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Summary

Transcriptomic analysis is used to capture the molecular state of a cell or sample in many bio-
logical and medical applications. In addition to identifying alterations in activity at the level of
individual genes, understanding changes in the gene networks that regulate fundamental bio-
logical mechanisms is also an important objective of molecular analysis. As a result, databases
that describe biological pathways are increasingly relied on to assist with the interpretation
of results from large-scale genomics studies. Incorporating information from biological path-
ways and gene regulatory networks into a genomic data analysis is a popular strategy, and
there are many methods that provide this functionality for gene expression data. When de-
veloping or comparing such methods, it is important to gain an accurate assessment of their
performance, with simulation-based validation studies a popular choice. This necessitates
the use of simulated data that correctly accounts for pathway relationships and correlations.
Here we present a versatile statistical framework to simulate correlated gene expression data
from biological pathways, by sampling from a multivariate normal distribution derived from
a graph structure. This procedure has been released as the graphsim R package on CRAN
and GitHub (https://github.com/TomKellyGenetics/graphsim) and is compatible with any
graph structure that can be described using the igraph package. This package allows the
simulation of biological pathways from a graph structure based on a statistical model of gene
expression.

Introduction: inference and modelling of biological networks
Network analysis of molecular biological pathways has the potential to lead to new insights into
biology and medical genetics (Barabási & Oltvai, 2004; Hu, Thomas, & Brunak, 2016). Since
gene expression profiles capture a consistent signature of the regulatory state of a cell (Ozsolak
& Milos, 2011; Perou et al., 2000; Svensson, Vento-Tormo, & Teichmann, 2018), they can
be used to analyse complex molecular states with genome-scale data. However, biological
pathways are often analysed in a reductionist paradigm as amorphous sets of genes involved
in particular functions, despite the fact that the relationships defined by pathway structure
could further inform gene expression analyses. In many cases, the pathway relationships
are well-defined, experimentally-validated, and are available in public databases (Croft et al.,
2014). As a result, network analysis techniques could play an important role in furthering our
understanding of biological pathways and aiding in the interpretation of genomics studies.
Gene networks provide insights into how cells are regulated, by mapping regulatory interac-
tions between target genes and transcription factors, enhancers, and sites of epigenetic marks
or chromatin structures (Barabási & Oltvai, 2004; Yamaguchi, Yoshida, Imoto, Higuchi, &
Miyano, 2007). Inference of these regulatory interactions for genomics investigations has the
potential to radically expand the range of candidate biological pathways to be further explored,
or to improve the accuracy of bioinformatics and functional genomic analysis. A number of
methods have already been developed to utilise timecourse gene expression data (Arner et
al., 2015; Yamaguchi et al., 2007) using gene regulatory modules in state-space models and
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recursive vector autoregressive models (Hirose et al., 2008; Shimamura et al., 2009). Various
approaches to gene regulation and networks at the genome-wide scale have led to novel bio-
logical insights (Arner et al., 2015; Komatsu et al., 2013). However, inference of regulatory
networks has thus far relied on experimental validation or resampling-based approaches to
estimate the likelihood of specific network modules being predicted (Hawe, Theis, & Heinig,
2019; Markowetz & Spang, 2007).
There is a need, therefore, for a systematic framework for statistical modelling and simulation
of gene expression data derived from hypothetical, inferred or known gene networks. Here
we present a package to achieve this, where samples from a multivariate normal distribu-
tion are used to generate normally-distributed log-expression data, with correlations between
genes derived from the structure of the underlying pathway or gene regulatory network. This
methodology enables simulation of expression profiles that approximate the log-transformed
and normalised data from microarray and bulk or single-cell RNA-Seq experiments. This pro-
cedure has been released as the package to enable the generation of simulated gene expression
datasets containing pathway relationships from a known underlying network. These simulated
datasets can be used to evaluate various bioinformatics methodologies, including statistical
and network inference procedures.

