
DRAFT

OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.5

29th October 2019

Development by

• For a current list of contributors and collaborators please see
http://www.openshmem.org/site/Contributors/

• For a current list of OpenSHMEM implementations and tools, please see
http://openshmem.org/site/Links#impl/

http://www.openshmem.org/
http://www.openshmem.org/site/Contributors/
http://openshmem.org/site/Links#impl/

DRAFT

1.5 — DRAFT —

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

• Los Alamos National Laboratory (LANL)
http://www.lanl.gov/

Current Authors and Collaborators

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, University of Tenneesee at Knoxville (UTK)

• Barbara Chapman, Stonybrook University (SBU)

• Robert Cernohous, Cray Inc.

• James Culhane, LANL

• Tony Curtis, SBU

• James Dinan, Intel

• Mike Dubman, Mellanox

• Karl Feind, Hewlett Packard Enterprise (HPE)

• Manjunath Gorentla Venkata, ORNL

• Megan Grodowitz, Arm Inc.

• Max Grossman, Rice University

• Khaled Hamidouche, Advanced Micro Devices (AMD)

• Jeff Hammond, Intel

• Yossi Itigin, Mellanox

• Bryant Lam, DoD

• David Knaak, Cray Inc.

• Jeff Kuehn, LANL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• David Ozog, Intel

• Nicholas Park, DoD

• Steve Poole, Open Source Software Solutions (OSSS)

• Wendy Poole, OSSS

ii

http://www.defense.gov/
http://www.ornl.gov/
http://www.lanl.gov/

DRAFT

1.5 — DRAFT —

• Swaroop Pophale, ORNL

• Sreeram Potluri, NVIDIA

• Howard Pritchard, LANL

• Naveen Ravichandrasekaran, Cray Inc.

• Michael Raymond, HPE

• James Ross, Army Research Laboratory (ARL)

• Pavel Shamis, Arm Inc.

• Sameer Shende, University of Oregon (UO)

• Lauren Smith, DoD

Alumni Authors and Collaborators

• Amrita Banerjee, University of Houston (UH)

• Monika ten Bruggencate, Cray Inc.

• Eduardo D’Azevedo, ORNL

• Oscar Hernandez, ORNL

• Gregory Koenig, ORNL

• Graham Lopez, ORNL

• Ricardo Mauricio, UH

• Ram Nanjegowda, UH

• Aaron Welch, ORNL

Acknowledgments

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a non-profit organiza-
tion, under an agreement with HPE. For a current list of Contributors and Collaborators, please see http://www.
openshmem.org/site/Contributors/. We gratefully acknowledge support from Oak Ridge National Labo-
ratory’s Extreme Scale Systems Center and the continuing support of the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

OpenSHMEM 1.4 is dedicated to the memory of David Charles Knaak. David was a highly involved colleague and
contributor to the entire OpenSHMEM project. He will be missed.

iii

http://www.openshmem.org/site/Contributors/
http://www.openshmem.org/site/Contributors/

DRAFT
Contents

A Writing OpenSHMEM Programs 1

B Compiling and Running Programs 3
1 Compilation . 3
2 Running Programs . 3

C Undefined Behavior in OpenSHMEM 4

D Interoperability with Other Programming Models 5
1 Message Passing Interface (MPI) Interoperability . 5

1.1 Initialization . 5
1.2 Dynamic Process Creation . 6
1.3 Thread Safety . 6
1.4 Mapping Process Identification Numbers . 6
1.5 RMA Programming Models . 7
1.6 Communication Progress . 7

E History of OpenSHMEM 8

F OpenSHMEM Specification and Deprecated API 9
1 Overview . 9
2 Deprecation Rationale . 10

2.1 Header Directory: mpp . 10
2.2 C/C++: start_pes . 10
2.3 Implicit Finalization . 10
2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign 11
2.5 Fortran: START_PES, MY_PE, NUM_PES . 11
2.6 Fortran: SHMEM_PUT . 11
2.7 SHMEM_CACHE . 11
2.8 _SHMEM_* Library Constants . 11
2.9 SMA_* Environment Variables . 11
2.10 C/C++: shmem_wait . 12
2.11 C/C++: shmem_wait_until . 12
2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc,

shmem_fadd, shmem_add . 12
2.13 Fortran API . 12
2.14 Active-set-based collective routines . 12
2.15 C/C++: shmem_barrier . 12

G Changes to this Document 14
1 Version 1.5 . 14
2 Version 1.4 . 15
3 Version 1.3 . 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

iv

DRAFT

1.5 — DRAFT —

4 Version 1.2 . 17
5 Version 1.1 . 18

Index 21

v

DRAFT

1.5 — DRAFT —

vi

DRAFT
Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

The following section describes how to write a “Hello World" OpenSHMEM program. To write a “Hello World"
OpenSHMEM program, the user must:

• Include the header file shmem.h for C.

• Add the initialization call shmem_init.

• Use OpenSHMEM calls to query the local Processing Element (PE) number (shmem_my_pe) and the total
number of PEs (shmem_n_pes).

• Add the finalization call shmem_finalize.

In OpenSHMEM, the order in which lines appear in the output is not deterministic because PEs execute asyn-
chronously in parallel.

Listing A.1: “Hello World” example program in C
1 #include <stdio.h>
2 #include <shmem.h> /* The OpenSHMEM header file */
3
4 int main (void)
5 {
6 shmem_init();
7 int me = shmem_my_pe();
8 int npes = shmem_n_pes();
9 printf("Hello from %d of %d\n", me, npes);

10 shmem_finalize();
11 return 0;
12 }

Listing A.2: Possible ordering of expected output with 4 PEs from the program in Listing A.1
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

2 ANNEX A. WRITING OPENSHMEM PROGRAMS

The example in Listing A.3 shows a more complex OpenSHMEM program that illustrates the use of symmetric
data objects. Note the declaration of the static short dest array and its use as the remote destination in shmem_put.

