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Quantitative MR imaging (qMRI) and the associated possibility of finding imaging biomarkers

_has gained considerably in importance with the development towards stratified aicj_g__gi‘ﬁfa—

Editor: Kevin M. Moerman ¢ tive medicine. gMRI aims to identify the underlylng bio-physical and tissue parameters that
determine contrast in an imaging experiment. In addition to})é contrast inform ation from from

Benicuers: conventional MRI examinations, gMRI provides insights into diseases baSed—or 0phy5|ca| /
= Qgrlee?7 microstructural, and 23 )ﬁ{functmnal information in absolute quantitative values. For quantifi-
» @agahkarakuzu cation, biophysical models are used, which describe the relationship between image intensity
= @DARSakthi and physical properties of the tissue for certain scanning sequences and sequence parameters.

By performing several measurements with different sequence parameters (e.g. flip angle, repe-
tition time, echo time) the related inverse problem of identifying the tissue parameters sought
can be solved.
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o e 4 model in the reconstruction process leads to A much faster data acquisition, while simultane- ;wgw:wb"
4za>ém’%¢“ %,wa% ously improving image quality. The inverse problem associated with this special reconstruction ZZL,_ -
approach requires dedicated numerical solution strategies (Block, Uecker, & Frahm, 2009;
o /g/" 25 /QX Doneva et al., 2010; Donoho, 2006; Lustig, Donoho, & Pauly, 2007; Maier, Schoormans, 2

\ZAQ &/ 59/ "] et al, 2019; Roeloffs et al., 2016; Sumpf, 2012), commonly known as model-based recon- ’WJ&
struction. Model-based reconstruction is based on variational modelm;and combines parallel %,..f,l
imaging and compressed sensing to achieve ueny—high—accebﬁat-reﬂ—faeters'a'ime-ten-ﬂrmpare& e
/CL/// 7 AA ZZ/ xta--i’3t:HJy'—5awnar|'ecI~ae(-:|-x:|1§1%l:—u;;;:t-5; The method directly solves for the unknown parameter maps P%M
7 Vﬂ@’/"’ . from raw k-space data. The repeated transition from k-space to image-space, combined with AL
%" the involved non-linear iterative reconstruction techniques to identify the unknown parameters,

often leads to prolonged reconstruction times. Ay effect thet gets even more demanding if
3D image volumes are of interest. i
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/ -I-n—-;ecent—-years the upsurge of computationally powerful GPUs has led to a variety of GPU
based implementations to speed up computation time of highly parallelizeable operations
(e.g., the Fourier transformation in MRI (Knoll, Schwarzl, Diwoky, & Sodickson, 2014)). As
model-based approaches possibly deal with hundred Gigabytes of data (e.g. diffusion tensor
imaging), available memory on current GPUs (e.g. 12 GB) can be a limiting factor. Thus, most
reconstruction and fitting algorithms are applied in a slice-by-slice fashion to the volumetric
data by taking a Fourier transformation along a fully sampled acquisition direction, effectively
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yielding a set of 2D problems. Hencgthe additional information in form of the third dimension
of volumetric data is neglected, leading to a loss in performance.

To utilize full 3D information in advanced reconstruction and fitting algorithms on memory

0 limited GPUs, special solutions strategies are necessary to leverage the speed advantage,
'ﬁwjﬂ% Y e.g., bide memory latency of repeated transfers to/fr the GPU to host memory. This can
be achieved using asynchronous execution strateg| t correct synchronization of critical

operations can be error prone. To this end, we prgpose PyQMRI, a simple to use python
toolbox for quantitative MRI. Tj
AN
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PyQMRI aims at reducing the required reconstruction time by means of a highly parallelized
PyOpenCL (Klockner et al., 2012) implementation of a state-of-the-art model-based recon-
struction and fitting algorlthn} while maintaining the easy-to-use properties of a Python pack-
age. In addition to processing small data (e.g. 2D slices) completely on the GPU,an efficient
double-buffering based solution strategy is implemented. Double-buffering allows_ta. ever=

M (_->» +ap computation and memory transfer from/to the GPU, thus hiding the associated memory
latency. By overlapping the transfered blocks it is possible to pass on 3D information uti-
lizing finite differences based regularization strategies (Maier et al., 2019). Figure 1 shows
a schematic of the employed double-buffering scheme. To make sure that this asynchronous
execution strategy yields the expected result; unit-testing is employed.

Transfer Transfer .
to GPU: to CPU: - CDmpL‘t'e'-
Standard execution model:

Asynchronous compute and transfer (double buffering):
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Approx. 30% reduction if all timings are the same

Figure 1: Simple double-buffering scheme using two separate command queues and overlaping trans-
fer/compute operations.

