
The scholarLY Package
openLilyLib

Urs Liska

July 13, 2018

Contents

Introduction 3
Installation and Dependencies . 3

The annotate Module 4
Creating Annotations . 6
The Five Annotation Types . 6
Application of Annotations . 7
Authoring Annotation (Attributes/Content) . 12

Mandatory Attributes . 12
Known Attributes . 13
Custom Attributes . 13
Generated Attributes . 13

Processing Annotations . 15
Organizing Output . 16
Appearance of the Output . 17

Exporting Annotations . 19
Printing to the Console . 19
Export to Plaintext . 20
Export to LATEX . 20
Other Planned Export Targets . 21

The editorial-markup Module 22
The \editorialMarkup Command . 22
Span Classes Defined By The Module . 23

Generic Attributes . 24

The choice Module 25
The \choice Command . 26

Selecting the Music to be Engraved . 27
The Predefined Choice Types . 27

variants . 27

1

normalization . 28
substitution . 28
emendation . 28

Handling Annotations in a Choice Expression . 29
Custom Choice Types . 30

Creating a Choice Validator . 30
Creating a Span Chooser . 31

The sources Module 32

Index 32

2

Introduction

openLilyLib1 (or “open LilyPond Library”) is an extension system for the GNU LilyPond2 score writer.
It provides a plugin infrastructure, a general-purpose toolkit of building blocks, and a growing
number of packages for specific purposes. The main intention is to encapsulate potentially complex
programming and make it available with a consistent, modular, and easy-to-use interface.

TODO: Provide a central source of documentation.

scholarLY 3 is a package dedicated to the needs of scholarly editors, although its tools have proven
useful in general-purpose applications too, as a kind of “in-score communication system” or “in-
score issue tracker”. The main concerns of scholarly editions and workflows addressed by the
package are:

• Handling annotations
With the package the whole critical apparatus can be maintained within the source files of
the edited score itself, providing point-and-click navigation between score and annotations.
These annotations can be the immediate source of professionally typeset critical reports and
will in the future power the interactive display of annotations when SVG files are viewed
in a browser window. In addition annotations can be used as specifically convenient and
powerful in-source comments and messages.
This is handled by the scholarly.annotate module.

• Encoding source evidence and editorial decisions
The package provides commands to tag music with semantic editorial markup as part of the
scholarly editor’s duty to document their observations and decisions. It is possible to simply
encode/document these observations and optionally get visual feedback through colors during
the editing process, but it is also possible to persistently apply styles to arbitrary situations
(for example: parenthesize editorial additions).
This is handled by the scholarly.editorial-markup module.

• Encode alternative texts
Typically editorial processes involve decisions to either choose from various versions/readings
or to make emendations to a text found in the sources. It is part of a scholarly editor’s duty
to document all these cases, which traditionally is done in textual form in the critical report.
Digital editing techniques enjoy the possibility to directly encode such differences, and the
package provides the necessary tools to do so. The encoding of alternative texts can be simply
used as a means of documentation, but it can also produce alternative renderings of an edition.
This is handled by the scholarly.choice module.

Installation and Dependencies

The installation of openLilyLib and its packages is described in the oll-core documentation.4 The code
for the scholarLY packagemay be cloned or downloaded from https://github.com/openlilylib/scholarly.

1https://github.com/openlilylib
2http://lilypond.org
3https://github.com/openlilylib/scholarly
4https://github.com/openlilylib/oll-core/wiki

3

https://github.com/openlilylib
http://lilypond.org
https://github.com/openlilylib/scholarly
https://github.com/openlilylib/oll-core/wiki

scholarLY depends on the following openLilyLib packages that have to be installed as well:

• oll-core5
• stylesheets6

To make scholarLY available to a LilyPond document first include oll-core, then load the package
with \loadPackage or an individual module with \loadModule

\include "oll-core/package.ily"
\loadModule scholarly.annotate

scholarly.annotate will implicitly load stylesheets.span.

The annotate Module

scholarly.annotate is the core of the scholarLY package, providing its most prominent feature with the
handling of annotations and critical apparatus. It came into existence with the goal of overcoming
or at least alleviating annoying limitations of traditional toolchains and workflows.

One of the most “sacred” duties of scholarly editors is not to determine the perfect text but to
transparently document and explain the rationale behind the decisions leading to it, describing
variant readings in the source(s) and revealing the observations the decisions are based upon. This
is traditionally done in textual form – occasional music examples notwithstanding – in critical
reports that live in separate documents from the score.

In a typical setting an editor is facing three separate entities: one or multiple sources, the edited score
being created, and the critical observations and remarks. There are various ways to organize this,
but the awkward reality is that the entities are materially separate and not linked. Keeping them
synchronized during the editing process is a tedious and error-prone effort. A typical situation while
proof-reading is the evaluation of an observed difference between the source and the new score:
first the editor has to look up the corresponding measure in their critical remarks and determine if
this difference has been documented already. If this is the case they can continue – but more often
than not they will have to repeat this lookup in any subsequent run-through since there usually is
no visual indication in the new score. If there is no annotation the editor has to decide whether
they have to add an annotation, keep it as an undocumented change, or change the text of the new
score (optionally adding an annotation anyway).

As critical editions may involve hundreds or thousands of such instances proof-reading can amount
to an unnerving sequence of context switches, with each switch being complicated by the lack
of synchronization between the different entities. For example it is the editor’s responsibility
to manually check and keep up-to-date all references to musical moments and targets (“Flute 1,
measure 114, 3rd beat”). scholarly.annotate significantly reduces the complexity of the task by
having the critical annotations encoded directly in the score files while providing visual feedback
and point-and-click navigation. Additionally critical reports can be generated and professionally
typeset directly from these encoded annotations, avoiding the effort of keeping the report up to
date and the measure numbers in sync.

5https://github.com/openlilylib/oll-core
6https://github.com/openlilylib/stylesheets

4

https://github.com/openlilylib/oll-core
https://github.com/openlilylib/stylesheets

Annotations are encoded within the LilyPond input files, right next to the score element they refer
to. This means the documentation of the editorial process is maintained together with the edition
data itself. Through different annotation types it is possible to discern between various stages of
the process and definitive critical remarks that are intended to be printed in the reports.

Two different feedback channels provide convenient access to annotations. Annotations are printed
to the console output, giving a convenient list to review all annotations. In editing environments
like Frescobaldi7 this can be done with a simple key combination, immediately positioning the input
cursor at the annotations and highlighting the element in the score. By default annotations also
highlight the annotated element through colors, making them immediately obvious when browsing
the score, for example while proof-reading. Clicking on the annotated elements again places the
input cursor at the annotation. There are plans to add GUI support for annotation browsing and
editing in Frescobaldi.