Methodology and software
Here we present a procedure to simulate gene expression data with correlation structure de-
rived from a known graph structure. This procedure assumes that transcriptomic data have
been generated and follow a log-normal distribution (i.e., log(Xij) ∼ MVN(µ,Σ), where µ
and Σ are the mean vector and variance-covariance matrix respectively, for gene expression
data derived from a biological pathway) after appropriate normalisation (Law, Chen, Shi, &
Smyth, 2014; Li, Piao, Shon, & Ryu, 2015). Log-normality of gene expression matches the
assumptions of the popular limma package (Ritchie et al., 2015), which is often used for the
analysis of intensity-based data from gene expression microarray studies and count-based data
from RNA-Seq experiments. This approach has also been applied for modelling UMI-based
count data from single-cell RNA-Seq experiments in the package (Wang et al., 2018).
In order to simulate transcriptomic data, a pathway is first constructed as a graph structure,
using the igraph R package (Csardi & Nepusz, 2006), with the status of the edge relationships
defined (i.e, whether they activate or inhibit downstream pathway members). This procedure
uses a graph structure such as that presented in Figure 1a. The graph can be defined by an
adjacency matrix, A (with elements Aij), where

Aij =

{
1 if genes i and j are adjacent
0 otherwise

A matrix, R, with elements Rij , is calculated based on distance (i.e., number of edges con-
tained in the shortest path) between nodes, such that closer nodes are given more weight than
more distant nodes, to define inter-node relationships. A geometrically-decreasing (relative)
distance weighting is used to achieve this:

Rij =


1 if genes i and j are adjacent
( 12 )

dij if a path can be found between genes i and j

0 if no path exists between genes i and j

where dij is the length of the shortest path (i.e., minimum number of edges traversed) between
genes (nodes) i and j in graph G. Each more distant node is thus related by 1

2 compared
to the next nearest, as shown in Figure 2b. An arithmetically-decreasing (absolute) distance
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weighting is also supported in the graphsim R package which implements this procedure:

Rij =


1 if genes i and j are adjacent
1− dij

diam(G) if a path can be found between genes i and j

0 if no path exists between genes i and j

Assuming a unit variance for each gene, these values can be used to derive a Σ matrix:

Σij =

{
1 if i = j

ρRij otherwise

where ρ is the correlation between adjacent nodes. Thus covariances between adjacent nodes
are assigned by a correlation parameter (ρ) and the remaining off-diagonal values in the matrix
are based on scaling these correlations by the geometrically weighted relationship matrix (or
the nearest positive definite matrix for Σ with negative correlations).
Computing the nearest positive definite matrix is necessary to ensure that the variance-
covariance matrix could be inverted when used as a parameter in multivariate normal sim-
ulations, particularly when negative correlations are included for inhibitions (as shown below).
Matrices that could not be inverted occurred rarely with biologically plausible graph structures
but this approach allows for the computation of a plausible correlation matrix when the given
graph structure is incomplete or contains loops. When required, the nearest positive definite
matrix is computed using the nearPD function of the Matrix R package (Bates & Maechler,
2016) to perform Higham’s algorithm (Higham, 2002) on variance-covariance matrices. The
graphsim package gives a warning when this occurs.

Illustrations

Generating a Graph Structure
The graph structure in Figure 1a was used to simulate correlated gene expression data by
sampling from a multivariate normal distribution using the R package (Genz & Bretz, 2009;
Genz et al., 2016). The graph structure visualisation in Figure 1 was specifically developed for
(directed) igraph objects in and is available in the and packages. The \texttt{plot_directed}
function enables customisation of plot parameters for each node or edge, and mixed (directed)
edge types for indicating activation or inhibition. These inhibition links (which occur frequently
in biological pathways) are demonstrated in Figure 1b.
A graph structure can be generated and plotted using the following commands in R:
#install packages required (once per machine)

install.packages("graphsim")

