Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

file 181 lines (165 sloc) 6.137 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#!/usr/bin/env python
"""
A program to solve the 3D Klein Gordon equation using a
second order semi-explicit method

More information on visualization can be found on the Mayavi
website, in particular:
http://github.enthought.com/mayavi/mayavi/mlab.html
which was last checked on 6 April 2012

"""

import math
import numpy
from mayavi import mlab
import matplotlib.pyplot as plt
import time


# Grid
Lx=2.0 # Period 2*pi*Lx
Ly=2.0 # Period 2*pi*Ly
Lz=2.0 # Period 2*pi*Lz
Nx=64 # Number of harmonics
Ny=64 # Number of harmonics
Nz=64 # Number of harmonics
Nt=2000 # Number of time slices
tmax=10.0 # Maximum time
dt=tmax/Nt # time step
plotgap=10 # time steps between plots
Es= -1.0 # focusing (+1) or defocusing (-1) parameter
numplots=Nt/plotgap # number of plots to make

x = [i*2.0*math.pi*(Lx/Nx) for i in xrange(-Nx/2,1+Nx/2)]
y = [i*2.0*math.pi*(Ly/Ny) for i in xrange(-Ny/2,1+Ny/2)]
z = [i*2.0*math.pi*(Lz/Nz) for i in xrange(-Nz/2,1+Nz/2)]
k_x = (1.0/Lx)*numpy.array([complex(0,1)*n for n in range(0,Nx/2) \
+ [0] + range(-Nx/2+1,0)])
k_y = (1.0/Ly)*numpy.array([complex(0,1)*n for n in range(0,Ny/2) \
+ [0] + range(-Ny/2+1,0)])
k_z = (1.0/Lz)*numpy.array([complex(0,1)*n for n in range(0,Nz/2) \
+ [0] + range(-Nz/2+1,0)])

kxm=numpy.zeros((Nx,Ny,Nz), dtype=complex)
kym=numpy.zeros((Nx,Ny,Nz), dtype=complex)
kzm=numpy.zeros((Nx,Ny,Nz), dtype=complex)
xx=numpy.zeros((Nx,Ny,Nz), dtype=float)
yy=numpy.zeros((Nx,Ny,Nz), dtype=float)
zz=numpy.zeros((Nx,Ny,Nz), dtype=float)


for i in xrange(Nx):
    for j in xrange(Ny):
        for k in xrange(Nz):
            kxm[i,j,k] = k_x[i]
            kym[i,j,k] = k_y[j]
            kzm[i,j,k] = k_z[k]
            xx[i,j,k]=x[i]
            yy[i,j,k]=y[j]
            zz[i,j,k]=z[k]
        

# allocate arrays
unew=numpy.zeros((Nx,Ny,Nz), dtype=float)
u=numpy.zeros((Nx,Ny,Nz), dtype=float)
uold=numpy.zeros((Nx,Ny,Nz), dtype=float)
vnew=numpy.zeros((Nx,Ny,Nz), dtype=complex)
v=numpy.zeros((Nx,Ny,Nz), dtype=complex)
vold=numpy.zeros((Nx,Ny,Nz), dtype=complex)
ux=numpy.zeros((Nx,Ny,Nz), dtype=float)
uy=numpy.zeros((Nx,Ny,Nz), dtype=float)
uz=numpy.zeros((Nx,Ny,Nz), dtype=float)
vx=numpy.zeros((Nx,Ny,Nz), dtype=complex)
vy=numpy.zeros((Nx,Ny,Nz), dtype=complex)
vz=numpy.zeros((Nx,Ny,Nz), dtype=complex)
Kineticenergy=numpy.zeros((Nx,Ny,Nz), dtype=complex)
Potentialenergy=numpy.zeros((Nx,Ny,Nz), dtype=complex)
Strainenergy=numpy.zeros((Nx,Ny,Nz), dtype=complex)
EnKin=numpy.zeros((numplots), dtype=float)
EnPot=numpy.zeros((numplots), dtype=float)
EnStr=numpy.zeros((numplots), dtype=float)
En=numpy.zeros((numplots), dtype=float)
Enchange=numpy.zeros((numplots-1),dtype=float)
tdata=numpy.zeros((numplots), dtype=float)
nonlin=numpy.zeros((Nx,Ny,Nz), dtype=float)
nonlinhat=numpy.zeros((Nx,Ny,Nz), dtype=complex)