The static keyword makes the dest array symmetric on all PEs. Each PE is able to transfer data to a remote dest
array by simply specifying to an OpenSHMEM routine such as shmem_put the local address of the symmetric data
object that will receive the data. This local address resolution aids programmability because the address of the dest
need not be exchanged with the active side (PE 0) prior to the Remote Memory Access (RMA) routine.

Conversely, the declaration of the short source array is asymmetric (local only). The source object does not need
to be symmetric because Put handles the references to the source array only on the active (local) side.

Listing A.3: Example program with symmetric data objects
1 #include <stdio.h>
2 #include <shmem.h>
3
4 #define SIZE 16
5
6 int main(void)
7 {
8 short source[SIZE];
9 static short dest[SIZE];

10 static long lock = 0;
11 shmem_init();
12 int me = shmem_my_pe();
13 int npes = shmem_n_pes();
14 if (me == 0) {
15 /* initialize array */
16 for (int i = 0; i < SIZE; i++)
17 source[i] = i;
18 /* local, not symmetric */
19 /* static makes it symmetric */
20 /* put "size" words into dest on each PE */
21 for (int i = 1; i < npes; i++)
22 shmem_put(dest, source, SIZE, i);
23 }
24 shmem_barrier_all(); /* sync sender and receiver */
25 if (me != 0) {
26 shmem_set_lock(&lock);
27 printf("dest on PE %d is \t", me);
28 for (int i = 0; i < SIZE; i++)
29 printf("%hd \t", dest[i]);
30 printf("\n");
31 shmem_clear_lock(&lock);
32 }
33 shmem_finalize();
34 return 0;
35 }

Listing A.4: Possible ordering of expected output with 4 PEs from the program in Listing A.3
1 dest on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 dest on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 dest on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex B

Compiling and Running Programs

The OpenSHMEM Specification does not specify how OpenSHMEM programs are compiled, linked, and run. This
section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference Implementation
to compile and launch programs.

1 Compilation

Programs written in C

The OpenSHMEM Reference Implementation provides a wrapper program, named oshcc, to aid in the compilation of
C programs. The wrapper may be called as follows:

oshcc <compiler options> -o myprogram myprogram.c

Where the 〈compiler options〉 are options understood by the underlying C compiler called by oshcc.

Programs written in C++

The OpenSHMEM Reference Implementation provides a wrapper program, named oshc++, to aid in the compilation
of C++ programs. The wrapper may be called as follows:

oshc++ <compiler options> -o myprogram myprogram.cpp

Where the 〈compiler options〉 are options understood by the underlying C++ compiler called by oshc++.

2 Running Programs

The OpenSHMEM Reference Implementation provides a wrapper program, named oshrun, to launch OpenSHMEM
programs. The wrapper may be called as follows:

oshrun <runner options> -np <#> <program> <program arguments>

The arguments for oshrun are:
〈runner options〉 Options passed to the underlying launcher.
-np 〈#〉 The number of PEs to be used in the execution.
〈program〉 The program executable to be launched.
〈program arguments〉 Flags and other parameters to pass to the program.

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex C

Undefined Behavior in OpenSHMEM

The OpenSHMEM Specification formalizes the expected behavior of its library routines. In cases where routines are
improperly used or the input is not in accordance with the Specification, the behavior is undefined.

Inappropriate Usage Undefined Behavior
Uninitialized library If the OpenSHMEM library is not initialized, calls to non-initializing

OpenSHMEM routines have undefined behavior. For example, an
implementation may try to continue or may abort immediately upon an
OpenSHMEM call into the uninitialized library.

Multiple calls to initialization
routines

In an OpenSHMEM program where the initialization routines
shmem_init or shmem_init_thread have already been called, any
subsequent calls to these initialization routines result in undefined
behavior.

Accessing non-existent PEs If a communications routine accesses a non-existent PE, then the
OpenSHMEM library may handle this situation in an
implementation-defined way. For example, the library may report an
error message saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. For example, a Put to a non-symmetric variable may be
trapped where possible and the library may abort the program.
Another implementation may choose to continue execution with or
without a warning.

Non-symmetric allocation of
symmetric memory

The symmetric memory management routines are collectives. For
example, all PEs in the program must call shmem_malloc with the
same size argument. Program behavior after a mismatched
shmem_malloc call is undefined.

Use of null pointers with non-zero
len specified

In any OpenSHMEM routine that takes a pointer and len describing
the number of elements in that pointer, a null pointer may not be given
unless the corresponding len is also specified as zero. Otherwise, the
resulting behavior is undefined. The following cases summarize this
behavior:

• len is 0, pointer is null: supported.

• len is not 0, pointer is null: undefined behavior.

• len is 0, pointer is non-null: supported.

• len is not 0, pointer is non-null: supported.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4

DRAFT
Annex D

Interoperability with Other Programming
Models

OpenSHMEM routines may be used in conjunction with the routines of other communication libraries or parallel
languages in the same program. This section describes the interoperability with other programming models, including
clarification of undefined behaviors caused by mixed use of different models, and advice to OpenSHMEM library users
and developers that may improve the portability and performance of hybrid programs.

1 MPI Interoperability

OpenSHMEM and MPI are two commonly used parallel programming models for distributed-memory systems. The
user can choose to utilize both models in the same program to efficiently and easily support various communication
patterns.

A vendor may implement the OpenSHMEM and MPI libraries in different ways. For instance, one may implement
both OpenSHMEM and MPI as standalone libraries, each of which allocates and initializes fully isolated communi-
cation resources. Another approach is to implement both OpenSHMEM and MPI interfaces within the same software
system in order to share a communication resource when possible.

To improve interoperability and portability in OpenSHMEM + MPI hybrid programming, we clarify the relevant
semantics in the following subsections.

1.1 Initialization

In order to ensure that a hybrid program can be portably performed with different vendor implementations, the Open-
SHMEM environment of the program must be initialized by a call to shmem_init or shmem_init_thread and be final-
ized by a call to shmem_finalize; the MPI environment of the program must be initialized by a call to MPI_Init or
MPI_Init_thread and be finalized by a call to MPI_Finalize.