Currently,3D acquisitions with at least one fully sampled dimension can be reconstructed

ﬁu) .‘/f:&ﬂ' _on the GPU, including stack-of-X acquisitions or 3D Cartesian based imaging. ~©f-course
L‘A&M “ > 2B-data—can-be reconstructed as-well= The combination of reconstruction and non-linear
/ ULWM fitting is based on an iteratively regularized Gauss-Newton (IRGN) approach combined with a
primal-dual inner loop. Regularization strategies include total variation (TV) (Rudin, Osher,

M & Fatemi, 1992) and total generalized variation (TGV) (Bredies, Kunisch, & Pock, 2010;
Knoll, Bredies, Pock, & Stollberger, 2011) using finite differences gradient operations. In

addition to the combined reconstruction and fitting algorithm from k-space data, PyQMRI

/ﬁw "L can also be used to speed-up non-linear parameter fitting of complex or real valued image
-51 4&8 data. The main advantage of fitting the complex (k-space) data is that the assumed Gaussian
noise characteristics for the commonly used Lo data fidelity term are valid. This is especially

W important for problems suffering from poor SNR, e.g. Diffusion Tensor Imaging, where the

wrong noise assumption can lead to significant errors in the quantification process (Jones &
Basser, 2004).

PyQMRI comes with several pre-implemented quantiative models. In addition, new models
can be introduced via a simple text file, utilizing the power of SymPy to generate numerical
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models as well as their partial derivatives in Python. Fitting can be initiated via a command line
interface (CLI) or by importing the package into a Python script. To the best of the authors
knowledge PyQMRI is the only available Python toolbox that offers real 3D regularization in
an iterative solver for inverse quantitative MRI problems and for arbitrary large volumetric
data, while simultaneously utilizing the computation power of recent GPUs. Due to PyQMRM
I's OpenCL backend, no vendor specific hardware restrictions are preser{t=—hbwever, current
limitations of the gpyfft package used to wrap the clfft, constrain the use to GPU devices
only. A switch to other c1fft wrappers might solve this limitation in future releases but

gpyfft is the only one that currently supports fast non-power-of-two transformations up to
13.

PyQMRI and its predecessors have been succesfully used in several scientific publications.
Examples include T7 quantification from subsampled radial FLASH and inversion-recovery
Look-Locker data (Maier, Schoormans, et al., 2019), diffusion tensor imaging (Maier et al.,
2020), and ongoing work on aterial spin labeling (Maier, Spann, Pinter, Gattringer, Hintereg-
ger, et al., 2020; Maier, Spann, Pinter, Gattringer, Pirpamer, et al., 2020), as well as low-field
T7 mapping at multiple fields using fast field-cycling MRI.

Algorithmic

PyQMRI deals with the following general problem structure:

min 2| A(w) — I + (a0 Vi~ vls,6 + a1 [€0]12.7)
which includes a non-linear forward operator (A), mapping the parameters u to (complex)
data space d, and a non-smooth regularization functional due to the L!-norms of the T(G)V
functional (Bredies et al., 2010; Knoll et al., 2011). Setting a; = 0 and v = 0 the problem
becomes simple TV regularization (Rudin et al., 1992). The gradient V and symmetrized
gradient £ operators are implemented using finite differences. To further improve the quality
of the reconstructed parameter maps PyQMRI uses a Frobenius norm to join spatial information
from all maps in the T(G)V functionals (Bredies, 2014; Knoll et al., 2017; Maier, Schoormans,
et al., 2019). Box constraints, limiting each unknown parameter in u to a physiological
meaningful range, can be set in conjunction with real or complex value constraints,

Following the Gauss-Newton approach a sequence k of linearized sub-problems of the form

-l|u— ’“I\M/ 0@ ~

. 1 ~
min §|iDA|u=uku — d"||3 + k(oo Vu — v|l1,2,F + a1l|Ev]l1,2,F) +

needs to be solved to find a solution of the overall problem. The matrix DA|,—+ = %ﬂ-(u"“)
resembles the Jacobian of the system. The subproblems can be recast into a saddle-pomt
= structure by application of the Fenchel duality /y/i
. ‘ o A 11,
s min max (Ku,y) + G(u) — F*(y), 2 (1) b’qujw
u oy

and solved utilizing a well established primal-dual algorithm (Chambolle & Pock, 2011) com-
bined with a line-search (Malitsky & Pock, 2018) to speed-up convergence. Constant terms,
stemming from the linearization, are precomputed and fused with the data d, yielding d*.
The inclusion of the additional L?-norm penalty improves convexity of the subproblem and
resembles a Levenberg-Marquardt update for M = dmg(DAlu i DAlu=yr). A graphical
representation of the involved steps is given in Figure 2. The regularization weights, regular-
ization type (TV/TGV), and the number of outer and inner iterations can be changed using a
plain text configuration file. It was shown by (Salzo & Villa, 2012) that the GN approach con-
- _ et verges with linear rate to a critical point for non-convex problems with non-differential penalty
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functions if the initialization is sufficiently close. Thus a meaningful initial guess based on
physiological knowledge on the parameters u should be used to initialize the fitting, e.g. mean
T, value of the tissue of interest.

i A:u F{CiSp(u)}
min 3 [l A(w) — dl3 + AT(G)V (u)
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Figure 2: Graphical representation of the employed regularized non-linear fitting procedure shown
for an exemplary T1 quantification problem. C; describes complex coil sensitivity information, F
amounts to the sampling process including the Fourier transformation, and S, equals the non-linear
relationship between image intensity and the unknown physical quantities (7% and Proton Density
(PD)).
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