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Summary

Understanding the impact of the complex meso-scale morphology is critical for the devel-
opment of organic semiconductor materials and devices. This is particularly important in
organic photovoltaics (OPVs), where a blend of two or more components phase separates
to form a bulk heterojunction (BHJ) structure. To build better structure-property models
for organic BHJ photovoltaics, the simple Ising-based morphology model has proven to be
a highly useful tool when coupled with kinetic Monte Carlo (KMC) simulations.(Heiber,
Wagenpfahl, & Deibel, 2019) Ising_OPV was originally designed as an efficient, open-
source C++ tool that would enable researchers in the community to have easy access to
this morphology model and allow them to create well-controlled morphologies on an HPC
cluster for KMC simulations.(Heiber & Dhinojwala, 2014) Demonstrating the utility of
this tool, the ability to systematically control the domain size allowed a detailed investiga-
tion of the charge carrier recombination kinetics in OPVs.(Heiber, Baumbach, Dyakonov,
& Deibel, 2015, Heiber, Nguyen, & Deibel (2016)) The tool can also create controlled
interfacial mixing, which can be important for simulating the exciton dissociation dy-
namics and charge separation yield in OPVs.(Lyons, Clarke, & Groves, 2012, Heiber &
Dhinojwala (2013)) In addition, the tool was later updated to add new features that allow
further structural control and quantification of important morphological features, most
importantly the domain tortuosity.(Heiber et al., 2017) The tool has also been used as
a testbed for developing more advanced 3D image analysis methods.(Aboulhassan, Sicat,
Baum, Wodo, & Hadwiger, 2017)
Building on this foundation, v4.0 adds an exciting new feature that allows users to import
three-dimensional morphology data sets from experimental techniques such as electron
tomography (Bavel, Sourty, With, & Loos, 2009, Pfannmöller, Kowalsky, & Schröder
(2013)) or atom probe tomography (Proudian, Jaskot, Diercks, Gorman, & Zimmerman,
2018) and prepare experimentally-derived morphology sets for KMC simulations using
Excimontec.(Heiber, 2018a) A pictorial representation of the workflow when importing
experimental morphology data is shown below. In addition, this update includes a major
code overhaul to create a well-organized and well-documented object-oriented software
package that is more reliable, testable, and extensible. The code has been updated to use
many C++11 features and now includes rigorous unit testing with googletest, integration
testing with TravisCI, and API documentation generated using Doxygen. The source
code for Ising_OPV v4.0 is archived with Zenodo.(Heiber, 2018b)
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Figure 1: Experimental tomography data import and analysis workflow.
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