Note to implementors
Portable implementations of OpenSHMEM and MPI must ensure that the initialization calls can be made in an
arbitrary order within a program; the same rule also applies to the finalization calls. A software runtime that
utilizes a shared communication resource for OpenSHMEM and MPI communication may maintain an internal
reference counter in order to ensure that the shared resource is initialized only once and thus no shared resource
is released until the last finalization call is made.

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6 ANNEX D. INTEROPERABILITY WITH OTHER PROGRAMMING MODELS

1.2 Dynamic Process Creation

MPI defines a dynamic process model that allows creation of processes after an MPI application has started (e.g.,
by calling MPI_Comm_spawn) and connection to independent processes (e.g., through MPI_Comm_accept and
MPI_Comm_connect). It provides a mechanism to establish communication between the newly created processes
and the existing MPI application (see MPI standard version 3.1, Chapter 10). Unlike MPI, OpenSHMEM starts all
processes at once and requires all PEs to collectively allocate and initialize resources (e.g., symmetric heap) used by
the OpenSHMEM library before any other OpenSHMEM routine may be called. OpenSHMEM does not support com-
munication with dynamically created or connected processes. In such a scenario, MPI can be used to communicate
with these processes.

1.3 Thread Safety

Both OpenSHMEM and MPI define the interaction with user threads in a program with routines that can be used
for initializing and querying the thread environment. A hybrid program may request different thread levels at the
initialization calls of OpenSHMEM and MPI environments; however, the returned support level provided by the Open-
SHMEM or MPI library might be different from that returned in an non-hybrid program. For instance, the former
initialization call in a hybrid program may initialize a resource with the requested thread level, but the supported level
cannot be updated by a subsequent initialization call if the underlying software runtime of OpenSHMEM and MPI
share the same internal communication resource. The program should always check the provided thread level returned
at the corresponding initialization call or query the level of thread support after initialization to portably ensure thread
support in each communication environment.

Both OpenSHMEM and MPI define similar thread levels, namely, THREAD_SINGLE, THREAD_FUNNELED,
THREAD_SERIALIZED, and THREAD_MULTIPLE. When requesting threading support in a hybrid program, how-
ever, the following additional rules are applied if the implementations of OpenSHMEM and MPI share the same internal
communication resource. It is strongly recommended to always follow these rules to ensure program portability.

• The THREAD_SINGLE thread level requires a single-threaded program. Hence, a hybrid program should not
request THREAD_SINGLE at the initialization call of either OpenSHMEM or MPI but request a different thread
level at the initialization call of the other model.

• The THREAD_FUNNELED thread level allows only the main thread to make communication calls. A hybrid
program using the THREAD_FUNNELED thread level in both OpenSHMEM and MPI should ensure that the
same main thread is used in both communication environments.

• The THREAD_SERIALIZED thread level requires the program to ensure that communication calls are not made
concurrently by multiple threads. If a hybrid program uses THREAD_SERIALIZED in one communication
environment and THREAD_SERIALIZED or THREAD_FUNNELED in the other one, it should also guarantee
that the OpenSHMEM and MPI calls are not made concurrently from two distinct threads.

1.4 Mapping Process Identification Numbers

Similar to the PE number in OpenSHMEM, MPI defines rank as the identification number of a process in a communi-
cator. Both the OpenSHMEM PE and the MPI rank are unique integers assigned from zero to one less than the total
number of processes. In a hybrid program, the OpenSHMEM PE number in SHMEM_TEAM_WORLD and the MPI
rank in MPI_COMM_WORLD of a process can be equal. This feature, however, may be provided by only some of
the OpenSHMEM and MPI implementations (e.g., if both environments share the same underlying process manager)
and is not portably guaranteed. A portable program should always use the standard functions in each model, namely,
shmem_team_my_pe in OpenSHMEM and MPI_Comm_rank in MPI, to query the process identification numbers in
each communication environment and manage the mapping of identifiers in the program when necessary.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX D. INTEROPERABILITY WITH OTHER PROGRAMMING MODELS 7

Example

The following example demonstrates how to manage the mapping between OpenSHMEM PE numbers and MPI ranks
in MPI_COMM_WORLD in a hybrid OpenSHMEM and MPI program.

#include <stdio.h>
#include <shmem.h>
#include <mpi.h>

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
shmem_init();

int mype = shmem_team_my_pe(SHMEM_TEAM_WORLD);
int npes = shmem_team_n_pes(SHMEM_TEAM_WORLD);

static int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

int *mpi_ranks = shmem_calloc(npes, sizeof(int));

shmem_int_collect(SHMEM_TEAM_WORLD, mpi_ranks, &myrank, 1);
if (mype == 0)

for (int i = 0; i < npes; i++)
printf("PE %d’s MPI rank is %d\n", i, mpi_ranks[i]);

shmem_free(mpi_ranks);

shmem_finalize();
MPI_Finalize();

return 0;
}

1.5 RMA Programming Models

OpenSHMEM and MPI each define similar one-sided communication models; however, a portable program should not
assume interoperability between these models. For instance, OpenSHMEM guarantees the atomicity only of concurrent
OpenSHMEM AMO operations that operate on symmetric data with the same datatype. Access to the same symmetric
object with MPI atomic operations, such as an MPI_Fetch_and_op, may result in an undefined result. A hybrid
program should avoid situations where MPI and OpenSHMEM one-sided operations perform concurrent accesses to
the same memory location; otherwise, the behavior is undefined.