#load required packages (once per R instance)

library("igraph")
#>
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#>
#> decompose, spectrum
#> The following object is masked from 'package:base':
#>
#> union
library("graphsim")
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library("gplots")
#>
#> Attaching package: 'gplots'
#> The following object is masked from 'package:stats':
#>
#> lowess

#generate graph structure

graph_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph <- graph.edgelist(graph_edges, directed = TRUE)

#plot graph structure (Figure 1a)

plot_directed(graph, state ="activating", layout = layout.kamada.kawai,
cex.node = 2, cex.arrow = 4, arrow_clip = 0.2)

mtext(text = "(a) Activating pathway structure", side=1, line=3.5, at=0.05, adj=0.5, cex=1.75)
box()

#generate parameters for inhibitions

state <- c(1, 1, -1, 1, 1, 1, 1, -1, 1)

#plot graph structure with inhibitions (Figure 1b)

plot_directed(graph, state=state, layout = layout.kamada.kawai,
cex.node = 2, cex.arrow = 4, arrow_clip = 0.2)

mtext(text = "(b) Inhibiting pathway structure", side=1, line=3.5, at=0.075, adj=0.5, cex=1.75)
box()
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Figure 1: Simulated graph structures. A constructed graph structure used as an example to
demonstrate the simulation procedure in Figures 2 and 3. Activating links are denoted by black
arrows and inhibiting links by red edges. Inhibiting edges have been highlighted in red.

Generating a Simulated Expression Dataset
The correlation parameter of ρ = 0.8 is used to demonstrate the inter-correlated datasets
using a geometrically-generated relationship matrix (as used for the example in Figure 2c).
This Σ matrix was then used to sample from a multivariate normal distribution such that
each gene had a mean of 0, standard deviation 1, and covariance within the range [0, 1]
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so that the off-diagonal elements of Σ represent correlations. This procedure generated a
simulated (continuous normally-distributed) log-expression profile for each node (Figure 2e)
with a corresponding correlation structure (Figure 2d). The simulated correlation structure
closely resembled the expected correlation structure (Σ in Figure 2c) even for the relatively
modest sample size (N = 100) illustrated in Figure 2. Once a gene expression dataset
comprising multiple pathways has been generated (as in Figure 2e), it can then be used to
test procedures designed for analysis of empirical gene expression data (such as those generated
by microarrays or RNA-Seq) that have been normalised on a log-scale.
The simulated dataset can be generated using the following code:
# activating graph
state <- rep(1, length(E(graph)))
plot_directed(graph, state=state, layout = layout.kamada.kawai,

cex.node=2, cex.arrow=4, arrow_clip = 0.2)
mtext(text = "(a) Activating pathway structure", side=1, line=3.5, at=0.075, adj=0.5, cex=1.75)
box()

#adjacency matrix
adj_mat <- make_adjmatrix_graph(graph)

#relationship matrix
dist_mat <- make_distance_graph(graph, absolute = FALSE)

#sigma matrix directly from graph
sigma_mat <- make_sigma_mat_dist_graph(graph, 0.8, absolute = FALSE)

#show shortest paths of graph
shortest_paths <- shortest.paths(graph)

#generate expression data directly from graph
expr <- generate_expression(100, graph, cor = 0.8, mean = 0, comm = FALSE,

dist = TRUE, absolute = FALSE, state = state)
#> Warning in generate_expression(100, graph, cor = 0.8, mean = 0,
#> comm = FALSE, : sigma matrix was not positive definite, nearest
#> approximation used.

