Skip to content

Commit 7318b22

Browse files
committed
8289551: Conversions between bit representations of half precision values and floats
Reviewed-by: psandoz, jrose
1 parent 2ae8e31 commit 7318b22

File tree

3 files changed

+703
-0
lines changed

3 files changed

+703
-0
lines changed

src/java.base/share/classes/java/lang/Float.java

+193
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@
3030
import java.lang.constant.ConstantDesc;
3131
import java.util.Optional;
3232

33+
import jdk.internal.math.FloatConsts;
3334
import jdk.internal.math.FloatingDecimal;
3435
import jdk.internal.math.FloatToDecimal;
3536
import jdk.internal.vm.annotation.IntrinsicCandidate;
@@ -975,6 +976,198 @@ public static int floatToIntBits(float value) {
975976
@IntrinsicCandidate
976977
public static native float intBitsToFloat(int bits);
977978

979+
/**
980+
* {@return the {@code float} value closest to the numerical value
981+
* of the argument, a floating-point binary16 value encoded in a
982+
* {@code short}} The conversion is exact; all binary16 values can
983+
* be exactly represented in {@code float}.
984+
*
985+
* Special cases:
986+
* <ul>
987+
* <li> If the argument is zero, the result is a zero with the
988+
* same sign as the argument.
989+
* <li> If the argument is infinite, the result is an infinity
990+
* with the same sign as the argument.
991+
* <li> If the argument is a NaN, the result is a NaN.
992+
* </ul>
993+
*
994+
* <h4><a id=binary16Format>IEEE 754 binary16 format</a></h4>
995+
* The IEEE 754 standard defines binary16 as a 16-bit format, along
996+
* with the 32-bit binary32 format (corresponding to the {@code
997+
* float} type) and the 64-bit binary64 format (corresponding to
998+
* the {@code double} type). The binary16 format is similar to the
999+
* other IEEE 754 formats, except smaller, having all the usual
1000+
* IEEE 754 values such as NaN, signed infinities, signed zeros,
1001+
* and subnormals. The parameters (JLS {@jls 4.2.3}) for the
1002+
* binary16 format are N = 11 precision bits, K = 5 exponent bits,
1003+
* <i>E</i><sub><i>max</i></sub> = 15, and
1004+
* <i>E</i><sub><i>min</i></sub> = -14.
1005+
*
1006+
* @apiNote
1007+
* This method corresponds to the convertFormat operation defined
1008+
* in IEEE 754 from the binary16 format to the binary32 format.
1009+
* The operation of this method is analogous to a primitive
1010+
* widening conversion (JLS {@jls 5.1.2}).
1011+
*
1012+
* @param floatBinary16 the binary16 value to convert to {@code float}
1013+
* @since 20
1014+
*/
1015+
// @IntrinsicCandidate
1016+
public static float float16ToFloat(short floatBinary16) {
1017+
/*
1018+
* The binary16 format has 1 sign bit, 5 exponent bits, and 10
1019+
* significand bits. The exponent bias is 15.
1020+
*/
1021+
int bin16arg = (int)floatBinary16;
1022+
int bin16SignBit = 0x8000 & bin16arg;
1023+
int bin16ExpBits = 0x7c00 & bin16arg;
1024+
int bin16SignifBits = 0x03FF & bin16arg;
1025+
1026+
// Shift left difference in the number of significand bits in
1027+
// the float and binary16 formats
1028+
final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
1029+
1030+
float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
1031+
1032+
// Extract binary16 exponent, remove its bias, add in the bias
1033+
// of a float exponent and shift to correct bit location
1034+
// (significand width includes the implicit bit so shift one
1035+
// less).
1036+
int bin16Exp = (bin16ExpBits >> 10) - 15;
1037+
if (bin16Exp == -15) {
1038+
// For subnormal binary16 values and 0, the numerical
1039+
// value is 2^24 * the significand as an integer (no
1040+
// implicit bit).
1041+
return sign * (0x1p-24f * bin16SignifBits);
1042+
} else if (bin16Exp == 16) {
1043+
return (bin16SignifBits == 0) ?
1044+
sign * Float.POSITIVE_INFINITY :
1045+
Float.intBitsToFloat((bin16SignBit << 16) |
1046+
0x7f80_0000 |
1047+
// Preserve NaN signif bits
1048+
( bin16SignifBits << SIGNIF_SHIFT ));
1049+
}
1050+
1051+
assert -15 < bin16Exp && bin16Exp < 16;
1052+
1053+
int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
1054+
<< (FloatConsts.SIGNIFICAND_WIDTH - 1);
1055+
1056+
// Compute and combine result sign, exponent, and significand bits.
1057+
return Float.intBitsToFloat((bin16SignBit << 16) |
1058+
floatExpBits |
1059+
(bin16SignifBits << SIGNIF_SHIFT));
1060+
}
1061+
1062+
/**
1063+
