
DRAFT
checkpoint_schedules: schedules for incremental1

checkpointing of adjoint simulations2

Daiane I. Dolci 1, James R. Maddison2, David A. Ham 1, Guillaume3

Pallez 3, and Julien Herrmann4
4

1 Department of Mathematics, Imperial College London, London, SW72AZ, UK. 2 School of5

Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, EH9 3FD 36

Inria, University of Rennes, France. 4 CNRS, IRIT, Université de Toulouse.7

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @matt-graham
• @KYANJO

Submitted: 28 September 2023
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary8

checkpointing_schedules provides schedules for step based incremental checkpointing of the9

adjoints to computer models. The schedules contain instructions indicating the sequence of10

forward and adjoint steps to be executed, and the data storage and retrieval to be performed.11

These instructions are independent of the model implementation, which enables the model12

authors to switch between checkpointing algorithms without recoding. Conversely, checkpoint-13

ing_schedules provides developers of checkpointing algorithms a direct mechanism to convey14

their work to model authors. checkpointing_schedules has been integrated into tlm_adjoint15

(James R. Maddison et al., 2019), a Python library designed for the automated derivation16

of higher-order tangent-linear and adjoint models and work is ongoing to integrate it with17

pyadjoint (Mitusch et al., 2019). This package can be incorporated into other gradient solvers18

based on adjoint methods, regardless of the specific approach taken to generate the adjoint19

model.20

The use of adjoint calculations to compute the gradient of a quantity of interest resulting21

from the solution of a system of partial differential equations (PDEs) is widespread and22

well-established. The resulting gradient may be employed for many purposes, include topology23

optimisation (Papadopoulos et al., 2021), inverse problems (Plessix, 2006), flow control (Jansen,24

2011).25

Solving the adjoint to a non-linear time-dependent PDE requires the forward PDE to be solved26

first. The adjoint PDE is then solved in a reverse time order, but depends on the forward27

state. Storing the entire forward state in preparation for the adjoint calculation has a memory28

footprint linear in the number of time steps. For sufficiently large problems this will exhaust29

the memory of any computer system.30

In contrast, checkpointing approaches store only the state required to restart the forward31

calculation from a limited set of steps. As the adjoint calculation progresses, the forward32

computation is progressively rerun from the latest available stored state up to the current adjoint33

step. This enables less forward state to be stored, at the expense of a higher computational34

cost as forward steps are run more than once. (Griewank & Walther, 2000) proposed a35

checkpointing algorithm which is optimal under certain assumptions, including that the number36

of steps is known in advance, and that all the storage has equal access cost. Subsequent37

authors have produced checkpointing algorithms that relax these requirements in various ways,38

such as by accounting for different types of storage (e.g. RAM and disk) or by not requiring the39

number of steps to be known in advance, for example (Aupy et al., 2016; Aupy & Herrmann,40

2017; Herrmann, 2020; James R. Maddison, 2023; Schanen et al., 2016; Stumm & Walther,41

2009; Zhang & Constantinescu, 2023).42

Dolci et al. (2023). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 0(0),
6148. https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0002-1435-9538
https://orcid.org/0000-0001-9545-9110
https://orcid.org/0000-0001-8862-3277
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/6148
https://github.com/firedrakeproject/checkpoint_schedules
https://doi.org/
http://www.diehlpk.de
https://orcid.org/0000-0003-3922-8419
https://github.com/matt-graham
https://github.com/KYANJO
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
Brian
Sticky Note
I amn't sure this is entirely true for all systems.

Brian
Sticky Note
including

Brian
Sticky Note
Shouldn't citing approach be different at the beginning of the sentence compared to the end and with in the sentence? May be there shouldn't be parenthesis on the citation beginning the sentence.

