
Review of “The Schubfach way to render doubles”

Jean-Michel Muller and Paul Zimmermann

October 14, 2021

Abstract

This is a review of the article “The Schubfach way to render doubles” written by Raffaello Giulietti,
dated from 2020-03-16 (file Schubfach2.pdf downloaded October 14, 2021 from https://drive.google.

com/file/d/1luHhyQF9zKlM8yJ1nebU0OgVYhfC6CBN/view, md5sum 6c212c90ebbea4fcfe2bb6d9ded59104).

This article, while quite technical, is extremely well written, and the underlying algorithm is very clever.
As said by Guy Steele in https://github.com/openjdk/jdk/pull/3402#issuecomment-942063994, it
would be a pity to not publish an academic paper. Moreover your algorithm would be alive: once pub-
lished, people will improve it, generalize it (for example to larger formats than double precision), and maybe
correct it (if we missed some error). We both agree to advise you for a potential submission (journals such
as ACM Transactions on Mathematical Software do accept articles of 27 pages). In such a case, maybe more
bibliography would be welcome: in particular the article of Matula [3] and that of Boldo and Melquiond on
rounding to odd [1] are both relevant.

References

[1] Boldo, S., and Melquiond, G. When double rounding is odd. In 17th IMACS World Congress
(Paris, France, July 2005), p. 11.

[2] Hardy, G. H., and Wright, E. M. An Introduction to the Theory of Numbers, 4th ed. Clarendon
Press, Oxford, 1960.

[3] Matula, D. W. In-and-out conversions. Commun. ACM 11, 1 (1968), 47–50.

[4] Muller, J.-M., Brunie, N., de Dinechin, F., Jeannerod, C.-P., Joldes, M., Lefèvre, V.,
Melquiond, G., Revol, N., and Torres, S. Handbook of Floating-point Arithmetic (2nd edition).
Birkhäuser Basel, July 2018.

1 Major Comments

The examples with large decimal expansions for exact conversion can be anticipated: if the extremal expo-
nents emin and emax of the binary format satisfy emin ≈ −emax (which holds for all usual formats) and if p is
its precision, then the largest width of a decimal significand we can obtain by exact conversion is (in digits):

−emin + p+ ⌊(emin + 1) log10(2)− log10(1− 2−p)⌋.

This is taken literally from Section 4.9 of [4] (page 143).
Instead of producing the shortest string that rounds back to the original number v, one could produce

a string with H = 17 decimal digits for double precision numbers (cf Figure 3), which always ensures we
recover v. Can Schubfach be modified for this case?

In Section 7, a figure would be welcome to show Rv, Dk and Dk+1.

1

In Result 13, since you don’t use the right-hand side of (5), you can check (for example using interval
arithmetic) for which largest interval emin ≤ e ≤ emax the statement holds. We find −3 606 689 ≤ e ≤
3 150 619 instead of −2 956 395 ≤ e ≤ 2 500 325. Same for Result 14, where we find −6 432 162 ≤ e ≤
6 432 162. For Result 15, this does not improve the bound. Also, why did you choose those particular values
Q = 41 and Q = 38? For double precision, Q = 22 would suffice.

Result 20. There is no need to resort to a mechanical proof for this, if you use the following classical
result about continued fractions (see for example Theorem 182 page 151 of [2]):

Theorem 1 Let x be a positive real number, and (pi/qi) be the list of convergents from the continued fraction
of x. Then for any positive integers c, d, with c < qi, we have |qix− pi| < |cx− d|.

In other terms, the |qix− pi| form successive records (in decreasing value). In your case, x is either 2qD−k

or 2q+1D−k, where k depends from q (in fact, at most two values of k are possible for any value of q,
Qmin ≤ q ≤ Qmax). Then for each pair (q, k), it suffices to compute the (finite) continued fraction expansion
of x. For the bound on 2V , let pi/qi be the last convergent of x = 2q+1D−k such that qi < 2P and x ̸= pi/qi.
Then for c < 2P , the value of |cx− d|, if not zero, is lower bounded by |qix− pi|, which gives a lower bound
between 2V = cx and the nearest integer. A simple program (for example using the SageMath computer
algebra system) yields an explicit value for ϵ, and the corresponding values of q, k and c for double precision:
ϵ = 1323359619378521 · 5−49 ≈ 7.45 · 10−20, attained for q = 164, k = 49, and c = 5592117679628511.