* {@return the floating-point binary16 value, encoded in a {@code
1064+
* short}, closest in value to the argument}
1065+
* The conversion is computed under the {@linkplain
1066+
* java.math.RoundingMode#HALF_EVEN round to nearest even rounding
1067+
* mode}.
1068+
*
1069+
* Special cases:
1070+
* <ul>
1071+
* <li> If the argument is zero, the result is a zero with the
1072+
* same sign as the argument.
1073+
* <li> If the argument is infinite, the result is an infinity
1074+
* with the same sign as the argument.
1075+
* <li> If the argument is a NaN, the result is a NaN.
1076+
* </ul>
1077+
*
1078+
* The <a href="#binary16Format">binary16 format</a> is discussed in
1079+
* more detail in the {@link #float16ToFloat} method.
1080+
*
1081+
* @apiNote
1082+
* This method corresponds to the convertFormat operation defined
1083+
* in IEEE 754 from the binary32 format to the binary16 format.
1084+
* The operation of this method is analogous to a primitive
1085+
* narrowing conversion (JLS {@jls 5.1.3}).
1086+
*
1087+
* @param f the {@code float} value to convert to binary16
1088+
* @since 20
1089+
*/
1090+
// @IntrinsicCandidate
1091+
public static short floatToFloat16(float f) {
1092+
int doppel = Float.floatToRawIntBits(f);
1093+
short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
1094+
1095+
if (Float.isNaN(f)) {
1096+
// Preserve sign and attempt to preserve significand bits
1097+
return (short)(sign_bit
1098+
| 0x7c00 // max exponent + 1
1099+
// Preserve high order bit of float NaN in the
1100+
// binary16 result NaN (tenth bit); OR in remaining
1101+
// bits into lower 9 bits of binary 16 significand.
1102+
| (doppel & 0x007f_e000) >> 13 // 10 bits
1103+
| (doppel & 0x0000_1ff0) >> 4 // 9 bits
1104+
| (doppel & 0x0000_000f)); // 4 bits
1105+
}
1106+
1107+
float abs_f = Math.abs(f);
1108+
1109+
// The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
1110+
if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
1111+
return (short)(sign_bit | 0x7c00); // Positive or negative infinity
1112+
}
1113+
1114+
// Smallest magnitude nonzero representable binary16 value
1115+
// is equal to 0x1.0p-24; half-way and smaller rounds to zero.
1116+
if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
1117+
return sign_bit; // Positive or negative zero
1118+
}
1119+
1120+
// Dealing with finite values in exponent range of binary16
1121+
// (when rounding is done, could still round up)
1122+
int exp = Math.getExponent(f);
1123+
assert -25 <= exp && exp <= 15;
1124+
1125+
// For binary16 subnormals, beside forcing exp to -15, retain
1126+
// the difference expdelta = E_min - exp. This is the excess
1127+
// shift value, in addition to 13, to be used in the
1128+
// computations below. Further the (hidden) msb with value 1
1129+
// in f must be involved as well.
1130+
int expdelta = 0;
1131+
int msb = 0x0000_0000;
1132+
if (exp < -14) {
1133+
expdelta = -14 - exp;
1134+
exp = -15;
1135+
msb = 0x0080_0000;
1136+
}
1137+
int f_signif_bits = doppel & 0x007f_ffff | msb;
1138+
1139+
// Significand bits as if using rounding to zero (truncation).
1140+
short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
1141+
1142+
// For round to nearest even, determining whether or not to
1143+
// round up (in magnitude) is a function of the least
1144+
// significant bit (LSB), the next bit position (the round
1145+
// position), and the sticky bit (whether there are any
1146+
// nonzero bits in the exact result to the right of the round
1147+
// digit). An increment occurs in three cases:
1148+
//
1149+
// LSB Round Sticky
1150+
// 0 1 1
1151+
// 1 1 0
1152+
// 1 1 1
1153+
// See "Computer Arithmetic Algorithms," Koren, Table 4.9
1154+
1155+
int lsb = f_signif_bits & (1 << 13 + expdelta);
1156+
int round = f_signif_bits & (1 << 12 + expdelta);
1157+
int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
1158+
1159+
if (round != 0 && ((lsb | sticky) != 0 )) {
1160+
signif_bits++;
1161+
}
1162+
1163+
// No bits set in significand beyond the *first* exponent bit,
1164+
// not just the sigificand; quantity is added to the exponent
1165+
// to implement a carry out from rounding the significand.
1166+
assert (0xf800 & signif_bits) == 0x0;
1167+
1168+
return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
1169+
}
1170+
9781171
/**
9791172
* Compares two {@code Float} objects numerically.
9801173
*

0 commit comments

Comments
 (0)