1.6 Communication Progress

OpenSHMEM promises the progression of communication both with and without OpenSHMEM calls and requires
the software progress mechanism in the implementation (e.g., a progress thread) when the hardware does not provide
asynchronous communication capabilities. In MPI, however, a weak progress semantics is applied. That is, an MPI
communication call is guaranteed only to complete in finite time. For instance, an MPI_Put may be completed only
when the remote process makes an MPI call that internally triggers the progress of MPI, if the underlying hardware
does not support asynchronous communication. A hybrid program should not assume that the OpenSHMEM library
also makes progress for MPI. It can explicitly manage the asynchronous communication of MPI in order to prevent
any deadlock or performance degradation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex E

History of OpenSHMEM

SHMEM has a long history as a parallel-programming model and has been extensively used on a number of products
since 1993, including the Cray T3D, Cray X1E, Cray XT3 and XT4, Silicon Graphics International (SGI) Origin, SGI
Altix, Quadrics-based clusters, and InfiniBand-based clusters.

• SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research, Inc. in 1993 for Cray T3D

* Cray was acquired by SGI in 1996

* Cray was acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT

– SGI SHMEM

* SGI acquired Cray Research, Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, ICE, UV

* SGI was acquired by Rackable Systems in 2009

* SGI and OSSS signed a SHMEM trademark licensing agreement in 2010

* HPE acquired SGI in 2016

A listing of OpenSHMEM implementations can be found on http://www.openshmem.org/.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8

http://www.openshmem.org/

DRAFT
Annex F

OpenSHMEM Specification and Deprecated
API

1 Overview

For the OpenSHMEM Specification, deprecation is the process of identifying API that is supported but no longer
recommended for use by users. The deprecated API must be supported until clearly indicated as otherwise by the
Specification. This chapter records the API or functionality that have been deprecated, the version of the OpenSHMEM
Specification that effected the deprecation, and the most recent version of the OpenSHMEM Specification in which the
feature was supported before removal.

Deprecated API Deprecated Since Last Version Supported Replaced By
Header Directory: mpp 1.1 Current (none)
C/C++: start_pes 1.2 Current shmem_init
Fortran: START_PES 1.2 Current SHMEM_INIT
Implicit finalization 1.2 Current shmem_finalize
C/C++: _my_pe 1.2 Current shmem_my_pe
C/C++: _num_pes 1.2 Current shmem_n_pes
Fortran: MY_PE 1.2 Current SHMEM_MY_PE
Fortran: NUM_PES 1.2 Current SHMEM_N_PES
C/C++: shmalloc 1.2 Current shmem_malloc
C/C++: shfree 1.2 Current shmem_free
C/C++: shrealloc 1.2 Current shmem_realloc
C/C++: shmemalign 1.2 Current shmem_align
Fortran: SHMEM_PUT 1.2 Current SHMEM_PUT8 or SHMEM_PUT64
C/C++: shmem_clear_cache_inv
Fortran: SHMEM_CLEAR_CACHE_INV 1.3 Current (none)

C/C++: shmem_clear_cache_line_inv 1.3 Current (none)
C/C++: shmem_set_cache_inv
Fortran: SHMEM_SET_CACHE_INV 1.3 Current (none)

C/C++: shmem_set_cache_line_inv
Fortran: SHMEM_SET_CACHE_LINE_INV 1.3 Current (none)

C/C++: shmem_udcflush
Fortran: SHMEM_UDCFLUSH 1.3 Current (none)

C/C++: shmem_udcflush_line
Fortran: SHMEM_UDCFLUSH_LINE 1.3 Current (none)

_SHMEM_SYNC_VALUE 1.3 Current SHMEM_SYNC_VALUE
_SHMEM_BARRIER_SYNC_SIZE 1.3 Current SHMEM_BARRIER_SYNC_SIZE
_SHMEM_BCAST_SYNC_SIZE 1.3 Current SHMEM_BCAST_SYNC_SIZE
_SHMEM_COLLECT_SYNC_SIZE 1.3 Current SHMEM_COLLECT_SYNC_SIZE
_SHMEM_REDUCE_SYNC_SIZE 1.3 Current SHMEM_REDUCE_SYNC_SIZE
_SHMEM_REDUCE_MIN_WRKDATA_SIZE 1.3 Current SHMEM_REDUCE_MIN_WRKDATA_SIZE
_SHMEM_MAJOR_VERSION 1.3 Current SHMEM_MAJOR_VERSION
_SHMEM_MINOR_VERSION 1.3 Current SHMEM_MINOR_VERSION
_SHMEM_MAX_NAME_LEN 1.3 Current SHMEM_MAX_NAME_LEN
_SHMEM_VENDOR_STRING 1.3 Current SHMEM_VENDOR_STRING
_SHMEM_CMP_EQ 1.3 Current SHMEM_CMP_EQ
_SHMEM_CMP_NE 1.3 Current SHMEM_CMP_NE
_SHMEM_CMP_LT 1.3 Current SHMEM_CMP_LT
_SHMEM_CMP_LE 1.3 Current SHMEM_CMP_LE

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10 ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API

Deprecated API Deprecated Since Last Version Supported Replaced By
_SHMEM_CMP_GT 1.3 Current SHMEM_CMP_GT
_SHMEM_CMP_GE 1.3 Current SHMEM_CMP_GE
SMA_VERSION 1.4 Current SHMEM_VERSION
SMA_INFO 1.4 Current SHMEM_INFO
SMA_SYMMETRIC_SIZE 1.4 Current SHMEM_SYMMETRIC_SIZE
SMA_DEBUG 1.4 Current SHMEM_DEBUG
C/C++: shmem_wait
C/C++: shmem_<TYPENAME>_wait 1.4 Current See Notes for shmem_wait_until

C/C++: shmem_wait_until 1.4 Current C11: shmem_wait_until, C/C++: shmem_long_wait_until
C11: shmem_fetch
C/C++: shmem_<TYPENAME>_fetch 1.4 Current shmem_atomic_fetch

C11: shmem_set
C/C++: shmem_<TYPENAME>_set 1.4 Current shmem_atomic_set

C11: shmem_cswap
C/C++: shmem_<TYPENAME>_cswap 1.4 Current shmem_atomic_compare_swap