#plot relationship matrix
heatmap.2(make_distance_graph(graph, absolute = FALSE),

scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = "(b) Relationship matrix", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#plot sigma matrix
heatmap.2(make_sigma_mat_dist_graph(graph, 0.8, absolute = FALSE),
scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = expression(paste("(c) ", Sigma, " matrix")), side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#simulated data
expr <- generate_expression(100, graph, cor = 0.8, mean = 0,
comm = FALSE, dist =TRUE, absolute = FALSE, state = state)
#> Warning in generate_expression(100, graph, cor = 0.8, mean = 0,
#> comm = FALSE, : sigma matrix was not positive definite, nearest
#> approximation used.
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#plot simulated correlations
heatmap.2(cor(t(expr)), scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = "(d) Simulated correlation", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#plot simulated expression data
heatmap.2(expr, scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
mtext(text = "samples", side=1, line=1.5, at=0.2, adj=0.5, cex=1.5)
mtext(text = "genes", side=4, line=1, at=-0.4, adj=0.5, cex=1.5)
mtext(text = "(e) Simulated expression data (log scale)", side=1, line=3.5, at=0, adj=0.5, cex=1.75)
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(e) Simulated expression data (log scale)

Figure 2: Simulating expression from a graph structure. An example of a graph structure (a) that
has been used to derive a relationship matrix (b), Σ matrix (c) and correlation structure (d) from
the relative distances between the nodes. Non-negative values are coloured white to red from 0 to
1. This Σ matrix has been used to generate a simulated expression dataset of 100 samples (coloured
blue to red from low to high) via sampling from the multivariate normal distribution. Here genes with
closer relationships in the pathway structure show a higher correlation between simulated values.

The simulation procedure (Figure 2) can similarly be used for pathways containing inhibitory
links (Figure 3) with several refinements. With the inhibitory links (Figure 3a), distances
are calculated in the same manner as before (Figure 3b) with inhibitions accounted for by
iteratively multiplying downstream nodes by −1 to form modules with negative correlations
between them (Figures 3c and 3d). A multivariate normal distribution with these negative
correlations can be sampled to generate simulated data (Figure 3e).
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#generate parameters for inhibitions
state <- c(1, 1, -1, 1, 1, 1, 1, -1)
plot_directed(graph, state=state, layout = layout.kamada.kawai,

cex.node=2, cex.arrow=4, arrow_clip = 0.2)
mtext(text = "(a) Inhibiting pathway structure", side=1, line=3.5, at=0.075, adj=0.5, cex=1.75)
box()

#adjacency matrix
adj_mat <- make_adjmatrix_graph(graph)

#relationship matrix
dist_mat <- make_distance_graph(graph, absolute = FALSE)

#sigma matrix directly from graph
sigma_mat <- make_sigma_mat_dist_graph(graph, state = state, 0.8, absolute = FALSE)

#show shortest paths of graph
shortest_paths <- shortest.paths(graph)

#generate expression data directly from graph
expr <- generate_expression(100, graph, state = state, cor = 0.8, mean = 0, comm = FALSE,

dist = TRUE, absolute = FALSE)
#> Warning in generate_expression(100, graph, state = state, cor =
#> 0.8, mean = 0, : sigma matrix was not positive definite, nearest
#> approximation used.

#plot relationship matrix
heatmap.2(make_distance_graph(graph, absolute = FALSE),

scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = "(b) Relationship matrix", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

# #plot sigma matrix
heatmap.2(make_sigma_mat_dist_graph(graph, state = state, 0.8, absolute = FALSE),
scale = "none", trace = "none", col = colorpanel(50, "blue", "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = expression(paste("(c) ", Sigma, " matrix")), side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#simulated data
expr <- generate_expression(100, graph, state = state, cor = 0.8, mean = 0,
comm = FALSE, dist =TRUE, absolute = FALSE)
#> Warning in generate_expression(100, graph, state = state, cor =
#> 0.8, mean = 0, : sigma matrix was not positive definite, nearest
#> approximation used.