Finally annotations can be exported to various file formats, creating the basis for external tools to
create reports from. There are output routines for plain text and LATEX so far, and HTML export is in
development. Other formats are planned and can easily be plugged into the infrastructure.

Figure 1: Annotate at work in Frescobaldi

7http://frescobaldi.org

5

http://frescobaldi.org

Creating Annotations

Annotations can be created in two different ways, by issuing one of the explicit annotation com-
mands, or by turning a \tagSpan or \editorialMarkup into an annotation. Technically these are
equivalent since annotations directly build upon the functionality of \tagSpan, but there is a con-
ceptual difference that should be considered on a case-by-case basis. An annotation “annotates” a
score element or some music while spans or editorial markup “tag” that music “as something” (for
example an editorial addition, as “written with a different ink”, “retrograde” or whatever) and can
be annotated on top of that. The current chapter exclusively uses explicit commands but keep this
fact in mind when reading the chapter about the editorial-markup module.

The syntax for creating annotations is one of these equivalent invocations:

<annotation-command> \with { <attribute> = <value> ... } <music>
\tagSpan annotation \with { <attribute> = <value> ... } <music>
\editorialMarkup <markup-type> \with { ann-type = <annotation-type> ... } <music>
\tagSpan <arbitrary-name> \with { ann-type = <annotation-type> ... } <music>

All of these can also be applied as post-event functions (prepending the leading backslash with a
directional operator), which is discussed shortly.

Note that adding the ann-type attribute to a span (or editorial-markup, which technically is a span)
will create an annotation, but only if the scholarLY module is also loaded. Note that scholarly.annotate
implicitly loads stylesheets.span but not vice-versa.

There are various ways to apply annotations to music, and there are many things to know about
configuring annotations with attributes (content) and options (processing), but these are described
in more detail at a later point. First we will discuss the different annotation types and their use
cases.

The Five Annotation Types

There are five types of annotations8, used for different tasks in the editing process. The following
list gives both the command name and the corresponding ann-type attribute value:

• \criticalRemark (critical-remark)
Documents evidence considered definitive, or an editorial decision.

• \musicalIssue (musical-issue)
Points to an editorial observation that is considered an open question and has yet to be
finalized

• \lilypondIssue (lilypond-issue)
Highlights a technical issue that needs to be resolved

• \question (question)
\todo (todo)
General-purpose annotations

8It is possible to add custom annotation types, but this is somewhat involved, and there is no convenient interface
available for it yet. Essentially the new type has to be registered in a number of places and suitable defaults and
handler functions defined.

6

Critical remarks and musical issues are typically used as inherent parts of a scholarly workflow. It
is recommended practice to generously add \musicalIssue annotations for any observations and
distill them to a more concise set of \criticalRemark entries throughout the process. This concept
also has proven very efficient when applied to workflows with peer review.

As these scholarly annotations usually refer to evidence in the source and editorial decisions it is
appropriate to use them as part of \editorialMarkup entries, while the other three annotation types
lend themselves more to general-purpose “in-source communication” or “issue tracker” usage and
are therefore more inclined to be used as standalone annotations (note that standalone annotations
also can annotate spans of music).

Deprecation!

With scholarLY version 0.6.0 the implementation of annotations has been fundamentally rewritten.
This led to a breaking change in syntax while the command names have been kept.

The old implementation of these commands is still available but has been moved to the schol-
arly.annotate.legacy module. If you have used scholarLY with the old interface and don’t want
to immediately update your code you have to change the \loadModule invocation to \loadModule
scholarly.annotate.legacy, which has some very specific consequences: The five explicit annotation
commands will now use the legacy syntax, keeping existing code intact. But annotations can at the
same time be created with \editorialMarkup or \tagSpan, using the new and improved syntax. To
make this available both modules have to be loaded while it is important to load scholarly.anno-
tate.legacy after the modern module. Therefore it should be manageable to update the package for
existing documents, although it is of course not possible to mix old and new syntax for the explicit
commands. An example of mixing old and new syntax is provided at the end of the next section.

Apart from the incompatible input syntax there is one significant conceptual difference: the way
how visual styling functions are applied to the annotated music. In the legacy module an annotation
can/could be told to apply an editorial function – if one is registered. In the new implementa-
tion the task of applying styling functions is built into the spans themselves (both \tagSpan and
\editorialMarkup). So the “editorial-command” is now managed by the “span”, and the annotation is
created on top of that already-styled span, rather than having an annotation ask for the application
of a styling function. One important improvement of the new approach is that annotations are not
limited to single score elements anymore but can be applied to sequential music expressions as
well.

Application of Annotations

Annotations can be applied to sequential or single music expressions or as post-events. As has
been said annotations build upon the \tagSpan command and share their behaviour with regard
to their application to some music. Therefore more details on that topic can be obtained from the
stylesheets manual. While annotations can affect sequential music expressions (which is visible by
the coloring) they are technically attached to the first element in them. This single or first element
determines the reported musical moment of the annotation.

The following examples should give a sufficient overview of the options and possibilities. They are
limited to the most basic content, namely the mandatory message attribute and in one case the item

7

attribute to affect a dedicated score element type. A last example is used to demonstrate the creation
of footnotes and is included here because footnotes can only be displayed in a fullpage example.

\include "oll-core/package.ily"
\loadModule scholarly.annotate
\setOption scholarly.annotate.export-targets #'(console plaintext)
\setOption scholarly.annotate.export.all-attributes ##t
\markup "Annotating a single note, with and without attached elements."
\new Score = "basic"
\new Staff = "basic-staff" \relative {
c'
\criticalRemark \with {
message = "Attaches to a single note, not to the attached elements"

} d
-. \f ^\markup "Hi" (e f) |
c
\lilypondIssue \with {
message = "If that is desired the elements have to be enclosed in a sequential music expression."

} { d -. \f ^\markup "Hi" (}
e f) |

}

\markup "Stacking post-events"
\new Score = "post-events"
\new Staff \relative {
c' -\musicalIssue \with {
message = "Attaches as a post-event, affecting the articulation"

} -!
-\lilypondIssue \with {
message = "Multiple post-events can be stacked"

} ^\f
d e2
-\todo \with {
message = "A message about the trill. Arbitrary post-events work."