C11: shmem_swap
C/C++: shmem_<TYPENAME>_swap 1.4 Current shmem_atomic_swap

C11: shmem_finc
C/C++: shmem_<TYPENAME>_finc 1.4 Current shmem_atomic_fetch_inc

C11: shmem_inc
C/C++: shmem_<TYPENAME>_inc 1.4 Current shmem_atomic_inc

C11: shmem_fadd
C/C++: shmem_<TYPENAME>_fadd 1.4 Current shmem_atomic_fetch_add

C11: shmem_add
C/C++: shmem_<TYPENAME>_add 1.4 Current shmem_atomic_add

Entire Fortran API 1.4 Current (none)
C/C++: shmem_barrier 1.5 Current shmem_quiet; shmem_sync
C/C++: Active set based shmem_sync 1.5 Current Team based shmem_sync
C/C++: shmem_broadcast[32,64] 1.5 Current shmem_broadcast
C/C++: shmem_collect[32,64] 1.5 Current shmem_collect
C/C++: shmem_fcollect[32,64] 1.5 Current shmem_fcollect
C/C++: shmem_TYPENAME_OP_to_all 1.5 Current shmem_TYPENAME_OP_reduce
C/C++: shmem_alltoall[32,64] 1.5 Current shmem_alltoall
C/C++: shmem_alltoalls[32,64] 1.5 Current shmem_alltoalls

2 Deprecation Rationale

2.1 Header Directory: mpp

In addition to the default system header paths, OpenSHMEM implementations must provide all OpenSHMEM-specified
header files from the mpp header directory such that these headers can be referenced in C/C++ as
#include <mpp/shmem.h>
#include <mpp/shmemx.h>

and in Fortran as
include ’mpp/shmem.fh’
include ’mpp/shmemx.fh’

for backwards compatibility with SGI SHMEM.

2.2 C/C++: start_pes

The C/C++ routine start_pes includes an unnecessary initialization argument that is remnant of historical SHMEM
implementations and no longer reflects the requirements of modern OpenSHMEM implementations. Furthermore, the
naming of start_pes does not include the standardized shmem_ naming prefix. This routine has been deprecated and
OpenSHMEM users are encouraged to use shmem_init instead.

2.3 Implicit Finalization

Implicit finalization was deprecated and replaced with explicit finalization using the shmem_finalize routine. Explicit
finalization improves portability and also improves interoperability with profiling and debugging tools.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API 11

2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign

The C/C++ routines _my_pe, _num_pes, shmalloc, shfree, shrealloc, and shmemalign were deprecated in order to
normalize the OpenSHMEM Application Programming Interface (API) to use shmem_ as the standard prefix for all
routines.

2.5 Fortran: START_PES, MY_PE, NUM_PES

The Fortran routines START_PES, MY_PE, and NUM_PES were deprecated in order to minimize the API differences
from the deprecation of C/C++ routines start_pes, _my_pe, and _num_pes.

2.6 Fortran: SHMEM_PUT

The Fortran routine SHMEM_PUT is defined only for the Fortran API and is semantically identical to Fortran routines
SHMEM_PUT8 and SHMEM_PUT64. Since SHMEM_PUT8 and SHMEM_PUT64 have defined equivalents in the
C/C++ interface, SHMEM_PUT is ambiguous and has been deprecated.

2.7 SHMEM_CACHE

The SHMEM_CACHE API

C/C++: Fortran:
shmem_clear_cache_inv SHMEM_CLEAR_CACHE_INV
shmem_set_cache_inv SHMEM_SET_CACHE_INV
shmem_set_cache_line_inv SHMEM_SET_CACHE_LINE_INV
shmem_udcflush SHMEM_UDCFLUSH
shmem_udcflush_line SHMEM_UDCFLUSH_LINE
shmem_clear_cache_line_inv

was originally implemented for systems with cache-management instructions. This API has largely gone unused on
cache-coherent system architectures. SHMEM_CACHE has been deprecated.

2.8 _SHMEM_* Library Constants

The library constants

_SHMEM_SYNC_VALUE _SHMEM_MAX_NAME_LEN
_SHMEM_BARRIER_SYNC_SIZE _SHMEM_VENDOR_STRING
_SHMEM_BCAST_SYNC_SIZE _SHMEM_CMP_EQ
_SHMEM_COLLECT_SYNC_SIZE _SHMEM_CMP_NE
_SHMEM_REDUCE_SYNC_SIZE _SHMEM_CMP_LT
_SHMEM_REDUCE_MIN_WRKDATA_SIZE _SHMEM_CMP_LE
_SHMEM_MAJOR_VERSION _SHMEM_CMP_GT
_SHMEM_MINOR_VERSION _SHMEM_CMP_GE

do not adhere to the C standard’s reserved identifiers and the C++ standard’s reserved names. These constants were
deprecated and replaced with corresponding constants of prefix SHMEM_ that adhere to C/C++ and Fortran naming
conventions.

2.9 SMA_* Environment Variables

The environment variables SMA_VERSION, SMA_INFO, SMA_SYMMETRIC_SIZE, and SMA_DEBUG were depre-
cated in order to normalize the OpenSHMEM API to use SHMEM_ as the standard prefix for all environment variables.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

12 ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API

2.10 C/C++: shmem_wait

The C/C++ interface for shmem_wait and shmem_<TYPENAME>_wait was identified as unintuitive with respect
to the comparison operation it performed. As shmem_wait can be trivially replaced by shmem_wait_until where cmp
is SHMEM_CMP_NE, the shmem_wait interface was deprecated in favor of shmem_wait_until, which makes the
comparison operation explicit and better communicates the developer’s intent.

2.11 C/C++: shmem_wait_until

The long-typed C/C++ routine shmem_wait_until was deprecated in favor of the C11 type-generic interface of the
same name or the explicitly typed C/C++ routine shmem_long_wait_until.

