Fetching contributors…
Cannot retrieve contributors at this time
1229 lines (1046 sloc) 50.5 KB
# Copyright 2013 IBM Corp.
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""Common internal object model"""
import abc
import collections
import copy
import logging
import warnings
import oslo_messaging as messaging
from oslo_utils import encodeutils
from oslo_utils import excutils
from oslo_utils import versionutils as vutils
import six
from oslo_versionedobjects._i18n import _
from oslo_versionedobjects import exception
from oslo_versionedobjects import fields as obj_fields
LOG = logging.getLogger('object')
class _NotSpecifiedSentinel(object):
def _get_attrname(name):
"""Return the mangled name of the attribute's underlying storage."""
return '_obj_' + name
def _make_class_properties(cls):
# NOTE(danms/comstud): Inherit fields from super classes.
# mro() returns the current class first and returns 'object' last, so
# those can be skipped. Also be careful to not overwrite any fields
# that already exist. And make sure each cls has its own copy of
# fields and that it is not sharing the dict with a super class.
cls.fields = dict(cls.fields)
for supercls in cls.mro()[1:-1]:
if not hasattr(supercls, 'fields'):
for name, field in supercls.fields.items():
if name not in cls.fields:
cls.fields[name] = field
for name, field in cls.fields.items():
if not isinstance(field, obj_fields.Field):
raise exception.ObjectFieldInvalid(
field=name, objname=cls.obj_name())
def getter(self, name=name):
attrname = _get_attrname(name)
if not hasattr(self, attrname):
return getattr(self, attrname)
def setter(self, value, name=name, field=field):
attrname = _get_attrname(name)
field_value = field.coerce(self, name, value)
if field.read_only and hasattr(self, attrname):
# Note(yjiang5): _from_db_object() may iterate
# every field and write, no exception in such situation.
if getattr(self, attrname) != field_value:
raise exception.ReadOnlyFieldError(field=name)
return setattr(self, attrname, field_value)
except Exception:
with excutils.save_and_reraise_exception():
attr = "%s.%s" % (self.obj_name(), name)
LOG.exception('Error setting %(attr)s',
{'attr': attr})
def deleter(self, name=name):
attrname = _get_attrname(name)
if not hasattr(self, attrname):
raise AttributeError("No such attribute `%s'" % name)
delattr(self, attrname)
setattr(cls, name, property(getter, setter, deleter))
class VersionedObjectRegistry(object):
_registry = None
def __new__(cls, *args, **kwargs):
if not VersionedObjectRegistry._registry:
VersionedObjectRegistry._registry = object.__new__(
VersionedObjectRegistry, *args, **kwargs)
VersionedObjectRegistry._registry._obj_classes = \
self = object.__new__(cls, *args, **kwargs)
self._obj_classes = VersionedObjectRegistry._registry._obj_classes
return self
def registration_hook(self, cls, index):
def _register_class(self, cls):
def _vers_tuple(obj):
return vutils.convert_version_to_tuple(obj.VERSION)
obj_name = cls.obj_name()
for i, obj in enumerate(self._obj_classes[obj_name]):
self.registration_hook(cls, i)
if cls.VERSION == obj.VERSION:
self._obj_classes[obj_name][i] = cls
if _vers_tuple(cls) > _vers_tuple(obj):
# Insert before.
self._obj_classes[obj_name].insert(i, cls)
# Either this is the first time we've seen the object or it's
# an older version than anything we'e seen.
self.registration_hook(cls, 0)
def register(cls, obj_cls):
registry = cls()
return obj_cls
def register_if(cls, condition):
def wraps(obj_cls):
if condition:
obj_cls = cls.register(obj_cls)
return obj_cls
return wraps
def objectify(cls, obj_cls):
return cls.register_if(False)(obj_cls)
def obj_classes(cls):
registry = cls()
return registry._obj_classes
# These are decorators that mark an object's method as remotable.
# If the metaclass is configured to forward object methods to an
# indirection service, these will result in making an RPC call
# instead of directly calling the implementation in the object. Instead,
# the object implementation on the remote end will perform the
# requested action and the result will be returned here.
def remotable_classmethod(fn):
"""Decorator for remotable classmethods."""
