
 Response to comments from reviewer Wood

 12/18/23. Reviewer comments in italics.

 ● I failed to get this installed on MacOS. I suspect I would also fail on Windows. I was
 able to follow the installation instructions on Linux/aarch64 in a VM, and all of the unit
 tests passed. Could you update the requirements to say this requires Linux, or could
 you do some testing to get this working on Mac and Windows?

 ○ CM++ now supports MacOS. Now, the software supports Mac and Linux (not
 Windows), and I have indicated that in the requirements section of the docs.

 ○ https://illinois-or-research-analytics.github.io/cm_pipeline/installation/
 ● Your requirements.txt file is very specific. Is there any way to relax the version

 requirements, e.g. to specify dependencies to only their minor version numbers rather
 than to their patch version numbers? I worry that this installation could be very brittle.

 ○ requirements.txt now includes <version>.<minor> and not patch numbers.
 ○ https://github.com/illinois-or-research-analytics/cm_pipeline/blob/main/requireme

 nts.txt
 ● Could you include example usage in the paper? Or in the documentation? Could you

 structure the documentation in docs / README so that it is more clear where I should
 start to learn how to use this program? The examples directory just contains json files,
 while the command to run in the first documentation page (python -m hm01.cm -i
 network.tsv -e clustering.tsv -c leiden -t 1log10 -n 32 -o
 output.tsv) gives this error;

 Traceback (most recent call last):

 File "/home/parallels/mambaforge/envs/review/lib/python3.10/runpy.py", line 196, in
 _run_module_as_main

 return _run_code(code, main_globals, None,

 File "/home/parallels/mambaforge/envs/review/lib/python3.10/runpy.py", line 86, in
 _run_code

 exec(code, run_globals)

 File "/home/parallels/review/cm_pipeline/hm01/cm.py", line 514, in <module>
 entry_point()

 File "/home/parallels/review/cm_pipeline/hm01/cm.py", line 510, in entry_point
 typer.run(main)

 File "/home/parallels/review/cm_pipeline/hm01/cm.py", line 422, in main
 assert resolution != -1, "Leiden requires resolution"

https://illinois-or-research-analytics.github.io/cm_pipeline/installation/
https://github.com/illinois-or-research-analytics/cm_pipeline/blob/main/requirements.txt
https://github.com/illinois-or-research-analytics/cm_pipeline/blob/main/requirements.txt
http://hm01.cm/

 AssertionError: Leiden requires resolution

 ○ Example commands have been modified accordingly and are included in the
 documentation and in the paper

 ○ https://illinois-or-research-analytics.github.io/cm_pipeline/examples/

 I recommend adding something like a "quick start" guide or similar, with complete input files for
 the examples, so that it is easier to get started straight away with the software. While you don't
 need as much, see here how in my software the user is taken on a journey from seeing if the
 software has the features they need, then a very simple install guide, then a quick start guide to
 quickly explore the software (before then more detailed guides and a tutorial). Something like
 this can really make a difference to a user's experience of the software.

 ○ A quick start guide has been created in the documentation, which includes a
 basic tutorial with downloadable sample data and visualization.

 ○ https://illinois-or-research-analytics.github.io/cm_pipeline/quickstart/

 ● Could you add some community guidelines as detailed in the checklist above? I am
 sorry if I missed them. Feel free to steal from How to ask for help and Contributing .

 ○ The community guidelines are inthe documentation
 ○ https://illinois-or-research-analytics.github.io/cm_pipeline/contributions/

 ● Could you provide the input files so that I can confirm the performance claims in figure
 1? Also, could you change this into a scaling plot rather than a time to solve plot? (i.e.
 the speed relative to 1 core for each core count - ideally a 32-core job would be 32
 times faster, but this would almost never be the case). This would give a better idea of
 how the code scales.

 ○ The paper now shows a speedup curve instead of a runtime curve to show
 scaling

 ○ To retrieve the input files:
 ■ Visit https://databank.illinois.edu/datasets/IDB-0908742
 ■ CEN: cen_pipeline.tar.gz

 ●

https://illinois-or-research-analytics.github.io/cm_pipeline/examples/
https://sire.openbiosim.org/
https://illinois-or-research-analytics.github.io/cm_pipeline/quickstart/
https://sire.openbiosim.org/support.html
https://sire.openbiosim.org/contributing/index.html
https://illinois-or-research-analytics.github.io/cm_pipeline/contributions/
https://databank.illinois.edu/datasets/IDB-0908742

