
DRAFT
pyGCodeDecode: A Python package for time-accurate1

GCode simulation in material extrusion processes2

Jonathan Knirsch 1*, Felix Frölich 1*, Lukas Hof 1*, Florian3

Wittemann 1, and Luise Kärger 1
4

1 Karlsruhe Institute of Technology (KIT), Institute of Vehicle System Technology, Germany * These5

authors contributed equally.6

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary7

The Machine instructions for material extrusion processes (MEX), such as the fused filament8

fabrication (FFF) process, are typically provided as GCode, which can be generated by a9

variety of slicer programs. The 3D model of the part is sliced into multiple layers and a tool10

path is created for each according to the parameters for infill, perimeters supports and other11

structures (Gibson & Rosen, 2021). The exported GCode consists of a list of commands12

specifying target points in space for the tool as well as the amount of material to be extruded.13

Additionally, process parameters such as temperatures, velocities or cooling fan speeds are14

set and changed during printing according to the GCode. However, the GCode itself does15

not accurately reflect the eventual printing process. It is interpreted by the printer’s firmware16

that plans the trajectory taking into account the machine’s limitations. In particular, the17

specified maximum printing speed, acceleration and jerk have an influence on the resulting path18

velocities. These influence both the mechanical properties such as the resulting crystallinity19

when processing semi-crystalline thermoplastics (Luzanin & Movrin, 2019) and the tensile20

strength or surface roughness (Altan & Eryildiz, 2018). The direct influence of firmware21

parameters such as “jerk settings” and acceleration on surface roughness was also shown in22

(Yadav et al., 2023). This means that print results and print times for the same GCode path23

can vary when using different printers, even if many printers use similar firmware. Setting a24

higher target printing velocity on a machine with insufficient acceleration capabilities will lead25

to a large difference between target and actual printing velocity as illustrated in Figure 1. This26

can lead to unexpected behavior and a slower print than anticipated. Many slicers will predict27

the progression of the print but these predictions might deviate significantly from the actual28

process. A good understanding and accurate modeling of trajectory behaviors can contribute29

significantly to the improvement of slicing algorithms and printer hardware through the virtual30

evaluation of GCode. In addition, modeling of those behaviors enables more accurate virtual31

replication of the process through process simulations such as thermomechanical modeling and32

small-scale fluid simulations. PYGCODEDECODE is a Python package for GCode interpretation33

and MEX Firmware simulation. The package was developed to enable researchers and users to34

better understand time-dependent process variables and enable a more accurate study of the35

printing process.36

Knirsch et al. (2024). pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes. Journal of Open
Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0008-8663-8721
https://orcid.org/0000-0002-2575-4752
https://orcid.org/0009-0000-4931-2409
https://orcid.org/0000-0001-8693-7264
https://orcid.org/0000-0002-6534-6518
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
Figure 1: Printing velocity of the raw GCode (left) in comparison to the printing velocity with simulated
acceleration (right).

Statement of need37

There are several software tools to visualize GCode file data. For example, in various slicer38

programs such as PRUSA SLICER (Prusa Research a.s., 2024) or CURA (Ultimaker B.V., 2023),39

but also in web applications and printer control applications such as OCTOPRINT (Gina Häußge,40

2023), REPETIER-HOST (Hot-World GmbH & Co. KG, n.d.), NC VIEWER (Xander Luciano,41

n.d.) or GCODE VIEWER (Alex Ustyantsev, n.d.). These tools can read the position of the42

GCode coordinates and interpolate between the points to create motion paths. It is possible43

to distinguish between printing and traversing motions to preview the part. The additional44

information in the GCode, such as target print speed or temperature, can also be displayed in45

most cases. However, currently available tools are unable to accurately simulate the behavior46

of the printer, including acceleration and deceleration. This can lead to inaccurate time47

predictions and potentially undetected deviations from expected process conditions. The48

variety of software tools available underscores the importance of being able to analyze the49

GCode. In addition, the constant and rapid advancement of printing technologies requires50

a deeper understanding of printer-specific process conditions, which must take into account51

hardware and firmware limitations. To fill this gap, PYGCODEDECODE has been developed as52

an open source firmware simulation tool. It enables more detailed and accurate simulation53

models for MEX-based processes by taking into account the behavior of the firmware.54

Methodology55

PYGCODEDECODE’S class-based structure and separation of modules allow for simple and56

extensive modifications or additions. Its GCode parser transfers individual commands into a57

state class containing every command’s parameters as well as the GCode history and user-set58

firmware parameters. Most printers use a trapezoidal velocity profile for each move which is59

constrained by its entry, target and exit velocities, as well as the maximum acceleration. While60

the maximum acceleration and target velocity are configured in the firmware settings and the61