def wrapper(cls, context, *args, **kwargs):
if cls.indirection_api:
version_manifest = obj_tree_get_versions(cls.obj_name())
result = cls.indirection_api.object_class_action_versions(
context, cls.obj_name(), fn.__name__, version_manifest,
args, kwargs)
except NotImplementedError:
# FIXME(danms): Maybe start to warn here about deprecation?
result = cls.indirection_api.object_class_action(
context, cls.obj_name(), fn.__name__, cls.VERSION,
args, kwargs)
result = fn(cls, context, *args, **kwargs)
if isinstance(result, VersionedObject):
result._context = context
return result
# NOTE(danms): Make this discoverable
wrapper.remotable = True
wrapper.original_fn = fn
return classmethod(wrapper)
# See comment above for remotable_classmethod()
# Note that this will use either the provided context, or the one
# stashed in the object. If neither are present, the object is
# "orphaned" and remotable methods cannot be called.
def remotable(fn):
"""Decorator for remotable object methods."""
def wrapper(self, *args, **kwargs):
ctxt = self._context
if ctxt is None:
raise exception.OrphanedObjectError(method=fn.__name__,
if self.indirection_api:
updates, result = self.indirection_api.object_action(
ctxt, self, fn.__name__, args, kwargs)
for key, value in updates.items():
if key in self.fields:
field = self.fields[key]
# NOTE(ndipanov): Since VersionedObjectSerializer will have
# deserialized any object fields into objects already,
# we do not try to deserialize them again here.
if isinstance(value, VersionedObject):
setattr(self, key, value)
setattr(self, key,
field.from_primitive(self, key, value))
self._changed_fields = set(updates.get('obj_what_changed', []))
return result
return fn(self, *args, **kwargs)
wrapper.remotable = True
wrapper.original_fn = fn
return wrapper
class VersionedObject(object):
"""Base class and object factory.
This forms the base of all objects that can be remoted or instantiated
via RPC. Simply defining a class that inherits from this base class
will make it remotely instantiatable. Objects should implement the
necessary "get" classmethod routines as well as "save" object methods
as appropriate.
indirection_api = None
# Object versioning rules
# Each service has its set of objects, each with a version attached. When
# a client attempts to call an object method, the server checks to see if
# the version of that object matches (in a compatible way) its object
# implementation. If so, cool, and if not, fail.
# This version is allowed to have three parts, X.Y.Z, where the .Z element
# is reserved for stable branch backports. The .Z is ignored for the
# purposes of triggering a backport, which means anything changed under
# a .Z must be additive and non-destructive such that a node that knows
# about X.Y can consider X.Y.Z equivalent.
VERSION = '1.0'
# Object namespace for serialization
# NB: Generally this should not be changed, but is needed for backwards
# compatibility
OBJ_SERIAL_NAMESPACE = 'versioned_object'
# Object project namespace for serialization
# This is used to disambiguate owners of objects sharing a common RPC
# medium
OBJ_PROJECT_NAMESPACE = 'versionedobjects'
# The fields present in this object as key:field pairs. For example:
# fields = { 'foo': obj_fields.IntegerField(),
# 'bar': obj_fields.StringField(),
# }
fields = {}
obj_extra_fields = []
# Table of sub-object versioning information
# This contains a list of version mappings, by the field name of
# the subobject. The mappings must be in order of oldest to
# newest, and are tuples of (my_version, subobject_version). A
# request to backport this object to $my_version will cause the
# subobject to be backported to $subobject_version.
# obj_relationships = {
# 'subobject1': [('1.2', '1.1'), ('1.4', '1.2')],
# 'subobject2': [('1.2', '1.0')],
# }
# In the above example:
# - If we are asked to backport our object to version 1.3,
# subobject1 will be backported to version 1.1, since it was
# bumped to version 1.2 when our version was 1.4.
# - If we are asked to backport our object to version 1.5,
# no changes will be made to subobject1 or subobject2, since
# they have not changed since version 1.4.
# - If we are asked to backlevel our object to version 1.1, we
# will remove both subobject1 and subobject2 from the primitive,
# since they were not added until version 1.2.
obj_relationships = {}
def __init__(self, context=None, **kwargs):
self._changed_fields = set()
self._context = context
for key in kwargs.keys():
setattr(self, key, kwargs[key])
def __repr__(self):
repr_str = '%s(%s)' % (
','.join(['%s=%s' % (name,
(self.obj_attr_is_set(name) and
field.stringify(getattr(self, name)) or
for name, field in sorted(self.fields.items())]))
if six.PY2:
repr_str = encodeutils.safe_encode(repr_str, incoming='utf-8')
return repr_str
def __contains__(self, name):
return self.obj_attr_is_set(name)
except AttributeError:
return False
def to_json_schema(cls):
obj_name = cls.obj_name()
schema = {
'$schema': '',
'title': obj_name,
return schema
def obj_name(cls):
"""Return the object's name
Return a canonical name for this object which will be used over
the wire for remote hydration.