2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc,
shmem_inc, shmem_fadd, shmem_add

The C11 and C/C++ interfaces for

C11: C/C++:
shmem_fetch shmem_<TYPENAME>_fetch
shmem_set shmem_<TYPENAME>_set
shmem_cswap shmem_<TYPENAME>_cswap
shmem_swap shmem_<TYPENAME>_swap
shmem_finc shmem_<TYPENAME>_finc
shmem_inc shmem_<TYPENAME>_inc
shmem_fadd shmem_<TYPENAME>_fadd
shmem_add shmem_<TYPENAME>_add

were deprecated and replaced with similarly named interfaces within the shmem_atomic_* namespace in order to more
clearly identify these calls as performing atomic operations. In addition, the abbreviated names “cswap”, “finc”, and
“fadd” were expanded for clarity to “compare_swap”, “fetch_inc”, and “fetch_add”.

2.13 Fortran API

The entire OpenSHMEM Fortran API was deprecated in OpenSHMEM 1.4 and removed in OpenSHMEM 1.5 because
of a general lack of use and a lack of conformance with legacy Fortran standards. In lieu of an extensive update of the
Fortran API, Fortran users are encouraged to leverage the OpenSHMEM Specification’s C API through the Fortran–C
interoperability initially standardized by Fortran 20031.

2.14 Active-set-based collective routines

With the addition of OpenSHMEM teams, the previous methods for performing collective operations has been super-
seded by a more readable, flexible method for organizing and communicating between groups of PEs. All collective
routines which previously indicated subgroups of PEs with a list of parameters to describe the subgroup composition
should be phased out in favor of using collective operations with a team parameter.

When moving from active set routines to teams based routines, the fixed-size versions of the routines, e.g. shmem_broadcast32,
were not carried forward. Instead, all teams based collective routines use standard C types with the option to use generic
C11 functions for more portable and maintainable implementations.

2.15 C/C++: shmem_barrier

Each OpenSHMEM team might be associated with some number of communication contexts. The shmem_barrier
functions imply that the default context is quiesced after synchronizing some set of PEs. Since teams may have some

1Formally, Fortran 2003 is known as ISO/IEC 1539-1:2004(E).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX F. OPENSHMEM SPECIFICATION AND DEPRECATED API 13

number of contexts associated with the team, it becomes less clear which context would be the “default” context for
that particular team. Rather than continue to support shmem_barrier for active-sets or teams, programs should use a
call to shmem_quiet followed by a call to shmem_sync in order to explicitly indicate which context to quiesce.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex G

Changes to this Document

1 Version 1.5

Major changes in OpenSHMEM 1.5 include . . .
The following list describes the specific changes in OpenSHMEM 1.5:

• Added support for nonblocking Atomic Memory Operation (AMO) functions.
See Section ??.

• Added support for blocking put-with-signal functions.
See Section ??.

• Added support for nonblocking put-with-signal functions.
See Section ??.

• Clarified that point-to-point synchronization routines preserve the atomicity of OpenSHMEM AMOs.
See Section ??.

• Clarified that symmetric variables used as ivar arguments to point-to-point synchronization routines must be
updated using OpenSHMEM AMOs.
See Section ??.

• Removed the entire OpenSHMEM Fortran API.

• Added support for multipliers in SHMEM_SYMMETRIC_SIZE environment variables.
See Section ??.

• Added support for a multiple-element point-to-point synchronization API with the functions: shmem_wait_until_all,
shmem_wait_until_any, shmem_wait_until_some, shmem_test_all, shmem_test_any, and shmem_test_some.
See Sections ??, ??, ??, ??, ??, and ??.

• Added support for vectorized comparison values in the multiple-element point-to-point synchronization API with
the functions: shmem_wait_until_all_vector, shmem_wait_until_any_vector, shmem_wait_until_some_vector,
shmem_test_all_vector, shmem_test_any_vector, and shmem_test_some_vector.
See Sections ??, ??, ??, ??, ??, and ??.

• Added OpenSHMEM profiling interface.
See Section ??.

• Specified the validity of communication contexts, added the constant SHMEM_CTX_INVALID, and clarified the
behavior of shmem_ctx_* routines on invalid contexts.
See Section ??.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 15

• Clarified PE active set requirements.
See Section ??.

• Clarified that when the size argument is zero, symmetric heap allocation routines perform no action and return a
null pointer; that symmetric heap management routines that perform no action do not perform a barrier; and that
the alignment argument to shmem_align must be power of two multiple of sizeof(void*).
See Section ??.

• Clarified that the OpenSHMEM lock API provides a non-reentrant mutex and that shmem_clear_lock performs
a quiet operation on the default context.
See Section ??

• Clarified the atomicity guarantees of the OpenSHMEM memory model.
See Section ??.

2 Version 1.4

Major changes in OpenSHMEM 1.4 include multithreading support, contexts for communication management, shmem_sync,
shmem_calloc, expanded type support, a new namespace for atomic operations, atomic bitwise operations, shmem_test
for nonblocking point-to-point synchronization, and C11 type-generic interfaces for point-to-point synchronization.

The following list describes the specific changes in OpenSHMEM 1.4:

• New communication management API, including shmem_ctx_create; shmem_ctx_destroy; and additional RMA,
AMO, and memory ordering routines that accept shmem_ctx_t arguments.
See Section ??.

• New API shmem_sync_all and shmem_sync to provide PE synchronization without completing pending com-
munication operations.
See Sections ?? and ??.

• Clarified that the OpenSHMEM extensions header files are required, even when empty.
See Section ??.

• Clarified that the SHMEM_GET64 and SHMEM_GET64_NBI routines are included in the Fortran language
bindings.
See Sections ?? and ??.

• Clarified that shmem_init must be matched with a call to shmem_finalize.
See Sections ?? and ??.

• Added the SHMEM_SYNC_SIZE constant.
See Section ??.

• Added type-generic interfaces for shmem_wait_until.
See Section ??.

• Removed the volatile qualifiers from the ivar arguments to shmem_wait routines and the lock arguments in the
lock API. Rationale: Volatile qualifiers were added to several API routines in OpenSHMEM 1.3; however, they
were later found to be unnecessary.
See Sections ?? and ??.