} \startTrillSpan
f4\stopTrillSpan

}

\markup "Annotations in polyphony"
\new Score = "polyphonics"
\new Staff \relative {
r8
<<

{
\voiceOne
\lilypondIssue \with {

8

message = "An annotation for the top voice."
} cis''
d

}
\new Voice = "voice two"
{
\voiceTwo
\question \with {

message="A question about the second voice. Applies to the accidental"
item = Accidental

} ais
b

}
>>

}

\markup "Various ways of annotating sequential music."
sequence = { c8-. \p d e-- d-! c4 -\fermata }
\setSpanColor nothing #grey
\new Score = "sequential"
\new Staff \relative c' {
\todo \with {
message = "This applies to the whole music."

} \sequence

\musicalIssue \with {
% message is set to default value
% annotation is attached to the fist note head,
% but coloring applies to all Script items in the expression.
item = Script

} \sequence

\tagSpan nothing \with {
ann-type = critical-remark
message = "Generic \\tagSpan. The whole span is styled,

but only the anchor has the annotation."
} \sequence

}

\markup "Annotating non-rhythmic events."
\new Score = "non-rhythmic"
\new Staff {
\musicalIssue \with {
message = "This annotates the non-rhythmic key signature."

} \key a \major
\question \with {

9

message = "This annotates the non-rhythmic key signature."
} \time 2/4
a'2
\criticalRemark \with {
message = "This annotates the non-rhythmic clef."

} \clef bass
e

}

\annotateSetGrobNames
#'((NoteHead . "Notenkopf")

(Hairpin . "Gabel")
(Slur . "Bogen"))

\markup "Creating footnotes."
\new Score = "footnotes"
\new Staff \relative {

\musicalIssue \with {
message = "This annotation has a footnote-text"
footnote-text = "but that does not trigger the footnote"

} a'4
b b c |
a \p
-\question \with {
message = "Footnote is triggered by footnote-offset.

annotation applied as postevent"
footnote-offset = #'(-0.5 . -2)
footnote-text = "footnote-text provides a dedicated text to be printed in the footnote"

} \<
b c\!
a4 -\criticalRemark
\with {
message = "My message/footnote about the slur.

Footnote text is taken from 'message'."
footnote-offset = #'(0.5 . 2)

} (|
b c) c
\criticalRemark \with {
message = "Custom footnote mark is possible"
footnote-offset = #'(0.5 . 1)
footnote-mark = "?"

} c
}

10

Annotating a single note, with and without attached elements.

�f
Hi

� � �
f
Hi

���� � �� �
Stacking post-events

� �
�����

�
f
�� � �

Annotations in polyphony

��
	

 �

�
	�� � ��

Various ways of annotating sequential music.�
�p� ���� �� � �

�
� � ���p�

� �
� � ���

�
p

Annotating non-rhythmic events.

��

 24 � �

Creating footnotes.

�� �� ?

1

2 ������� � ��
p

? Custom footnote mark is possible

2My message/footnote about the slur. Footnote text is taken from 'message'.

1footnote-text provides a dedicated text to be printed in the footnote

11

As a final example it is shown how legacy and modern-style annotations can be combined in a
single document. Nevertheless it is strongly recommended to quickly update such documents to
the new style, although it is an all-or-nothing operation that has to be done in one single step.

\include "oll-core/package.ily"
\loadModule scholarly.annotate
\loadModule scholarly.annotate.legacy
\setOption scholarly.annotate.export-targets #'(latex)
{
\musicalIssue \with {
message = "This is a legacy annotation"

}
NoteHead c' d'
\tagSpan modern \with {
ann-type = lilypond-issue
message = "modern-style annotation \\emph{emphasized}"

} e' f'
}

Authoring Annotation (Attributes/Content)

The content of annotations is defined through the attributes in a \with {} block, regardless of the
way the annotation is applied to the music. There are mandatory attributes, known attributes,
auto-generated attributes, and the option to use arbitrary custom attributes. We’ll go through each
of these groups in turn.

Mandatory Attributes

ann-type ()

message ()

The presence of two attributes is fundamental to making an annotation: ann-type and message.
The ann-type attribute is what actually makes an annotation an annotation. Every “span” has
an annotation attached, but only annotations with a dedicated type will be processed by the
annotation engraver. The ann-type must be one of the five recognized annotation types, and the
explicit annotation commands transparently set this attribute.

When an annotation is created the presence of message is mandatory. It is a free-form text that is
printed to the console and exported to files. In addition it is used as a fallback value for some other
attributes. If it is not explicitly given a default value is supplied.

12

Known Attributes

Annotations themselves don’t check for selection and type of attributes, basically anything can
be supplied by users. However, there is a number of “known attributes”, i.e. attributes that have
special meaning for spans or annotations. Generally all attributes handled by stylesheets.span are
available in annotations too, namely options to trigger footnotes, music examples, or balloon text
annotations. Details can be found in the manual for stylesheets.

Secondary code such as custom or public libraries may decide to recognize and handle additional
attributes, making them “known attributes” in their context. For example, scholarly.editorial-markup
provides a rule-set for handling additional attributes. scholarly.annotate also has its own known
attributes which are used in annotation export and therefore documented in a later chapter.

Custom Attributes

It is possible to add arbitrary attributes to an annotation, as long as the name doesn’t conflict
with other known attributes. By itself the annotation does not process such attributes but passes it
through to the exported annotations.

Custom attributes may be used in two stages: they can be evaluated by styling functions (working
on the level of \tagSpan), or they can be used from the exported files, for example by a LATEX package
typsetting critical reports. The lycritrprt9 package aims at providing a convenient interface to
processing such attributes through a templating system.

Generated Attributes

When an annotation is processed by annotate’s engraver some attributes are added and others are
enriched with data that is only available in that stage of the LilyPond compilation process. The
annotation engraver uses context information to provide additional data to be stored in and eventu-
ally exported with the annotation, so it is important to know about the underlying mechanisms in
order to properly set up the scores.

context-id (<directory.file>)

context-label (<directory.file>)

The context id is used to specify the “context” – usually the staff containing the instrument/voice –
an annotation refers to. Initially this attribute is set to the value <directory>.<file>, so it is at least
known in which file an annotation has been defined. However, the engraver may narrow this down
to a more specific and especially musical identification.

If the annotation has an explicit context attribute this takes precedent.