#plot simulated correlations
heatmap.2(cor(t(expr)), scale = "none", trace = "none", col = colorpanel(50, "blue", "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
mtext(text = "(d) Simulated correlation", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#plot simulated expression data
heatmap.2(expr, scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
mtext(text = "samples", side=1, line=1.5, at=0.2, adj=0.5, cex=1.5)
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mtext(text = "genes", side=4, line=1, at=-0.4, adj=0.5, cex=1.5)
mtext(text = "(e) Simulated expression data (log scale)", side=1, line=3.5, at=0, adj=0.5, cex=1.75)
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Figure 3: Simulating expression from graph structure with inhibitions. An example of a graph
structure (a), that has been used to derive a relationship matrix (b), Σ matrix (c), and correlation
structure (d), from the relative distances between the nodes. These values are coloured blue to
red from −1 to 1. This has been used to generate a simulated expression dataset of 100 samples
(coloured blue to red from low to high) via sampling from the multivariate normal distribution. Here
the inhibitory relationships between genes are reflected in negatively correlated simulated values.

The simulation procedure is also demonstrated here (Figure 4) on a pathway structure for
a known biological pathway (from reactome R-HSA-2173789) of TGF-β receptor signaling
activates SMADs (Figure 4a) derived from the Reactome database version 52 [@Reactom
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e]. Distances are calculated in the same manner as before (Figure 4b) producing blocks
of correlated genes (Figures 4c and 4d). This shows that multivariate normal distribution
can be sampled to generate simulated data to represent expression with the complexity of a
biological pathway (Figure 4e). Here SMAD7 exhibits negative correlations with the other
SMADs consistent with it’s functions as as an “inhibitor SMAD” with competitively inhibits
SMAD4.

#import graph from data
graph <- identity(TGFBeta_Smad_graph)

#generate parameters for inhibitions
state <- rep(1, length(E(graph)))
pathway <- get.edgelist(graph)
state[pathway[,1] %in% c("SMAD6", "SMAD7", "BAMBI", "SMURF1", "SMURF2", "UCHL5", "USP15", "UBB", "UBC", "PMEPA1", "PPP1CA", "PPP1CB", "PPP1CC", "PPP1R15A")] <- 2
state[is.na(state)] <- 1

plot_directed(graph, state = state, layout = layout.kamada.kawai,
border.node=scales::alpha("black", 0.75), fill.node="lightblue",
col.arrow = c(scales::alpha("navyblue", 0.25), scales::alpha("red", 0.25))[state],
cex.node = 1.5, cex.label = 0.8, cex.arrow = 2,
sub = expression(paste("(a) TFG-", beta, " activates SMADs")), cex.sub = 1.75)

box()

#adjacency matrix
adj_mat <- make_adjmatrix_graph(graph)

#relationship matrix
dist_mat <- make_distance_graph(graph, absolute = FALSE)

#sigma matrix directly from graph
sigma_mat <- make_sigma_mat_dist_graph(graph, state = state, 0.8, absolute = FALSE)
#> Warning in eattrs[[name]][index] <- value: number of items to
#> replace is not a multiple of replacement length

#show shortest paths of graph
shortest_paths <- shortest.paths(graph)

#generate expression data directly from graph
expr <- generate_expression(100, graph, state = state, cor = 0.8, mean = 0, comm = FALSE,

dist = TRUE, absolute = FALSE)
#> Warning in eattrs[[name]][index] <- value: number of items to
#> replace is not a multiple of replacement length
#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length

#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length

#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length
#> Warning in generate_expression(100, graph, state = state, cor =
#> 0.8, mean = 0, : sigma matrix was not positive definite, nearest
#> approximation used.
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# #plot relationship matrix
heatmap.2(make_distance_graph(graph, absolute = FALSE),

scale = "none", trace = "none", col = colorpanel(50, "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
mtext(text = "(b) Relationship matrix", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