GCode respectively, the entry and exit velocities are calculated using a variety of different62

cornering algorithms. Usually some limited instantaneous change in velocity is allowed, while63

taking the change in travel direction into account. Smaller changes in direction generally require64

less reduction in travel speed. PYGCODEDECODE provides models of cornering algorithms for65

several firmwares. They are implemented as classes according to the respective documentation,66

e.g. MARLIN classic jerk, MARLIN junction deviation and KLIPPER (Jeon, 2021) (Lahteine,67

n.d.-b) (Lahteine, n.d.-a) (Klipper3d, n.d.). The junction velocities are calculated using the68

selected cornering algorithm. Then the trajectory modeling connects all states by planning69

accelerating, constant velocity, and decelerating segments matching the junction velocities.70

This is achieved by solving the equations of the surface area under the trapezoidal velocity71

profile shown in Figure 2 for the missing parameters.72

Knirsch et al. (2024). pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes. Journal of Open
Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft


DRAFT
Figure 2: Trapezoidal velocity profile.

Using73

𝑆 = 𝑆acc + 𝑆const + 𝑆dec, (1)

the sum of all segment distances is the total planner block distance 𝑆. The individual distances74

for linear acceleration 𝑆acc, constant velocity 𝑆const and deceleration 𝑆dec are given by75

𝑆acc =
1
2
(𝑣const + 𝑣0)Δ𝑡acc (2)

76
𝑆const = 𝑣constΔ𝑡const (3)

77

𝑆dec =
1
2
(𝑣1 + 𝑣const)Δ𝑡dec. (4)

With the initial velocity 𝑣0, the target velocity 𝑣const and ending velocity 𝑣1 of the planner block78

given and using a constant printing acceleration 𝑎 resp. corresponding deceleration −𝑎, one79

can solve for the acceleration time 𝑡acc, the constant velocity time 𝑡const and the deceleration80

time 𝑡dec to construct the trapezoid. In the simplest case, the planner can fit a complete81

trapezoid to the boundary conditions. Since real life GCode is often finely discretized, especially82

for curved surfaces this is not always possible and 𝑣const or 𝑣1 cannot be reached with the given83

acceleration settings. In these cases, the parameters which are being solved change accordingly84

and the velocity profile is truncated. The junction velocities in corners are calculated with the85

junction deviation model based on the specific firmware implementation. All segments of a86

single move are stored together with its enclosing states in a planner block class. The package87

is designed to allow for modifications to both the interpretation and trajectory modeling as88

well as overwriting the GCode simulation inputs, e.g. states or acceleration modeling, to create89

parameter studies without much effort.90

PYGCODEDECODE provides examples for simple GCode analysis with 3D color plots of the91

trajectory and velocity using PYVISTA or visualizing the axis velocities and positions in MAT-92

PLOTLIB. Moreover, it is also possible to generate an input file for the “AM Modeler” plug-in93

for the finite element analysis software ABAQUS to use the real process conditions in a process94

simulation.95

Validation96

PYGCODEDECODE has been validated with experiments on a FFF printer running a MARLIN97

derived firmware by Prusa (Prusa Mini). In order to measure the accuracy of the simulation,98

a test GCode containing a simple repeating triangular path has been chosen to emulate a99

printed layer. After each layer, a layer change is simulated by moving the Z-Axis.The time was100

measured for each layer using a camera by analyzing the footage. By changing the “jerk setting”101

in the firmware through a GCode command, this test pattern can validate the simulation for102

several different configurations. In Figure 3 the layer duration is plotted over different jerk103

Knirsch et al. (2024). pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes. Journal of Open
Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft


DRAFT
values ranging from one to 30 mm/s, which is equal to the target velocity set in the test104

GCode.105

Figure 3: Validation of the simulation by measuring layer duration.