If the annotated music lives within any named context (for example a Staff created by \new \Staff
= "<some-voice-name>") the context-id attribute is assigned this name “<some-voice-name>”. The

9https://github.com/uliska/lycritrprt

13

https://github.com/uliska/lycritrprt

function retrieving this information will walk up all the way from the bottom-level context (e.g.
\Voice) where it is invoked up to the \Score level if necessary.

If no explicit context has been provided and no named context is found context-id falls back to the
original directory/filename value.

However, the value to be used for display is actually context-label. This is by default populated with
the value of context-id unless that can be found as a key in the scholarly.annotate.context-names
lookup table. Keys can be mapped to labels with two functions:

\annotateSetContextName <context-id> <label>
\annotateSetContextName staff-vln-III "Vl. 3"
% or
\annotateSetContextNames <mappings>
\annotateSetContextNames
#'((01-vln-2 . "Geige 1")

(02-vln-2 . "Geige 2")
(03-vla . "Bratsche")
(04-vc . "Cello"))

This is useful if the context-id values are either programmatically generated or used to separate the
display from sorting order.

score-id ()

score-label ()

Like with the context there is an option score-id that stores a score’s name if it has explicitly been
named through \new Score = "my-score-name". Other than with contexts a missing explicit name
lets the attribute default to #f.

Display names can be associated to score-ids through

\annotateSetScoreName <score-id> <label>
\annotateSetScoreName 03-adagio "Third movement - adagio"
\annotateSetScoreNames <mappings>
\annotateSetScoreNames
#'((01-allegro . "Allegro")

(02-adagio . "Adagio")
(03-presto . "Presto"))

This is useful if the score-id values are either programmatically generated or used to separate the
display from sorting order. If no score-id is present the label defaults to an empty string.

Note that this is only relevant if there are multiple scores in the document.

grob-type ()

grob-label ()

As described in the stylesheets manual it is possible to target specific grob types through an

14

annotation’s item attribute. However, whether explicitly or implicitly, eventually an annotation is
always attached to a specific score element (a “grob”), and its type is made available as the grob-type
attribute. This attribute is always set, other than item which only holds a value when set explicitly.
Note that in sequential music expressions the grob-type is the type of the “anchor”, i.e. the first
rhythmic event in the expression or the first note within a chord.

grob-type always carries the name as used by LilyPond, but it is possible to map a grob-type to a
speaking (or translated) grob-label through

\annotateSetGrobName <grob-type> <label>
\annotateSetGrobName NoteHead "Notenkopf"
\annotateSetGrobNames <mappings>
\annotateSetGrobNames
#'((NoteHead . "Notenkopf")

(Hairpin . "Gabel")
(Slur . "Bogen"))

grob-location ()

The grob-location attribute holds detailed information about the annotation’s moment in musical
time. It is an association list with the following keys:

• beat-string
• beat-fraction
• beat-part
• our-beat
• measure-pos
• measure-no
• rhythmic-location
• meter

These fields typically don’t need to be bothered with but can be retrieved (in LilyPond or at a later
stage) to modify the presentation of the musical moment. Details about the type and content of
these fields can be found in oll-core.util.grob-location.

Processing Annotations

So far we have discussed how annotations are created and filled with content. But of course the
second part of the process is equally important: handling and export of annotations.

After the annotations have been recorded they are used for the output stage, which includes the
following steps (all can be toggled by configuration options):

• Highlighting the annotated element through colors
• Printing to the console
• Exporting to various file formats

The first two are useful for reviewing and navigating the score while editing, and the third is used
to produce definitive reports that are automatically in sync with the actual score.

15

Organizing Output

The most fundamental configuration of the annotation handling is the decision what is going to
be exported and to which target(s). Most of these settings are controlled through options, with
\setOption scholarly.annotate.<option> <value> or \setChildOption scholarly.annotate.<main-
option> <sub-option> <value> to change the default values. However, in some cases there may be
specialized commands available to simplify the configuration.

scholarly.annotate.export-targets (#’(console))

The option scholarly.annotate.export-targets controls which targets the annotations are exported
to. By default console is active, currently supported additional targets are latex and plaintext. Each
target has its own conditions and configuration options, which will be described in dedicated
sections below.

\setOption scholarly.annotate.export-targets console.latex.plaintext

scholarly.annotate.ignored-types (#’())

A list of annotation types (critical-remark etc.) that should be ignored for processing. Annotations
of ignored type are skipped in an early stage of the processing, so in large projects it may be efficient
to ignore all types that are not needed.

By default no types are ignored, i.e. all types are processed.

\setOption scholarly.annotate.ignored-types question.todo.lilypond-issue

scholarly.annotate.sort-by (#’(rhythmic-location))

Annotations are exported in sorted order, by default according to musical time. With this option
one or multiple sort criteria can be specified, currently supported these include:

• rhythmic-location (default) – sort by musical time
• type – sort by annotation type
• author – sort by author (This will fail if any annotation does not have an author attribute)10
• score – sort by score-id
This is only relevant if more than one score is present in the current document and if all scores
are explicitly named (otherwise compilation will fail). In order to get meaningful results it is
recommended to separate score-id from score-label.

• context – sort by context-id
In order to get meaningful results it is also recommended to separate context-id from context-
label

Note that annotations may be sorted by scholarly.annotate or at a later stage by a “consumer”. It
may depend on the context or necessity which approach provides more functionality or is more
efficient, but in general it should be avoided to sort annotations both in LilyPond and later. This
means that if you intend to sort annotations in a later stage it may be useful to explicitly avoid
sorting in LilyPond by setting the option to the empty list:
10TODO: It should be made possible to add arbitrary attributes to the list of sort criteria, with a type or comparison-

operator argument.

16

\setOption scholarly.annotate.sort-by #'()

Wish

It would be desirable to also group output by certain categories, allowing some separating code
to be placed between the groups or exporting to separate files. But this hasn’t been concretely
considered yet.

Appearance of the Output

The use of colors is only relevant to the engraved score while the other options affect the exported
annotations. Most of the options are globally effective while exceptions are mentioned with the
description of the respective export target.

scholarly.annotate.use-colors (##t)

By default annotations are indicated through the application of the annotation type’s color. This
behaves differently for annotations created through explicit annotation commands or those created
by adding the ann-type attribute to a \tagSpan. In “real” annotations the whole span is colored in
the annotation type’s color while in implicit annotations the span is colored in the span’s color and
only the “anchor” then colored with the annotation’s color. However, if the span includes only a
single element the annotation color completely overwrites the span color.