• Deprecated the SMA_* environment variables and added equivalent SHMEM_* environment variables.
See Section ??.

• Added the C11 _Noreturn function specifier to shmem_global_exit.
See Section ??.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

16 ANNEX G. CHANGES TO THIS DOCUMENT

• Clarified ordering semantics of memory ordering, point-to-point synchronization, and collective synchronization
routines.

• Clarified deprecation overview and added deprecation rationale in Annex F.
See Section F.

• Deprecated header directory mpp.
See Section F.

• Deprecated the shmem_wait functions and the long-typed C/C++ shmem_wait_until function.
See Section ??.

• Added the shmem_test functions.
See Section ??.

• Added the shmem_calloc function.
See Section ??.

• Introduced the thread safe semantics that define the interaction between OpenSHMEM routines and user threads.
See Section ??.

• Added the new routine shmem_init_thread to initialize the OpenSHMEM library with one of the defined thread
levels.
See Section ??.

• Added the new routine shmem_query_thread to query the thread level provided by the OpenSHMEM imple-
mentation.
See Section ??.

• Clarified the semantics of shmem_quiet for a multithreaded OpenSHMEM PE.
See Section ??

• Revised the description of shmem_barrier_all for a multithreaded OpenSHMEM PE.
See Section ??

• Revised the description of shmem_wait for a multithreaded OpenSHMEM PE.
See Section ??

• Clarified description for SHMEM_VENDOR_STRING.
See Section ??.

• Clarified description for SHMEM_MAX_NAME_LEN.
See Section ??.

• Clarified API description for shmem_info_get_name.
See Section ??.

• Expanded the type support for RMA, AMO, and point-to-point synchronization operations.
See Tables ??, ??, ??, and ??

• Renamed AMO operations to use shmem_atomic_* prefix and deprecated old AMO routines.
See Section ??.

• Added fetching and non-fetching bitwise AND, OR, and XOR atomic operations.
See Section ??.

• Deprecated the entire Fortran API.

• Replaced the complex macro in complex-typed reductions with the C99 (and later) type specifier _Complex to
remove an implicit dependence on complex.h.
See Section ??.

• Clarified that complex-typed reductions in C are optionally supported.
See Section ??.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 17

3 Version 1.3

Major changes in OpenSHMEM 1.3 include the addition of nonblocking RMA operations, atomic Put and Get opera-
tions, all-to-all collectives, and C11 type-generic interfaces for RMA and AMO operations.

The following list describes the specific changes in OpenSHMEM 1.3:

• Clarified implementation of PEs as threads.

• Added const to every read-only pointer argument.

• Clarified definition of Fence.
See Section ??.

• Clarified implementation of symmetric memory allocation.
See Section ??.

• Restricted atomic operation guarantees to other atomic operations with the same datatype.
See Section ??.

• Deprecation of all constants that start with _SHMEM_*.
See Section ??.

• Added a type-generic interface to OpenSHMEM RMA and AMO operations based on C11 Generics.
See Sections ??, ?? and ??.

• New nonblocking variants of remote memory access, SHMEM_PUT_NBI and SHMEM_GET_NBI.
See Sections ?? and ??.

• New atomic elemental read and write operations, SHMEM_FETCH and SHMEM_SET.
See Sections ?? and ??

• New alltoall data exchange operations, SHMEM_ALLTOALL and SHMEM_ALLTOALLS.
See Sections ?? and ??.

• Added volatile to remotely accessible pointer argument in SHMEM_WAIT and SHMEM_LOCK.
See Sections ?? and ??.

• Deprecation of SHMEM_CACHE.
See Section ??.

4 Version 1.2

Major changes in OpenSHMEM 1.2 include a new initialization routine (shmem_init), improvements to the execu-
tion model with an explicit library-finalization routine (shmem_finalize), an early-exit routine (shmem_global_exit),
namespace standardization, and clarifications to several API descriptions.

The following list describes the specific changes in OpenSHMEM 1.2:

• Added specification of pSync initialization for all routines that use it.

• Replaced all placeholder variable names target with dest to avoid confusion with Fortran’s target keyword.

• New Execution Model for exiting/finishing OpenSHMEM programs.
See Section ??.

• New library constants to support API that query version and name information.
See Section ??.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

18 ANNEX G. CHANGES TO THIS DOCUMENT

• New API shmem_init to provide mechanism to start an OpenSHMEM program and replace deprecated start_pes.
See Section ??.

• Deprecation of _my_pe and _num_pes routines.
See Sections ?? and ??.

• New API shmem_finalize to provide collective mechanism to cleanly exit an OpenSHMEM program and release
resources.
See Section ??.

• New API shmem_global_exit to provide mechanism to exit an OpenSHMEM program.
See Section ??.

• Clarification related to the address of the referenced object in shmem_ptr.
See Section ??.

• New API to query the version and name information.
See Section ?? and ??.

• OpenSHMEM library API normalization. All C symmetric memory management API begins with shmem_.
See Section ??.

• Notes and clarifications added to shmem_malloc.
See Section ??.

• Deprecation of Fortran API routine SHMEM_PUT.
See Section ??.

• Clarification related to shmem_wait.
See Section ??.

• Undefined behavior for null pointers without zero counts added.
See Annex C

• Addition of new Annex for clearly specifying deprecated API and its support across versions of the Open-
SHMEM Specification.
See Annex F.

5 Version 1.1

Major changes from OpenSHMEM 1.0 to OpenSHMEM 1.1 include the introduction of the shmemx.h header file for
non-standard API extensions, clarifications to completion semantics and API descriptions in agreement with the SGI
SHMEM specification, and general readabilty and usability improvements to the document structure.

The following list describes the specific changes in OpenSHMEM 1.1:

• Clarifications of the completion semantics of memory synchronization interfaces.
See Section ??.

• Clarification of the completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Section ?? and ??.