For the chosen case the layer duration is highly dependant on the set jerk values. For jerk106

values equal to the target printing velocity, the calculated time is expected to approach a107

constant velocity solution calculated analytically. Therefore, the acceleration and cornering108

algorithms have no influence on the print time of a layer. For jerk values close to zero, the109

printer is expected to slow almost to a full stop for each turn in the path. This result is similar110

to the simplest velocity trapezoid where entry and exit velocities are zero. The layer time for111

this edge case was also validated by an analytical calculation. The comparison to experimental112

data for jerk values between these edge cases shows that the implemented cornering algorithm113

models the Prusa Mini firmware behavior well.114

Acknowledgements115

We thank the Baden-Württemberg Ministry of Science, Research and the Arts (MWK) for116

the funding the projects “Efficient process design for the processing of polylactide (PLA)117

in fused filament fabrication (F³FastSim)” and “Basics of a remanufacturing process chain118

for functional, hybridized polymer components to increase reusability and optimize resource119

utilization (Restore)” as part of the InnovationCampus Future Mobility (ICM) in which this120

work was carried out, as well as the German Research Foundation (DFG) for funding the121

professorship of Prof. Kärger’s Heisenberg professorship.122

References123

Alex Ustyantsev. (n.d.). gCodeViewer. Retrieved April 9, 2024, from https://gcode.ws/124

Altan, M., & Eryildiz, M. (2018). Effects of process parameters on the quality of PLA125

products fabricated by fused deposition modeling (FDM): surface roughness and tensile126

strength. MATERIALS TESTING FOR JOINING AND ADDITIVE MANUFACTURING127

APPLICATIONS. https://doi.org/10.3139/120.111178128

Gibson, I., & Rosen, D. (2021). Additive Manufacturing Technologies: Third Edition. Springer129

Nature Switzerland. https://doi.org/10.1007/978-3-030-56127-7130

Gina Häußge. (2023). OctoPrint (Version 1.9.3). https://github.com/OctoPrint/OctoPrint131

Knirsch et al. (2024). pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes. Journal of Open
Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

4

https://gcode.ws/
https://doi.org/10.3139/120.111178
https://doi.org/10.1007/978-3-030-56127-7
https://github.com/OctoPrint/OctoPrint
https://doi.org/10.xxxxxx/draft


DRAFT
Hot-World GmbH & Co. KG. (n.d.). Repetier-Host (Version 2.3.2). https://www.repetier.com/132

Jeon, S. K. (2021). GRBL firmware (Version 1.1). https://github.com/grbl/grbl133

Klipper3d. (n.d.). Klipper documentation. Retrieved April 9, 2024, from https://www.134

klipper3d.org/Kinematics.html135

Lahteine, S. (n.d.-a). Marlin documentation. Retrieved April 9, 2024, from https://marlinfw.136

org/137

Lahteine, S. (n.d.-b). Marlin firmware (Version 2.1.2.2). https://github.com/MarlinFirmware/138

Marlin139

Luzanin, O., & Movrin, D. (2019). Impact of processing parameters on tensile strength,140

in-process crystallinity and mesostructure in FDM-fabricated PLA specimens. Rapid141

Prototyping. https://doi.org/10.1108/RPJ-12-2018-0316142

Prusa Research a.s. (2024). PrusaSlicer (Version 2.7.4). https://github.com/prusa3d/143

PrusaSlicer144

Ultimaker B.V. (2023). Ultimaker Cura (Version 5.4.0). https://github.com/Ultimaker/Cura145

Xander Luciano. (n.d.). NC Viewer (Version 1.1.3). Retrieved April 9, 2024, from https:146

//ncviewer.com/147

Yadav, K., Rohilla, S., & Ali, A. (2023). Effect of Speed, Acceleration, and Jerk on Surface148

Roughness of FDM-Fabricated Parts. Journal of Materials Engineering and Performance.149

https://doi.org/10.1007/s11665-023-08476-2150

Knirsch et al. (2024). pyGCodeDecode: A Python package for time-accurate GCode simulation in material extrusion processes. Journal of Open
Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft.

5

https://www.repetier.com/
https://github.com/grbl/grbl
https://www.klipper3d.org/Kinematics.html
https://www.klipper3d.org/Kinematics.html
https://www.klipper3d.org/Kinematics.html
https://marlinfw.org/
https://marlinfw.org/
https://marlinfw.org/
https://github.com/MarlinFirmware/Marlin
https://github.com/MarlinFirmware/Marlin
https://github.com/MarlinFirmware/Marlin
https://doi.org/10.1108/RPJ-12-2018-0316
https://github.com/prusa3d/PrusaSlicer
https://github.com/prusa3d/PrusaSlicer
https://github.com/prusa3d/PrusaSlicer
https://github.com/Ultimaker/Cura
https://ncviewer.com/
https://ncviewer.com/
https://ncviewer.com/
https://doi.org/10.1007/s11665-023-08476-2
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of need
	Methodology
	Validation
	Acknowledgements
	References