In the following example the same music is annotated in three different ways:

• With a default \todo annotation
• With a \musicalIssue \with { item = Script } annotation, limiting the coloring to Script
elements

• With a \tagSpan that colors the whole span but only uses the first element to highlight the
annotation.

\include "oll-core/package.ily"
\loadModule stylesheets.span
\loadModule scholarly.annotate
sequence = { c8-. \p d e-- d-! c4 -\fermata }
\setSpanColor nothing #grey
\relative c' {
\todo \with {
message = "Whole music is colored, annotation attached to first note."

} \sequence
\musicalIssue \with {
message = "Coloring applies to all Script elements."
item = Script

} \sequence
\tagSpan nothing \with {
ann-type = critical-remark
message = "Generic tagSpan. The whole span is colored grey,

but the anchor is colored with the critical-remark color"

17

} \sequence
}

�
�p� ���� ��� � �

�
� �� ���p�

� �
� � ����

�
p

scholarly.annotate.colors (…)

\annotateSetColor <type color> ()

\annotateSetColors <mappings> ()

The colors used for annotation types are stored in the scholarly.annotate.colors. By default critical
remarks are dark green, musical issues green, LilyPond issue red, questions blue and todo items
magenta.

\annotateSetColor <type> <color>
\annotateSetColor critical-remark #blue
\annotateSetColors <mappings>
\annotateSetColors
#`((critical-remark . ,red)

(musical-issue . ,darkgreen)
lilypond-issue . ,green))

Please note that the use of the default colors makes them immediately obvious to other package
users, and you should only change them for good reasons.

scholarly.annotate.attribute-labels ()

\annotateSetAttributeLabel <name label> ()

\annotateSetAttributeLabels <mappings> ()

The display values for attribute keys in most output targets. Default values are provided for all
known attributes. Custom labels are recommended for custom attributes, and they can be used to
translate the output interface.

scholarly.annotate.skip-attributes ()

scholarly.annotate.export.all-attributes (##f)

scholarly.annotate.export.latex.all-attributes (##t)

scholarly.annotate.skip-attributes stores a list with attributes that can be suppressed in the output.
Whether these are actually suppressed can be configured separately for LATEX and other targets
because in LATEX it is much more common to want all attributes exported. By default the -all-
attributes option is active for LATEX and inactive for other targets.

18

\setOption scholarly.annotate export all-attributes ##t
\setOption scholarly.annotate export latex all-attributes ##f

For customization purposes the scholarly.annotate.skip-attributes option can be overridden man-
ually, for example to suppress additional custom attributes or to selectively display attributes that
are hidden by default. Such an override will affect all export targets the same.

scholarly.annotate.context-names (#’())

scholarly.annotate.score-names (#’())

scholarly.annotate.grob-names (#’())

These options that map internal names to speaking or translated display labels have been discussed
above in the section about Generated Attributes

scholarly.annotate.export.type-labels ()

\annotateSetTypeLabel <type label> ()

\annotateSetTypeLabels <mappings> ()

Display labels for the annotation type.

Note:

Currently the labels used in console and plaintext output to define the musical moment can’t be
configured. Actually a template based system should be implemented to configure this label.

Exporting Annotations

When exporting annotations theywill be stored in a filewith the name <file-basename>.annotations.<extension>.
This is not configurable so far. Various options that affect the way how annotations are exported in
general have been described above, the following sections provide details about specific export
targets.

Printing to the Console

All configuration options for printing on the console have been described above.

If printing to the console is active then each annotation is printed as a specific “warning” message,
which has a few intended implications:

• The output includes a link back to the origin of the annotation. Depending on the terminal
environment this can be clickable (in Frescobaldi this is the case).

19

• Frescobaldi provides the keyboard shortcut Ctrl+E to iterate over all warnings and errors in
the LilyPond log. The cursor is automatically placed at the origin of an annotation, opening
the input file if necessary. This is a convenient way to browse all annotations in a score.
However, too many annotations might obscure the log and make real warnings less obvious.
So it may be good practice to at least occasionally switch off the export to the console.

• When the cursor is automatically placed at the annotation’s origin Frescobaldi automatically
makes the corresponding score element visible in the Music Viewer and highlights it for
some time with a colored rectangle. To re-highlight the score element the keyboard shortcut
Ctrl+J can be used repeatedly.

Export to Plaintext

If plaintext export is active annotations will be exported to a very simple text file
<basename>.annotations.log. This is currently not configurable beyond the options described above,
but maybe in the future a template-based formatting system will be implemented if plaintext export
is requested much.

Export to LATEX

The latex export target is intended to produce code that can directly be used by LATEX to typeset
professional reports. This is the most sophisticated export channel to date, although it still has
substantial rough edges and lots of open feature requests.

Each annotation is exported to a single LATEX command, with all exported attributes placed as
key=value pairs in one optional argument, and it is up to the consuming document/environment to
provide appropriate commands to typeset a report from them.

It is possible to use LATEX commands in the annotation’s message. Backslashes have to be escaped
(some \\emph{emphasized} text) but not the curly braces. But of course this will not work well with
other export targets, so currently one has essentially to decide. Maybe at some point in the future
we’ll add support for some Markdown or HTML parsing (with the latter offering more support for
named entities).

scholarLY includes a LATEX package in the latex directory that aims at using the exported commands
and all their features (more on that below), but it is still under development and presumably not
immediately usable with the current state of the scholarLY LilyPond package itself.

Another LATEX package is lycritrprt11, which does work but is still in its infancy and doesn’t have
any documentation beyond the (generous) source comments. It relies on the LuaLATEX engine and
provides a template-based system to configure the mapping of annotation attributes to LATEX code,
which seems quite promising.

scholarly.annotate.export.latex.commands ()

LATEX export doesn’t make use of the type-labels option but rather uses command names stored in the

11https://github.com/uliska/lycritrprt

20

https://github.com/uliska/lycritrprt

scholarly.annotate.export.latex.commands option. By default these match the LilyPond commands
where approriate and prefix them for the more generic names:

• \criticalRemark

• \musicalIssue

• \lilypondIssue

• \annotateQuestion

• \annotateTodo

Usually there should be no reason to configure them and one would rather adjust the consuming
LATEX code. Therefore no convenience commands have been implemented, although the option can
of course directly be set through \setOption.

scholarly.annotate.export.latex.use-lilyglyphs (##f)

If this option is active the annotation’s musical moment is exported (to LATEX) as a lilyglyphs12

command. This LATEXpackage (generally available, e.g. in TEX Live) provides LilyPond’s notational
elements to be included in continuous text, when used with scholarly.annotate it uses musical
symbols to denote the indicate the musical moment of the annotation.

