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Summary7

individual is an R package which provides users a set of useful primitive elements for spec-8

ifying individual based models (IBMs), with special attention to models for infectious disease9

epidemiology. Users build models by specifying variables for each characteristic describing10

individuals in the simulated population using data structures from the package. individual11

provides efficient methods for finding subsets of individuals based on these variables, or co-12

horts. Cohorts can then be targeted for variable updates or scheduled for events. Variable13

updates queued during a time step are executed at the end of a discrete time step, and the14

code places no restrictions on how individuals are allowed to interact. These data structures15

are designed to provide an intuitive way for users to turn their conceptual model of a system16

into executable code, which is fast and memory efficient.17

Statement of need18

Complex stochastic models are crucial for many tasks in infectious disease epidemiology19

(Ganyani et al., 2021). Such models can formalize theory, generate synthetic data, evalu-20

ate counterfactual scenarios, forecast trends, and be used for statistical inference. IBMs are a21

way to design disaggregated simulation models, usually contrasted with mathematical mod-22

els, which may model a density or concentration of individuals, or otherwise lump individuals23

with similar attributes together in some way (Shalizi, 2006). For modeling finite numbers24

of individuals with significant between-individual heterogeneity and complex dynamics, IBMs25

are a natural modeling choice when a representation using mathematical models would be26

cumbersome or impossible (Willem et al., 2017). Even if an aggregated representation were27

feasible, there are many reasons why an individual-based representation is to be preferred.28

Synthetic data may need to produce individual level outcomes, which aggregated models by29

their very nature are unable to provide (Tracy et al., 2018). Other complexities, such as when30

events occur after a random delay whose distribution differs from a Markovian one, mean even31

aggregated models will need to store individual completion times, necessitating more complex32

simulation algorithms and data structures; in such cases it is often more straightforward to33

adopt an individual-based representation from the start.34

For practical use, individual-based models need to balance comprehensibility and speed. A35

fast model whose code is only understood by the author can be difficult to use as a basis for36

scientific exploration, which necessarily requires the development of multiple models to test37

hypotheses or explore sensitivity to certain assumptions. On the other hand a clear yet slow38

model can be practically unusable for tasks such as uncertainty quantification or statistical39

inference. individual provides a toolkit for users to write models that is general enough40

to cover nearly all models of practical interest using simple, standardized code which is fast41

enough to be useful for computationally heavy applications.42
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There are many software libraries for epidemiological simulation, both in R and other pro-44

gramming languages. However, based on our review of existing software, no other library45

exists in the R language which provides users with a set of primitive elements for defining46

epidemiological models without imposing strong restrictions upon the type of allowed models47

(e.g.; compartmental, network, etc.), or limiting users to particular mathematical forms for48

model dynamics.49

General R Packages50

Generic individual based simulation packages in R include IBMPopSim (Giorgi et al., 2020),51

ibm (Oliveros-Ramos, 2016) and ibmcraftr (Tun, 2016). IBMPopSim provides sophisticated52

simulation algorithms, but requires users to input C++ code as a string which is then compiled,53

making it difficult to interface with the existing R ecosystem.54

Epidemiological R Packages55

EpiModel (Jenness et al., 2018) allows the simulation of highly detailed discrete time models on56

networks, relying on the statnet (Krivitsky et al., 2003-2020) project for classes and algorithms.57

However due to its focus on directly transmitted diseases, individual may be more generic58

for other epidemiological situations (such as vector borne diseases). In addition it does not59

offer an interface for compiled code.60

hybridModels (Marques et al., 2020), similarly provides tools for generic IBM modelling in R.61

However, it is fully implemented in R, limiting the scope for scale and optimisation.62

Other epidemiology packages in R are more specialised and restrict user models to common63

forms. These include SimInf (Bauer et al., 2016), nosoi (Lequime et al., 2020), SPARSEMODr64

(Mihaljevic et al., 2021), EpiILMCT (Almutiry & Deardon, 2020) and EpiILM (Warriyar et65

al., 2020).66

Design Principles67

Because in many epidemiological models the most important representation of state is a finite68

set of mutually exclusive values, such as the Susceptible, Infectious, Recovered classes from69

the well-known SIR model (Allen, 2017), individual uses a bitset to store these data. At the70

R level users can call set operations (union, intersection, complement, symmetric difference,71

set difference) which are implemented as bitwise operations in the C++ source. This lets72

users write clear, highly efficient code for updating their model, fully in R.73

In contrast to other individual based modeling software, where users focus on defining a type for74

simulated individuals, in individual users instead define variables, one for each characteristic.75

Individual agents are defined by their their position in each bitset giving membership in a76

variable, or position in a vector of integers or floats. This design is similar to a component77

system, a design pattern to help decouple complicated types (Nystrom, 2014). Because78

of this disaggregated representation of state, preforming operations to find and schedule79

cohorts of individuals benefits from fast bitwise operators. This state representation is (to our80

knowledge), novel for epidemiological simulation. While Rizzi et al. (2018) proposed using a81

bitset to represent the state of each simulated individual, the population was still stored as82

types in an array.83

individual uses Rcpp (Eddelbuettel & François, 2011) to link to C++ source code, which84

underlies the data structures exposed to the user. The API for individual uses R6 (Chang,85
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2020) classes at the R level which users call to create, update, and query variables. indi86

vidual also provides a C++ header-only interface which advanced users can link to from87

their R package. Users can then write their own C++ code or benefit from other packages88

with a compiled interface, significantly enhancing the extensibility of individual’s API, and89

documentation on linking is available in vignettes.90

After a user has specified all the variables in their model, dynamics are specified by processes91

which run each time step, and events which can be scheduled to update specific cohorts in92

the future. The simulation loop then executes processes, fires events and updates state on93

each discrete time step.94

Figure 1: A flow diagram for the simulation loop

Licensing and Availability95

individual is licensed under the MIT License, with all source code stored at GitHub. Re-96

quests, suggestions, and bug reports are encouraged via filing an issue. A general guide on97

how to contribute to individual is available at the package’s website.98
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