Transmitter Identification
	Subject Identification

	Keys and Secrets
	SSF Transceiver Model

	SSF Web System
	Formal Security Properties
	Configuration Discovery Integrity
	Session Integrity for SETs
	Confidentiality of SETs
	Authorization

	Technical Definitions
	Terms and Notations
	Message and Data Formats
	URLs
	Origins
	Cookies
	HTTP Messages
	DNS Messages

	Atomic Processes, Systems and Runs
	Atomic Dolev-Yao Processes
	Attackers
	Notations for Functions and Algorithms
	Non-deterministic choosing and iteration
	Function calls
	Stop without output
	Placeholders
	Abbreviations for URLs and Origins

	Browsers
	Scripts
	Web Browser State
	Web Browser Relation

	Definition of Web Browsers
	Helper Functions
	DNS Servers
	Web Systems
	Generic HTTPS Server Model
	General Security Properties of the WIM