Note that this is not as robust as it should be at the time of writing this manual. The supported
metric and rhythmic elements are still quite limited, and there is no support for a templating
system. Maybe it will be more promising to implement such an approach in the lycritrprt package
exclusively.

NOTE/TODO

What is it with the additional footnote commands to produce footnotes in the report? What about
additional features to create music examples in the report etc.? Should this too be deferred to
lycritrprt? The “problem” with this is the limitation to LuaLATEX.

Other Planned Export Targets

We have ideas for additional export targets with varying degrees of chances they may become
reality. Generally we’re more than happy about contributors or sponsors who might speed up the
creation of certain items …

• HTML
This is already in development.

• JSON
While it would be a very suitable export target an implementation is only a viable option
when there is JSON support available from Guile, LilyPond’s programming platform.

• Standalone LATEX document (with configurable documentclass and critical report package),
optionally with implicit LATEX invocation.

• PDF (if there’s an idea about “cheaper” options than LATEX)
12<https://github.com/uliska/lilyglyphs

21

• Annotation browser (and even editor?) in Frescobaldi

The editorial-markup Module

scholarly.editorial-markup provides tools to encode and visualize source evidence and editorial
decisions. It is inspired by corresponding sections of the MEI specification13 14 15, the de-facto
standard of (scholarly) digital music editing, but has been adapted to LilyPond’s use case.

Technically the module is a thin wrapper around stylesheets.span and its \tagSpan command. At
its core it provides \editorialMarkup, a specialized version of \tagSpan, with a deliberately chosen
set of span classes, additional validation rules, and default colors. This does not only aim at more
convenience but especially at encouraging the use of a unified interface for sharing scholarly
workflows.

Typically \editorialMarkup is used within \choice from the scholarly.choice module to encode alter-
native versions of a musical text. Note that this module is not loaded implicitly.

As is documented with the span module, adding an ann-type attribute triggers the creation of an
annotation, which is typically what one wants when using editorial markup. The scholarly.choice
module provides some additional machinery for that. Note that the scholarly.annotate module isn’t
loaded implicitly either.

TODO:

An important part of the toolkit that has yet to be implemented is a set of default styling functions
intended for typical scholarly purposes.

The \editorialMarkup Command

The main and only command the scholarly.editorial-markup module provides is \editorialMarkup,
which builds upon \tagSpan from stylesheets.span. Syntax and usage are identical: \editorialMarkup
<span-class> (<attributes>) <music>, with the only difference that <span-class> may not be an
arbitrary name but must be one out of the list of predefined markup types as described below. The
idea behind providing this specific subset of the generic span command is to create a framework
that is specifically targeted at scholarly use, with tools to encode, document, and optionally visualize
source evidence. The depth of the encoding is completely up to the user (or project), ranging from
simply marking up some music “as something” to elaborated annotations and the choice between
alternative versions.

The mechanism of applying the function to some music is identical, and so is the mechanism to
provide custom styling functions. The only difference is that validator functions have been provided
to match and enforce the predesigned data model of scholarly editions and the various markup
types. While it is possible to override the validators with custom functions it is strongly discouraged.

13http://music-encoding.org/guidelines/v3/content/
14http://music-encoding.org/guidelines/v3/content/critapp.html
15http://music-encoding.org/guidelines/v3/content/edittrans.html

22

http://music-encoding.org/guidelines/v3/content/
http://music-encoding.org/guidelines/v3/content/critapp.html
http://music-encoding.org/guidelines/v3/content/edittrans.html

\include "oll-core/package.ily"
\loadModule scholarly.editorial-markup
\relative {
c' c g' g |
\editorialMarkup sic { as as } g2 |
\editorialMarkup lemma \with {
item = Accidental
source = OE

} fis4 fis
e -\editorialMarkup correction \with {
type = addition

} -> e
}

�� �� �������� � ���

Span Classes Defined By The Module

This section documents the allowed span-classes for \editorialMarkup. They mostly refer to elements
defined in the MEI specification, which is discussed with each class. Some classes have rules about
specific attributes while others are neutral in this respect. In some cases default attribute names
from MEI are suggested but not enforced.

Note the in the majority of cases \editorialMarkup will be used within \choice, and most classes
form natural pairs or groups with other classes. However, all of them may also be used standalone.
Consider the basic case of an apparent error like the a♭ in the example above. An edition could
silently correct the error, correct the error but identify the correction, print the original text but
mark it up as erroneous, or it could encode both, giving a choice. All of these options are available
with the tools of the scholarLY package.

lemma ()

reading ()

Used with \choice variants.

Alternative readings from different sources. lemma is the reading chosen by the editor while reading
encodes the reading from a secondary source. Both classes require the source attribute. A sequence
attribute may be used to encode the (assumed) order in the genesis of the work.

addition ()

deletion ()

restoration ()

Used with \choice substitution

23

Modification processes in the source. restoration refers to the case when a previously deleted text
is restored to its original state. It is recommended to use the responsibility and agent attributes
with these classes.

original ()

Used with \choice normalization

Refers to a musical text encoded literally although it deviates from the desired presentation without
being erroneous. Typical cases include the distribution of hands to piano staves, abbreviations or
similar operations (both to music or text), stem (or other) directions, beaming patterns etc.

It is strongly encouraged to use this with the type option.

regularization ()

Documents that a text has been normalized or modernized in the sense of the previous original.

gap ()

This and the remaining classes are used together with \choice emendation.

Documents missing material in the source. Requires the attribute reason.

sic ()

Marks up erroneous content in the score.

unclear ()

Used to mark up a text that can’t be transcribed reliably. It is encouraged to make use of the
certainty and responsibility attributes.

correction ()

Encodes the text as corrected by the current editor. Requires the type attribute, which must be one
out of addition, deletion, and substitution. The use of certainty and responsibility is encouraged.

Generic Attributes

MEI defines a number of generic attributes that can be applied to arbitrary elements. Projects using
scholarly.editorial-markup are encouraged to make use of these attributes and enforce them. At
least they should use the standardized names if they make use of the functionality, rather than
inventing their own.

Question:

Should the package be even more strict in encouraging or even enforcing the use of these generic
attributes?

24

source ()

The musical source to which the encoding applies. This may either be a literal string or a reference
to an entry in the sources list

Todo:

There are plans for a sources module which provides the infrastructure for storing metadata about
sources (together with information about the relation of various sources). The source attribute
should then refer to the key of such a dataset which then should provide a speaking label for display.

certainty ()

Indicates the level of certainty attributed to the evidence. If the option scholarly.certainty-levels
contains a list with values only values from this list are allowed.

