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Summary8

checkpointing_schedules provides schedules for step based incremental checkpointing of the9

adjoints to computer models. The schedules contain instructions indicating the sequence of10

forward and adjoint steps to be executed, and the data storage and retrieval to be performed.11

These instructions are independent of the model implementation, which enables the model12

authors to switch between checkpointing algorithms without recoding. Conversely, checkpoint-13

ing_schedules provides developers of checkpointing algorithms a direct mechanism to convey14

their work to model authors. checkpointing_schedules has been integrated into tlm_adjoint15

(James R. Maddison et al., 2019), a Python library designed for the automated derivation16

of higher-order tangent-linear and adjoint models and work is ongoing to integrate it with17

pyadjoint (Mitusch et al., 2019). This package can be incorporated into other gradient solvers18

based on adjoint methods, regardless of the specific approach taken to generate the adjoint19

model.20

The use of adjoint calculations to compute the gradient of a quantity of interest resulting21

from the solution of a system of partial differential equations (PDEs) is widespread and22

well-established. The resulting gradient may be employed for many purposes, include topology23

optimisation (Papadopoulos et al., 2021), inverse problems (Plessix, 2006), flow control (Jansen,24

2011).25

Solving the adjoint to a non-linear time-dependent PDE requires the forward PDE to be solved26

first. The adjoint PDE is then solved in a reverse time order, but depends on the forward27

state. Storing the entire forward state in preparation for the adjoint calculation has a memory28

footprint linear in the number of time steps. For sufficiently large problems this will exhaust29

the memory of any computer system.30

In contrast, checkpointing approaches store only the state required to restart the forward31

calculation from a limited set of steps. As the adjoint calculation progresses, the forward32

computation is progressively rerun from the latest available stored state up to the current adjoint33

step. This enables less forward state to be stored, at the expense of a higher computational34

cost as forward steps are run more than once. (Griewank & Walther, 2000) proposed a35

checkpointing algorithm which is optimal under certain assumptions, including that the number36

of steps is known in advance, and that all the storage has equal access cost. Subsequent37

authors have produced checkpointing algorithms that relax these requirements in various ways,38

such as by accounting for different types of storage (e.g. RAM and disk) or by not requiring the39

number of steps to be known in advance, for example (Aupy et al., 2016; Aupy & Herrmann,40

2017; Herrmann, 2020; James R. Maddison, 2023; Schanen et al., 2016; Stumm & Walther,41

2009; Zhang & Constantinescu, 2023).42
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Statement of need43

This situation is typical across computational mathematics: there exists a diversity of algorithms44

whose applicability and optimality depends on the nature and parameters of the problem to be45

solved. From the perspective of users who wish to construct adjoint solvers this creates the46

need to swap out different checkpointing algorithms in response to changes in the equations,47

discretisations, and computer systems with which they work. Those users will often lack the48

expertise or the time to continually reimplement additional algorithms in their framework.49

Further, such reimplementation work is wasteful and error-prone.50

checkpointing_schedules provides a number of checkpointing algorithms accessible through a51

common interface and and these are interchangeable without recoding. This can be used in52

conjunction with an adjoint framework such as tlm_adjoint or pyadjoint and a compatible PDE53

framework, such as Firedrake (Ham et al., 2023) or FEniCS (Alnaes et al., 2015) to enable54

users to create adjoint solvers for their choice of PDE, numerical methods, and checkpointing55

algorithm all without recoding the underlying algorithms.56

Some of the algorithms supported by checkpointing_schedules have been implemented many57

times, while for others, such as H-Revolve the only previously published implementation was a58

simple proof of concept in the original paper (Herrmann, 2020). The checkpoint schedule API59

provided by checkpoint_schedules further provides a toolkit for the implementation of further60

checkpoint schedules, thereby providing a direct route from algorithm developers to users.61

Software description62

Currently, checkpoint_schedules is able to generate schedules for the following checkpointing63

schemes: Revolve (Stumm & Walther, 2009); disk-revolve (Aupy et al., 2016); periodic-disk64

revolve (Aupy & Herrmann, 2017); two-level (Pringle et al., 2016); H-Revolve (Herrmann,65

2020); and mixed storage checkpointing (James R. Maddison, 2023). It also contains trivial66

schedules which store the entire forward state. This enables users to support adjoint calculations67

with or without checkpointing via a single code path.68

The complete documentation for checkpoint_schedules is available on the Firedrake project69

website.70
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