u=0.1*numpy.exp(-(xx**2 + yy**2 + zz**2))
uold=u
v=numpy.fft.fftn(u)
vold=numpy.fft.fftn(uold)
#src=mlab.contour3d(xx,yy,zz,u,colormap='jet',opacity=0.1,contours=4)
src = mlab.pipeline.scalar_field(xx,yy,zz,u,colormap='YlGnBu')
mlab.pipeline.iso_surface(src, contours=[u.min()+0.1*u.ptp(), ],
   colormap='YlGnBu',opacity=0.85)
mlab.pipeline.iso_surface(src, contours=[u.max()-0.1*u.ptp(), ],
   colormap='YlGnBu',opacity=1.0)
mlab.pipeline.image_plane_widget(src,plane_orientation='z_axes',
                            slice_index=Nz/2,colormap='YlGnBu',
                            opacity=0.01)
mlab.pipeline.image_plane_widget(src,plane_orientation='y_axes',
                            slice_index=Ny/2,colormap='YlGnBu',
                            opacity=0.01)
mlab.pipeline.image_plane_widget(src,plane_orientation='x_axes',
                            slice_index=Nx/2,colormap='YlGnBu',
                            opacity=0.01)
mlab.scalarbar()
mlab.xlabel('x',object=src)
mlab.ylabel('y',object=src)
mlab.zlabel('z',object=src)

# initial energy
vx=0.5*kxm*(v+vold)
vy=0.5*kym*(v+vold)
vz=0.5*kzm*(v+vold)
ux=numpy.fft.ifftn(vx)
uy=numpy.fft.ifftn(vy)
uz=numpy.fft.ifftn(vz)
Kineticenergy=0.5*((u-uold)/dt)**2
Strainenergy=0.5*(ux)**2 + 0.5*(uy)**2 + 0.5*(uz)**2
Potentialenergy=0.5*(0.5*(u+uold))**2 - Es*0.25*(0.5*(u+uold))**4
Kineticenergy=numpy.fft.fftn(Kineticenergy)
Strainenergy=numpy.fft.fftn(Strainenergy)
Potentialenergy=numpy.fft.fftn(Potentialenergy)
EnKin[0]=numpy.real(Kineticenergy[0,0,0])
EnPot[0]=numpy.real(Potentialenergy[0,0,0])
EnStr[0]=numpy.real(Strainenergy[0,0,0])
En[0]=EnStr[0]+EnPot[0]+EnKin[0]
EnO=En[0]
t=0.0
tdata[1]=t
plotnum=0
#solve pde and plot results
for nt in xrange(numplots-1):
    for n in xrange(plotgap):
        nonlin=u**3
        nonlinhat=numpy.fft.fftn(nonlin)
        vnew=( (0.25*(kxm**2 + kym**2 + kzm**2 - 1)*(2*v+vold)
          +(2*v-vold)/(dt*dt) +Es*nonlinhat)/
          (1/(dt*dt) - (kxm**2 + kym**2 + kzm**2 -1)*0.25 ) )
        unew=numpy.real(numpy.fft.ifftn(vnew))
        t+=dt
        # update old terms
        vold=v
        v=vnew
        uold=u
        u=unew
    plotnum+=1
    src.mlab_source.scalars = unew
    vx=0.5*kxm*(v+vold)
    vy=0.5*kym*(v+vold)
    vz=0.5*kzm*(v+vold)
    ux=numpy.fft.ifftn(vx)
    uy=numpy.fft.ifftn(vy)
    uz=numpy.fft.ifftn(vz)
    Kineticenergy=0.5*((u-uold)/dt)**2
    Strainenergy=0.5*(ux)**2 + 0.5*(uy)**2 + 0.5*(uz)**2
    Potentialenergy=0.5*(0.5*(u+uold))**2 - Es*0.25*(0.5*(u+uold))**4
    Kineticenergy=numpy.fft.fftn(Kineticenergy)
    Strainenergy=numpy.fft.fftn(Strainenergy)
    Potentialenergy=numpy.fft.fftn(Potentialenergy)
    EnKin[plotnum]=numpy.real(Kineticenergy[0,0,0])
    EnPot[plotnum]=numpy.real(Potentialenergy[0,0,0])
    EnStr[plotnum]=numpy.real(Strainenergy[0,0,0])
    En[plotnum]=EnStr[plotnum]+EnPot[plotnum]+EnKin[plotnum]
    Enchange[plotnum-1]=numpy.log(abs(1-En[plotnum]/EnO))
    tdata[plotnum]=t

       
plt.figure()
plt.plot(tdata,En,'r+',tdata,EnKin,'b:',tdata,EnPot,'g-.',tdata,EnStr,'y--')
plt.xlabel('Time')
plt.ylabel('Energy')
plt.legend(('Total', 'Kinetic','Potential','Strain'))
plt.title('Time Dependence of Energy Components')
plt.show()

plt.figure()
plt.plot(Enchange,'r-')
plt.title('Time Dependence of Change in Total Energy')
plt.show()
Something went wrong with that request. Please try again.