TODO

This is not implemented yet.

responsible ()

Indicates who is responsible for the encoded fact. If the span tags source evidence the responsibility
points to the person that is considered responsible for what is found in the source, if an editorial
decision is tagged, the responsibility refers to the current editor.

agent ()

This too indicates a responsibility, but rather than a person it is usually meant to refer to tools or
other external forces (an agent could be “razor”, “dust”, “age” etc.).

type ()

While some classes require a type attribute it may freely be used with any classes.

reason ()

A short phrase (shorter than the message) arguing about the reason of a finding.

The choice Module

\editorialMarkup is used to “tag” musical elements or sequences, marking them up as a certain
“type” of music, giving them semantic meaning. However, in many cases in scholarly editing one
will want to not only apply such marks and annotate the music but also to document the alternative
version(s) of a text. If an editor emends erroneous text or produces an edited text using various
sources they have to document the evidence. And while this is traditionally done through textual
descriptions (maybe supported by music examples) in the critical commentary it is a more obvious,
cleaner, and in a way more honest approach to directly encode the variants in the edition itself.

25

This use case is what the <choice>16 element in MEI has been designed for, and this is what the
\choice command in scholarly.choice provides.

\choice provides an infrastructure for encoding alternative versions of some music, choosing one
version for use in the engraving, and handling the annotations attached to the music spans. Note
that LilyPond can’t currently support “live” updates to switch between versions in real time.17

The \choice Command

The \choice command has the interface \choice <choice-type> (<attributes>) <music> where
<choice-type> is an (partially arbitrary) name, <attributes> an optional \with {} block with
additional attributes, and music a special type of music expression: it is a sequential music
expression whose child elements are \tagSpan-like music expressions (\editorialMarkup fulfills that
definition, too).

There are four predefined choice types available, tuned to work with \editorialCommand in a scholarly
edition project: variants, normalization, substitution, and emendation. Each choice type has rules
regarding its children’s span classes and a configurable function for choosing the child to be used
for engraving.

With some work it is possible to provide custom choice types too, which is described in a later
section of this chapter.

In the following example an editor has documented that in the source one whole note has been
modified into two half notes.This is valid code, although in a real-world example the evidence would
probably be described in more detail through attributes like reason, certainty or responsibility.

In this case by default the “new” version is printed, but uncommenting the line with
\setChoicePreference would cause the “old” version to be chosen.

\include "oll-core/package.ily"
\loadModule scholarly.choice
{
% \setChoicePreference substitution #'old
\choice substitution {
\editorialMarkup deletion { c'1 }
\editorialMarkup addition { c'2 c' }

}
}

��� �

16http://music-encoding.org/guidelines/v3/elements/choice.html
17Theremay be some potential in exploring the OneStaff context (http://lilypond.org/doc/v2.19/Documentation/internals/

onestaff) for producing alternative versions of music in the same place. This could be made accessible to class changes
in an SVG file or to layers in PDF, but it hasn’t been thoroughly investigated if that can be made usable in a practicable
manner at all and on the other hand integrated with \choice.

26

http://music-encoding.org/guidelines/v3/elements/choice.html
http://lilypond.org/doc/v2.19/Documentation/internals/onestaff
http://lilypond.org/doc/v2.19/Documentation/internals/onestaff

Selecting the Music to be Engraved

In all cases \choice evaluates to one of the included music expressions, regardless how many of
these are present. This selection is controlled by preference variables which are registered for each
choice type. A choosing function will process this variable to make a choice, and while it is possible
(and typical) to have a simple key as the variable (“choose 'original”) custom choice types may
interpret variables of arbitrary complexity or even Scheme procedures. The available preferences
for the predefined choice types are documented along with the types below.

Preference variables are set with \setChoicePreference <choice-type> <value>. <choice-type> is a
Scheme symbol while the value can be of arbitrary Scheme type, depending on the choice type.
Note that since arbitrary Scheme values are accepted for the second argument also Scheme symbols
have to be written in explicit Scheme notation with the prepended hash sign: \setChoicePreference
substitution #'old.

Generally the order of music expressions within a \choice is irrelevant as only one will be cho-
sen anyway. However, if the selection process fails (typically because there is no suitable music
expression matching the choice type’s rules) the first encountered music expression is chosen.

The Predefined Choice Types

variants

\choice variants is used to encode alternative readings from different sources. It must contain
exactly one span of class lemma and one or multiple reading span(s). Other span classes are not
allowed.

By default the lemma span is engraved, otherwise the preference option must be set to the desired
reading’s mandatory source attribute.

The following example sets up a \choice as a music function. This is unrealistically complicated but
serves to show how changing the preference uses different subexpressions from the choice:

\include "oll-core/package.ily"
\loadPackage \with {
modules = choice.editorial-markup

} scholarly
music =
#(define-music-function ()()

#{
\choice variants {
\editorialMarkup lemma \with {

source = "OE"
}{ <c' c''>1 }
\editorialMarkup reading \with {

source = "draft"
}{ <e' e''>2 <e' e''> q q}

27

\editorialMarkup reading \with {
source = "fair-copy"

}{ c'8 d' e' d' c' d' e' d' }
}

#})
{
\music
\setOption scholarly.choice.preferences.variants "draft"
\music
\setOption scholarly.choice.preferences.variants "fair-copy"
\music

}

�� �� �� � ��� ���� � � ����

normalization

\choice normalization is used to literally encode a some text along with an adaptation to modern or
standardized editing conventions. The expansion of abbreviations (e.g. tremolos, repeats) also falls
into this category. This choice type is used when consistent or modern presentation is desired and
the deviations in the sources have to be documented. Note that the original text is not considered
erroneous in this case.

The choice must contain exactly one original and one regularization span. By default the regular-
ization is chosen, and the preference values are original and regularization.

QUESTION: Should they have a mandatory type attribute to define things like type=abbreviation
etc.?

substitution

\choice substitution is used to document modifications applied within the source, typically a cor-
rection from one text to a different one.

The choice must contain one deletion and one addition or restoration span. By default the final
state is printed, and the preference values are new and old (as Scheme symbols).

emendation

\choice emendation is used to document editorial decisions. The choice must contain exactly two
subexpressions, one being the correction, the other being one out of sic, gap or unclear.

By default the correction is engraved, the preference values are old and new.