# #plot sigma matrix
heatmap.2(make_sigma_mat_dist_graph(graph, state = state, 0.8, absolute = FALSE),
scale = "none", trace = "none", col = colorpanel(50, "blue", "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
#> Warning in eattrs[[name]][index] <- value: number of items to
#> replace is not a multiple of replacement length
mtext(text = expression(paste("(c) ", Sigma, " matrix")), side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#simulated data
expr <- generate_expression(100, graph, state = state, cor = 0.8, mean = 0,
comm = FALSE, dist =TRUE, absolute = FALSE)
#> Warning in eattrs[[name]][index] <- value: number of items to
#> replace is not a multiple of replacement length
#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length

#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length

#> Warning in state_path[jj] <- state[kk]: number of items to replace
#> is not a multiple of replacement length
#> Warning in generate_expression(100, graph, state = state, cor =
#> 0.8, mean = 0, : sigma matrix was not positive definite, nearest
#> approximation used.

#plot simulated correlations
heatmap.2(cor(t(expr)), scale = "none", trace = "none", col = colorpanel(50, "blue", "white", "red"),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
mtext(text = "(d) Simulated correlation", side=1, line=3.5, at=0, adj=0.5, cex=1.75)

#plot simulated expression data
heatmap.2(expr, scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)), labCol = "")
mtext(text = "samples", side=1, line=1.5, at=0.2, adj=0.5, cex=1.5)
mtext(text = "genes", side=4, line=1, at=-0.4, adj=0.5, cex=1.5)
mtext(text = "(e) Simulated expression data (log scale)", side=1, line=3.5, at=0, adj=0.5, cex=1.75)
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(a) TFG−β activates SMADs
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(c) Σ matrix
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(d) Simulated correlation
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(e) Simulated expression data (log scale)

Figure 4: Simulating expression from a biological pathway graph structure. The graph structure
(a) of a known biological pathway, the TGF-β receptor signaling activates SMADs (R-HSA-2173789),
was used to derive a relationship matrix (b), Σ matrix (c) and correlation structure (d) from the
relative distances between the nodes. These values are coloured blue to red from −1 to 1. This has
been used to generate a simulated expression dataset of 100 samples (coloured blue to red from low to
high) via sampling from the multivariate normal distribution. Here modules of genes with correlated
expression can be clearly discerned.

These simulated datasets can also be used for simulating gene expression data within a
graph network to test genomic analysis techniques. Correlation structure can be included
into datasets generated when testing whether true positive genes or samples can be detected
in a sample with the background of complex pathway structure.
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Summary and discussion
Biological pathways are of fundamental importance to understanding molecular biology. In
order to translate findings from genomics studies into real-world applications such as improved
healthcare, the roles of genes must be studied in the context of molecular pathways. Here
we present a statistical framework to simulate gene expression from biological pathways, and
provide the graphsim package in R to generate these simulated datasets. This approach
is versatile and can be fine-tuned for modelling existing biological pathways or for testing
whether constructed pathways can be detected by other means. In particular, methods to
infer biological pathways and gene regulatory networks from gene expression data can be
tested on simulated datasets using this framework. The package also enables simulation of
complex gene expression datasets to test how these pathways impact on statistical analysis of
gene expression data using existing methods or novel statistical methods being developed for
gene expression data analysis.

Computational details
The results in this paper were obtained using R 3.6.1 with the igraph 1.2.4.1 Matrix 1.2-17, m
atrixcalc 1.0-3, and mvtnorm 1.0-11 packages. R itself and all dependent packages used are
available from the Comprehensive Archive Network (CRAN) at https://CRAN.R-project.org.
The graphsim package presented can be installed from CRAN and the issues can be reported
to the development version on GitHub (https://github.com/TomKellyGenetics/graphsim).
This package is included in the library on GitHub (https://github.com/TomKellyGenetics/
igraph.extensions) which installs various tools for igraph analysis. This software is cross-
platform and compatible with installations on Windows, Mac, and Linux operating systems.
The package GitHub repository also contains vignettes with more information and examples on
running functions released in the package. The package (graphsim 0.1.2) has been released
on CRAN and will be updated.
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