For the Vl and Vr bounds, it is slightly trickier to prove Result 20, and to find the best possible bound
and the corresponding inputs. Indeed, for Vl and Vr, excluding the “irregular spacing” case (which can
be checked by exhaustive search), we want a lower bound for the distance between (2c ± 1)2qD−k and the
nearest integer, with 2c± 1 < 2P+1. This corresponds to convergents of x = 2qD−k with odd denominator
less than 2P+1. A non-optimal bound could be obtained by applying Theorem 1 on convergents of x with
denominator less than 2P+1 (not only those with odd denominator). Luckily, in the case of double precision,
the convergents of 2q+1D−k with unconstrained denominator less than 2P (i.e., what was used above to
obtain the bound for 2V) yield the same lower bound (when considering all possible values of q and k) than
those of 2qD−k with unconstrained denominator less than 2P+1, thus the above bound for 2V holds also for
Vl and Vr (and we know it is attained for 2V). The same idea applies to the other formats of Figure 3.

In the algorithm from Figure 5, some processors have an assembly instruction which computes both y0
and y1 at the same time.

Section 10: why split in 1 + 8 + 8, and not in say 5 + 6 + 6?
Section 14: the definition of g1 and g0 could be more detailed: g fits into a long, thus we guess you mean

g0 = 0 and not g0 > 0. You have c̄ < 226 from (9), thus c̄g < 289 fits into two longs.

2 Minor Comments

Maybe some more classical notations could be used, for example for the bitwise or, or for the integer quotient
and remainder.

Although Section 3.2.1 mentions a generic rounding, the article only consider rounding to nearest (with
ties to even). We only checked correctness in this setting. It is not clear that results remains true otherwise.
In particular for the round-trip property to hold (Section 3.4), if the conversion from string to double is
rounded towards zero, then one should use a rounding away from zero for the conversion from double to
string. See also Figure 1 which considers a generic rounding.

In Figure 1, the term significand is not defined in Section 2.
Examples 1 and 2 are with numbers in the subnormal range. Could similar examples in the normal range

be given (maybe with larger significands)? Otherwise the reader might think that such examples do only
occur in the subnormal range.

In Figure 3, the last row (S=256) is not in IEEE 754-2019. Where did you find these parameters?
In the whole article, it would be better to use ℓ instead of l, in particular in vl and cl.
Definition 3: please add that x is a D-ary. As we understand, lenx is only defined for x in shortest form.

However below in 6.3 you consider lenx for x = dDi not in shortest form.

2

Page 8, Section 6.3, line 10: b ̸= Dl should be b ̸= dDl.
Result 6: is y in Dj for some j?
Result 7: the first assumption is not well phrased. For example it could be len(dDi) = len(dDj) for

ℓ ≤ i < j ≤ r, and the common length m satisfies m > n.
Definition 4: Ri should be Ri(v) since it depends on v. At least explain that you write Ri because v is

fixed.
The reasoning for Result 8 could be simpler: if both x and y are in Ri, then |x − y| = kDi and

|x− y| ≤ ||Rv||, which since Di > ||Rv|| implies k = 0.
Page 9, middle: “is equivalent” should read “is equivalent to”.
End of page 9: MIN_VALUE and MAX_VALUE are not defined.
Page 10, line 5: “that and” should read “that”.
In the skeleton of Schubfach (8.1), please explain why s < DM implies that v is very small. “Its boundaries

are outside Rv”: they can be on the bounds of Rv, no? In the case s ≥ DM , second item: why leny > M?
Can we have an example with T ̸= {u′}? In this skeleton, you use a variable y: how y is defined?

Page 11, line 3, “from R6”: please say to which values you apply R6, what are n, d, x and y from the
statement of R6?

Page 11: “so s < D means that ... is subnormal”: why?
Page 14, line 7: the left inequality on the left can be replaced by <. Idem for the left inequality two lines

below.
Page 16, “because s′, t′, ... are not guaranteed to be even”: but what appears in fact is s′D and t′D which

are even for D = 10.
Page 17, line 5: “every vale” should read “every value”.
Page 17, “fitting in a long”: this assumes a “long” is 64-bit wide, which is not true on all processors in

the C language (maybe it is true for Java?).
Page 18, first line of Section 9.7: “the estimate can replace” should be “the estimates can replace”.
Definition 9: could < be ≤ in the first branch?
Section 9.9.2: we have checked using a Sage script that the hexadecimal values for g1 and g0 are correct

in the file MathUtils.java.
Page 20, last line: the condition 121 ≤ −(q̄ + r + 1) ≤ 124 should read 123 ≤ −(q̄ + r + 1) ≤ 126, which

if we replace in h = 128 + (q̄ + r + 1) page 21 gives 2 ≤ h ≤ 5 as claimed.
Page 23, “Translating this pieces” should read “Translating this piece” or “Translating these pieces”.

3