Brian
Sticky Note
Full abbreviation of RAM not provided

DRAFT
Statement of need43

This situation is typical across computational mathematics: there exists a diversity of algorithms44

whose applicability and optimality depends on the nature and parameters of the problem to be45

solved. From the perspective of users who wish to construct adjoint solvers this creates the46

need to swap out different checkpointing algorithms in response to changes in the equations,47

discretisations, and computer systems with which they work. Those users will often lack the48

expertise or the time to continually reimplement additional algorithms in their framework.49

Further, such reimplementation work is wasteful and error-prone.50

checkpointing_schedules provides a number of checkpointing algorithms accessible through a51

common interface and and these are interchangeable without recoding. This can be used in52

conjunction with an adjoint framework such as tlm_adjoint or pyadjoint and a compatible PDE53

framework, such as Firedrake (Ham et al., 2023) or FEniCS (Alnaes et al., 2015) to enable54

users to create adjoint solvers for their choice of PDE, numerical methods, and checkpointing55

algorithm all without recoding the underlying algorithms.56

Some of the algorithms supported by checkpointing_schedules have been implemented many57

times, while for others, such as H-Revolve the only previously published implementation was a58

simple proof of concept in the original paper (Herrmann, 2020). The checkpoint schedule API59

provided by checkpoint_schedules further provides a toolkit for the implementation of further60

checkpoint schedules, thereby providing a direct route from algorithm developers to users.61

Software description62

Currently, checkpoint_schedules is able to generate schedules for the following checkpointing63

schemes: Revolve (Stumm & Walther, 2009); disk-revolve (Aupy et al., 2016); periodic-disk64

revolve (Aupy & Herrmann, 2017); two-level (Pringle et al., 2016); H-Revolve (Herrmann,65

2020); and mixed storage checkpointing (James R. Maddison, 2023). It also contains trivial66

schedules which store the entire forward state. This enables users to support adjoint calculations67

with or without checkpointing via a single code path.68

The complete documentation for checkpoint_schedules is available on the Firedrake project69

website.70

Acknowledgments71

This work was supported by the Engineering and Physical Sciences Research Council72

[EP/W029731/1 and EP/W026066/1]. J. R. M. was supported by the Natural Environment73

Research Council [NE/T001607/1]. G. P. was supported in part by the French National74

Research Agency (ANR) in the frame of DASH (ANR-17-CE25- 0004).75

References76

Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring,77

J., Rognes, M. E., & Wells, G. N. (2015). The FEniCS project version 1.5. Archive of78

Numerical Software, 3. https://doi.org/10.11588/ans.2015.100.2055379

Aupy, G., & Herrmann, J. (2017). Periodicity in optimal hierarchical checkpointing schemes80

for adjoint computations. Optimization Methods and Software, 32(3), 594–624. https:81

//doi.org/10.1080/10556788.2016.123061282

Aupy, G., Herrmann, J., Hovland, P., & Robert, Y. (2016). Optimal multistage algorithm83

for adjoint computation. SIAM Journal on Scientific Computing, 38(3), C232–C255.84

https://doi.org/10.1145/347837.34784685

Dolci et al. (2023). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 0(0),
6148. https://doi.org/10.xxxxxx/draft.

2

https://www.firedrakeproject.org/checkpoint_schedules/
https://www.firedrakeproject.org/checkpoint_schedules/
https://www.firedrakeproject.org/checkpoint_schedules/
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1080/10556788.2016.1230612
https://doi.org/10.1145/347837.347846
https://doi.org/10.xxxxxx/draft

DRAFT
Griewank, A., & Walther, A. (2000). Revolve: An implementation of checkpointing for86

the reverse or adjoint mode of computational differentiation. ACM Transactions on87

Mathematical Software (TOMS), 26(1), 19–45. https://doi.org/10.1145/347837.34784688

Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani,89

N., Vorderwuelbecke, S., Gregory, T. J., Betteridge, J., Shapero, D. R., Nixon-Hill, R.90

W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, I., Gibson, T. H., Homolya,91

M., Sun, T., … Markall, G. R. (2023). Firedrake user manual (First edition). Imperial92

College London; University of Oxford; Baylor University; University of Washington. https:93

