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Summary
baseflow is a MATLAB® (MATLAB, 2020) toolbox that facilitates baseflow recession anal-
ysis, a set of methods used in hydrologic science to infer aquifer properties that cannot be
measured directly (Brutsaert & Nieber, 1977). The widespread availability of streamflow mea-
surements means that baseflow recession analysis can be used to estimate aquifer properties
and their variations globally over the modern instrumental stream gage record. This toolbox
offers easy-to-use functions for baseflow recession analysis using measured values of streamflow
recorded on a daily timestep. It is primarily designed for shallow (depth « breadth) unconfined
riparian aquifers that discharge groundwater laterally into adjacent stream channels, rather
than confined aquifers or complex geologic structures which require specialized numerical
groundwater models. The toolbox can also be used to study the collective behavior of indi-
vidual hillslope aquifers that constitute hydrologic catchments, known as “watersheds,” using
a non-linear dynamical systems perspective (Kirchner, 2009). By leveraging recent advance-
ments in the baseflow recession analysis literature (Dralle et al., 2017; Roques et al., 2017),
baseflow enables consistent, objective estimation of unconfined hillslope aquifer properties
and conceptual catchment-scale aquifer properties.

Statement of need
Baseflow is a vital component of streamflow that originates from groundwater sources rather
than rainfall, surface water, or managed reservoir release (Hall, 1968). Baseflow plays a crucial
role in sustaining water availability during dry seasons, particularly in systems lacking surface
water storage (Cooper et al., 2018). The shape of the baseflow recession curve can provide
insights into the physical properties of aquifers, which are geological structures that store and
release groundwater to rivers (Brutsaert & Lopez, 1998; Troch et al., 2013). However, inferring
the presence and amount of baseflow is a challenging task as it requires specialized algorithms
involving signal processing, curve-fitting, and parameter estimation, using measured values of
streamflow that are often contaminated by measurement error (Dralle et al., 2017).
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Figure 1: Example of baseflow recession analysis, the core functionality of the ‘baseflow‘ toolbox.

The baseflow API was designed to provide a user-friendly interface for common baseflow
recession analysis tasks such as event detection, parameter fitting, probability-distribution
fitting, and visualization (Figure 1). The toolbox emphasizes the non-linear nature of stream-
flow, which can arise from rate-dependent hydraulic properties (Rupp & Selker, 2006), or the
nonlinear collective behavior of hillslope aquifer units that comprise hydrologic catchments
(Harman et al., 2009). baseflow is intended for use by researchers in the hydrologic sciences
(Cooper et al., 2023) and serves as the foundation for ongoing investigations into changing
groundwater storage capacity in Arctic and Subarctic catchments resulting from permafrost
thaw.

State of the field
Recent developments in publicly available software packages for baseflow recession analysis
have provided hydrologists with objective and repeatable methods for estimating baseflow pa-
rameters (Arciniega-Esparza, 2018; Dralle et al., 2017; Gnann et al., 2021). This is important
because baseflow recession analysis is sensitive to methodological decisions that are often
poorly documented. Among the reviewed packages, there is a shared focus on estimating the
canonical parameters of the event-scale recession equation:

−dQ

dt
= aQb (1)

where Q is streamflow, t is time, and recession parameters a and b determine the shape of
the recession curve (Figure 1). This equation, which is used to determine the shape of the
recession curve, relates the rate of change of streamflow to streamflow itself.
Two packages for baseflow recession analysis are available within the MATLAB ecosystem.
HYDRORECESSION (Arciniega-Esparza et al., 2017; Arciniega-Esparza, 2018) is a MATLAB
toolbox organized around a graphical user interface that provides methods to detect recession
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events and fit Equation 1. Relative to HYDRORECESSION, the baseflow toolbox offers addi-
tional features for aquifer property estimation, such as saturated aquifer thickness, saturated
hydraulic conductivity, and drainable porosity. HYDRORECESSION and baseflow both provide
methods libraries for fitting alternative forms of Equation 1 based on solutions to the one-
dimensional lateral groundwater flow equation. baseflow could benefit from incorporating
two of the four forms available in HYDRORECESSION and a graphical user interface for data
exploration.
The Toolbox for Streamflow Signatures in Hydrology (TOSSH) (Gnann et al., 2021) provides
recession event-detection and curve-fitting algorithms but is broader in scope than basef
low and HYDRORECESSION. For example, TOSSH provides automated estimation of several
dozen quantitative metrics of streamflow known as “hydrologic signatures” including recession
parameters a and b. It provides a narrower toolkit for estimating a and b, and limited options for
interpreting their values in terms of hydraulic groundwater theory. However, TOSSH provides
a unique capability for interpreting a and b empirically in terms of hydrologic signatures.
Although baseflow is designed for hillslope- and catchment-scale aquifer characterization, it
could benefit from a broader scope that includes methods for quantifying evapotranspiration,
which significantly affects estimates of a and b (Jachens et al., 2020).

Unique functionality: power-law scaling of recession param-
eters
Development of the baseflow toolbox was motivated by the need to automate Pareto distri-
bution fits to large-sample recession parameter ensembles, based on recent research (Cooper
et al., 2023) that derived the Pareto transformation of Equation 1. baseflow provides the
only automated Pareto distribution parameter fitting module for aquifer characterization that
we know of. The toolbox accomplishes this by wrapping the function plfit, a Matlab func-
tion for fitting Pareto distributions which has been cited over 10,000 times (Clauset et al.,
2009). This wrapper serves as a translator from the notation and functional forms of plfit
to those of hydraulic groundwater theory. The Pareto-fitting method implemented in base-
flow is especially important because it provides theoretically unbiased estimates of a and b for
late-time aquifer drainage, which are necessary for obtaining meaningful estimates of aquifer
properties from baseflow recession analysis.
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