28

Handling Annotations in a Choice Expression

A central topic when dealing with choices of editorial markup expressions is the handling of
annotations. Details about annotations can be looked up in the documentation of stylesheets.span
(annotations are created from a span expression) and the scholarly.annotate chapter in this document.
But \choice provides some interesting additional features to manage annotations.

Any span (or editorial markup) expression implicitly carries a span-annotation attached to its “an-
chor” element, and if that includes an ann-type attribute a “real” annotation is created and processed
by scholarly.annotate. By design \choice selects one span expression from its subexpressions and
returns that, so implicitly the result of \choice carries the annotation of the chosen span if it has
one.

If the \choice itself has attributes too (in the optional argument) they are merged with the chosen
subexpression’s annotation attributes. If an attribute is present both in the choice and in the selected
subexpression the “lower” one from the subexpression overwrites the one from the wrapping
choice. This makes it possible to create sophisticated annotations, for example to print an alternative
message text depending on the chosen subexpression.

\include "oll-core/package.ily"
\loadModule scholarly.choice
\new Score = "Named Score"
\new Staff = "Named Staff"
{
\setChoicePreference substitution #'old
\choice substitution \with {
ann-type = lilypond-issue
responsibility = Mozart
certainty = obvious
source = manuscript-prague

}{
\editorialMarkup deletion \with {

% message = "Changed to two half notes."
agent = "Erasure"

}{ c'1 }
\editorialMarkup addition \with {
message = "Change from a whole note."
agent = "Blue ink"

}{ c'2 c' }
}
c'1 |
\tagSpan whatever \with {
ann-type = critical-remark

} d'1
}

29

��� � �
Custom Choice Types

The scholarly.choice module has been developed with a certain use case in mind and was therefore
modeled after parts of the MEI specification, resulting in the four predefined choice types. However,
nothing speaks against extending this with custom choice types and rulesets.

Adding a custom choice type involves implementing and registering one function for validating
choice expressions and one for handling the selection preference.

Creating a Choice Validator

\choice expects the last argument to be of a custom type choice-music?, which enforces that it is
a sequential music expression whose elements are exlucively span-music? expressions, i.e. music
expressions created by \tagSpan. This is already validated by the function interface, i.e. the LilyPond
parser, itself, but the content of a choice may have other restrictions that can’t be validated on that
level. For this purpose each choice type must have a validator function registered.

\setChoiceValidator <choice-type function> ()

\setChoiceValidators <mappings> ()

Once a validator function is defined it can be made accessible through \setChoiceValidator <choice-
type> <function> where <choice-type> is a Scheme symbol and <function> a procedure. It is also
possible to register multiple validators at once with \setChoiceValidators <validators-list> where
the argument is an association list linking choice type symbols to validator procedures.

(define-choice-validator) <> ()

A choice validator is a function created with the macro (define-choice-validator). This creates
a scheme-function expecting one choice-type symbol and a choice-music? music expression. The
function body must consist of one expression (optionally preceded by a docstring) and evaluate to
a true value or #f if the music expression doesn’t match the ruleset.

If the function evaluates to #f a warning message is issued but compilation continued without inter-
ruption – although follow-up errors, misbehaviour or crashes have to be expected as a consequence.

Inside the function a number of variables and local functions are available:

• spans

a list of pairs with the span class as car and the music expression as cdr

• classes

a list of span class names. Note: generally the order of spans in a choice expression is ignored,
but it is possible for custom validators to make a decision based on the order.

30

• (count-class <class>)

function that computes the number of times the given span class is present

• (single <class>)

function that returns #t if the given class appears exactly once

• (optional <class>)

function that returns #t if the given class appears exactly zero or one times

• warning-message

variable that is initialized to ‘””’, an emplty string. In case of failure or other issues this
variable can be modified from inside the function body and will be added to the warning
message

Creating a Span Chooser

\choice has to select one out of the music sub-expressions it is passed and return it as the resulting
music. This is achieved through a span chooser function that is registered for each choice type.

\setSpanChooser <choice-type function> ()

Once a span chooser is defined it can be made accessible through \setSpanChooser <choice-type
<function> where <choice-type> is a Scheme symbol and <function> a procedure. There is no conve-
nience wrapper for registering multiple functions at once.

A span chooser is a function created with the macro (define-span-chooser). This creates a scheme-
function expecting one choice-type symbol, a props alist and a span-expressions? list of span-
class/span-music pairs. The function body must consist of one expression (optionally preceded by a
docstring) and evaluate to a span-class/span-music pair.

Inside the function the following names are available:

• preference

a key as base data for the decision which span to choose. If the choice attributes include a
preference attribute its value is taken, otherwise the value is looked up in the options as they
are described above.

• (get-annotation <expression>)

a function to retrieve the span annotation from the given span expression. If the chooser
function iterates over the expressions this is the way to access the current expression’s
annotation.

The built-in choosers all have comparably simple binary selection mechanisms, but custom func-
tions may implement conditions of arbitrary complexity. Note that the preference value doesn’t
necessarily have to be a simple symbol as in the built-in cases. it may also make sense to use for
example lists and choose the first expression that happens to match a list element (use case: use
readings from sources in descending priority, i.e. choose the first matching reading).

31

The sources Module

This is a stub as there is no scholarly.sources module yet, not even a sketch. This module will provide
an interface to storing information about musical sources. Intended functionality:

• Reference by key in an annotation’s source attribute
• Produce output for source descriptions in critical reports
(optionally: output only sources used (if possible/appropriate))

• Maintain inheritance information to create a stemma.
• Optionally: produce a graphical representation of a stemma (thorugh LATEX?)

32

	Introduction
	Installation and Dependencies

	The annotate Module
	Creating Annotations
	The Five Annotation Types
	Application of Annotations
	Authoring Annotation (Attributes/Content)
	Mandatory Attributes
	Known Attributes
	Custom Attributes
	Generated Attributes

	Processing Annotations
	Organizing Output
	Appearance of the Output

	Exporting Annotations
	Printing to the Console
	Export to Plaintext
	Export to
	Other Planned Export Targets

	The editorial-markup Module
	The Command
	Span Classes Defined By The Module
	Generic Attributes

	The choice Module
	The Command
	Selecting the Music to be Engraved

	The Predefined Choice Types
	variants
	normalization
	substitution
	emendation

	Handling Annotations in a Choice Expression
	Custom Choice Types
	Creating a Choice Validator
	Creating a Span Chooser

	The sources Module
	Index