//doi.org/10.25561/10483994

Herrmann, J. (2020). H-revolve: A framework for adjoint computation on synchronous95

hierarchical platforms. ACM Transactions on Mathematical Software (TOMS), 46(2), 1–25.96

https://doi.org/10.1145/337867297

Jansen, J. D. (2011). Adjoint-based optimization of multi-phase flow through porous media –98

a review. Computers & Fluids, 46(1), 40–51. https://doi.org/10.1016/j.compfluid.2010.99

09.039100

Maddison, James R. (2023). On the implementation of checkpointing with high-level algorithmic101

differentiation. arXiv Preprint arXiv:2305.09568. https://doi.org/10.48550/arXiv.2305.102

09568103

Maddison, James R., Goldberg, D. N., & Goddard, B. D. (2019). Automated calculation of104

higher order partial differential equation constrained derivative information. SIAM Journal105

on Scientific Computing, 41(5), C417–C445. https://doi.org/10.1137/18M1209465106

Mitusch, S. K., Funke, S. W., & Dokken, J. S. (2019). Dolfin-adjoint 2018.1: Automated107

adjoints for FEniCS and firedrake. Journal of Open Source Software, 4(38), 1292. https:108

//doi.org/10.21105/joss.01292109

Papadopoulos, I. P., Farrell, P. E., & Surowiec, T. M. (2021). Computing multiple solu-110

tions of topology optimization problems. SIAM Journal on Scientific Computing, 43(3),111

A1555–A1582. https://doi.org/10.1137/20M1326209112

Plessix, R.-E. (2006). A review of the adjoint-state method for computing the gradient113

of a functional with geophysical applications. Geophys. J. Int, 167, 495–503. https:114

//doi.org/10.1111/j.1365-246X.2006.02978.x115

Pringle, G., Jones, D. C., Goswami, S., Narayanan, S. H. K., & Goldberg, D. (2016). Providing116

the ARCHER community with adjoint modelling tools for high-performance oceanographic117

and cryospheric computation.118

Schanen, M., Marin, O., Zhang, H., & Anitescu, M. (2016). Asynchronous two-level check-119

pointing scheme for large-scale adjoints in the spectral-element solver Nek5000. Procedia120

Computer Science, 80, 1147–1158. https://doi.org/10.1016/j.procs.2016.05.444121

Stumm, P., & Walther, A. (2009). Multistage approaches for optimal offline checkpointing.122

SIAM Journal on Scientific Computing, 31(3), 1946–1967. https://doi.org/10.1137/123

080718036124

Zhang, H., & Constantinescu, E. M. (2023). Optimal checkpointing for adjoint multistage125

time-stepping schemes. Journal of Computational Science, 66, 101913. https://doi.org/10.126

1016/j.jocs.2022.101913127

Dolci et al. (2023). checkpoint_schedules: schedules for incremental checkpointing of adjoint simulations. Journal of Open Source Software, 0(0),
6148. https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.1145/347837.347846
https://doi.org/10.25561/104839
https://doi.org/10.25561/104839
https://doi.org/10.25561/104839
https://doi.org/10.1145/3378672
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.1016/j.compfluid.2010.09.039
https://doi.org/10.48550/arXiv.2305.09568
https://doi.org/10.48550/arXiv.2305.09568
https://doi.org/10.48550/arXiv.2305.09568
https://doi.org/10.1137/18M1209465
https://doi.org/10.21105/joss.01292
https://doi.org/10.21105/joss.01292
https://doi.org/10.21105/joss.01292
https://doi.org/10.1137/20M1326209
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://doi.org/10.1016/j.procs.2016.05.444
https://doi.org/10.1137/080718036
https://doi.org/10.1137/080718036
https://doi.org/10.1137/080718036
https://doi.org/10.1016/j.jocs.2022.101913
https://doi.org/10.1016/j.jocs.2022.101913
https://doi.org/10.1016/j.jocs.2022.101913
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Software description
	Acknowledgments
	References