• Clarification of the completion and ordering semantics of shmem_quiet and shmem_fence.
See Section ?? and ??.

• Clarifications of the completion semantics of RMA and AMO routines.
See Sections ?? and ??

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 19

• Clarifications of the memory model and the memory alignment requirements for symmetric data objects.
See Section ??.

• Clarification of the execution model and the definition of a PE.
See Section ??

• Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Section ?? and ??.

• Added an annex on interoperability with MPI.
See Annex D.

• Added examples to the different interfaces.

• Clarification of the naming conventions for constant in C and Fortran.
See Section ?? and ??.

• Added API calls: shmem_char_p, shmem_char_g.
See Sections ?? and ??.

• Removed API calls: shmem_char_put, shmem_char_get.
See Sections ?? and ??.

• The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description.
See Sections ??, ??, and ??.

• Revised shmem_barrier example.
See Section ??.

• Clarification of the initial value of pSync work arrays for shmem_barrier.
See Section ??.

• Clarification of the expected behavior when multiple start_pes calls are encountered.
See Section ??.

• Corrected the definition of atomic increment operation.
See Section ??.

• Clarification of the size of the symmetric heap and when it is set.
See Section ??.

• Clarification of the integer and real sizes for Fortran API.
See Sections ??, ??, ??, ??, ??, and ??.

• Clarification of the expected behavior on program exit.
See Section ??, Execution Model.

• More detailed description for the progress of OpenSHMEM operations provided.
See Section ??.

• Clarification of naming convention for non-standard interfaces and their inclusion in shmemx.h.
See Section ??.

• Various fixes to OpenSHMEM code examples across the Specification to include appropriate header files.

• Removing requirement that implementations should detect size mismatch and return error information for shmal-
loc and ensuring consistent language.
See Sections ?? and Annex C.

• Fortran programming fixes for examples.
See Sections ?? and ??.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

20 ANNEX G. CHANGES TO THIS DOCUMENT

• Clarifications of the reuse pSync and pWork across collectives.
See Sections ??, ??, ?? and ??.

• Name changes for UV and ICE for SGI systems.
See Annex E.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Index

_SHMEM_BARRIER_SYNC_SIZE, 9
_SHMEM_BCAST_SYNC_SIZE, 9
_SHMEM_CMP_EQ, 9
_SHMEM_CMP_GE, 10
_SHMEM_CMP_GT, 10
_SHMEM_CMP_LE, 9
_SHMEM_CMP_LT, 9
_SHMEM_CMP_NE, 9
_SHMEM_COLLECT_SYNC_SIZE, 9
_SHMEM_MAJOR_VERSION, 9
_SHMEM_MAX_NAME_LEN, 9
_SHMEM_MINOR_VERSION, 9
_SHMEM_REDUCE_MIN_WRKDATA_SIZE, 9
_SHMEM_REDUCE_SYNC_SIZE, 9
_SHMEM_SYNC_VALUE, 9
_SHMEM_VENDOR_STRING, 9
_my_pe, 9
_num_pes, 9

Deprecated API, 9

MY_PE, 9

NUM_PES, 9

shfree, 9
shmalloc, 9
shmem_<TYPENAME>_add, 10
shmem_<TYPENAME>_cswap, 10
shmem_<TYPENAME>_fadd, 10
shmem_<TYPENAME>_fetch, 10
shmem_<TYPENAME>_finc, 10
shmem_<TYPENAME>_inc, 10
shmem_<TYPENAME>_set, 10
shmem_<TYPENAME>_swap, 10
shmem_<TYPENAME>_wait, 10
shmem_TYPENAME_OP_to_all, 10
shmem_add, 10
shmem_alltoall[32,64], 10
shmem_alltoalls[32,64], 10
shmem_barrier, 10
shmem_broadcast[32,64], 10
SHMEM_CLEAR_CACHE_INV, 9
shmem_clear_cache_inv, 9
shmem_clear_cache_line_inv, 9
shmem_collect[32,64], 10

shmem_cswap, 10
shmem_fadd, 10
shmem_fcollect[32,64], 10
shmem_fetch, 10
shmem_finc, 10
shmem_inc, 10
SHMEM_PUT, 9
shmem_set, 10
SHMEM_SET_CACHE_INV, 9
shmem_set_cache_inv, 9
SHMEM_SET_CACHE_LINE_INV, 9
shmem_set_cache_line_inv, 9
shmem_swap, 10
shmem_sync, 10
SHMEM_TEAM_WORLD, 6
SHMEM_UDCFLUSH, 9
shmem_udcflush, 9
SHMEM_UDCFLUSH_LINE, 9
shmem_udcflush_line, 9
shmem_wait, 10
shmem_wait_until, 10
shmemalign, 9
shrealloc, 9
SMA_DEBUG, 10
SMA_INFO, 10
SMA_SYMMETRIC_SIZE, 10
SMA_VERSION, 10
START_PES, 9
start_pes, 9

Tables
Deprecated API, 9

21

	Writing OpenSHMEM Programs
	Compiling and Running Programs
	Compilation
	Running Programs

	Undefined Behavior in OpenSHMEM
	Interoperability with Other Programming Models
	MPI Interoperability
	Initialization
	Dynamic Process Creation
	Thread Safety
	Mapping Process Identification Numbers
	RMA Programming Models
	Communication Progress

	History of OpenSHMEM
	OpenSHMEM Specification and Deprecated API
	Overview
	Deprecation Rationale
	Header Directory: mpp
	C/C++: start_pes
	Implicit Finalization
	C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign
	Fortran: START_PES, MY_PE, NUM_PES
	Fortran: SHMEM_PUT
	SHMEM_CACHE
	SHMEM* Library Constants
	SMA_* Environment Variables
	C/C++: shmem_wait
	C/C++: shmem_wait_until
	C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc, shmem_fadd, shmem_add
	Fortran API
	Active-set-based collective routines
	C/C++: shmem_barrier

	Changes to this Document
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1

	Index