return cls.__name__
def _obj_primitive_key(cls, field):
return '%s.%s' % (cls.OBJ_SERIAL_NAMESPACE, field)
def _obj_primitive_field(cls, primitive, field,
key = cls._obj_primitive_key(field)
if default == obj_fields.UnspecifiedDefault:
return primitive[key]
return primitive.get(key, default)
def obj_class_from_name(cls, objname, objver):
"""Returns a class from the registry based on a name and version."""
if objname not in VersionedObjectRegistry.obj_classes():
LOG.error('Unable to instantiate unregistered object type '
'%(objtype)s'), dict(objtype=objname)
raise exception.UnsupportedObjectError(objtype=objname)
# NOTE(comstud): If there's not an exact match, return the highest
# compatible version. The objects stored in the class are sorted
# such that highest version is first, so only set compatible_match
# once below.
compatible_match = None
for objclass in VersionedObjectRegistry.obj_classes()[objname]:
if objclass.VERSION == objver:
return objclass
if (not compatible_match and
vutils.is_compatible(objver, objclass.VERSION)):
compatible_match = objclass
if compatible_match:
return compatible_match
# As mentioned above, latest version is always first in the list.
latest_ver = VersionedObjectRegistry.obj_classes()[objname][0].VERSION
raise exception.IncompatibleObjectVersion(objname=objname,
def _obj_from_primitive(cls, context, objver, primitive):
self = cls()
self._context = context
self.VERSION = objver
objdata = cls._obj_primitive_field(primitive, 'data')
changes = cls._obj_primitive_field(primitive, 'changes', [])
for name, field in self.fields.items():
if name in objdata:
setattr(self, name, field.from_primitive(self, name,
self._changed_fields = set([x for x in changes if x in self.fields])
return self
def obj_from_primitive(cls, primitive, context=None):
"""Object field-by-field hydration."""
objns = cls._obj_primitive_field(primitive, 'namespace')
objname = cls._obj_primitive_field(primitive, 'name')
objver = cls._obj_primitive_field(primitive, 'version')
if objns != cls.OBJ_PROJECT_NAMESPACE:
# NOTE(danms): We don't do anything with this now, but it's
# there for "the future"
raise exception.UnsupportedObjectError(
objtype='%s.%s' % (objns, objname))
objclass = cls.obj_class_from_name(objname, objver)
return objclass._obj_from_primitive(context, objver, primitive)
def __deepcopy__(self, memo):
"""Efficiently make a deep copy of this object."""
# NOTE(danms): A naive deepcopy would copy more than we need,
# and since we have knowledge of the volatile bits of the
# object, we can be smarter here. Also, nested entities within
# some objects may be uncopyable, so we can avoid those sorts
# of issues by copying only our field data.
nobj = self.__class__()
# NOTE(sskripnick): we should save newly created object into mem
# to let deepcopy know which branches are already created.
# See launchpad bug #1602314 for more details
memo[id(self)] = nobj
nobj._context = self._context
for name in self.fields:
if self.obj_attr_is_set(name):
nval = copy.deepcopy(getattr(self, name), memo)
setattr(nobj, name, nval)
nobj._changed_fields = set(self._changed_fields)
return nobj
def obj_clone(self):
"""Create a copy."""
return copy.deepcopy(self)
def _obj_relationship_for(self, field, target_version):
# NOTE(danms): We need to be graceful about not having the temporary
# version manifest if called from obj_make_compatible().
if (not hasattr(self, '_obj_version_manifest') or
self._obj_version_manifest is None):
return self.obj_relationships[field]
except KeyError:
raise exception.ObjectActionError(
reason='No rule for %s' % field)
objname = self.fields[field].objname
if objname not in self._obj_version_manifest:
# NOTE(danms): Compute a relationship mapping that looks like
# what the caller expects.
return [(target_version, self._obj_version_manifest[objname])]
def _obj_make_obj_compatible(self, primitive, target_version, field):
"""Backlevel a sub-object based on our versioning rules.
This is responsible for backporting objects contained within
this object's primitive according to a set of rules we
maintain about version dependencies between objects. This
requires that the obj_relationships table in this object is
correct and up-to-date.
:param:primitive: The primitive version of this object
:param:target_version: The version string requested for this object
:param:field: The name of the field in this object containing the
sub-object to be backported
relationship_map = self._obj_relationship_for(field, target_version)
if not relationship_map:
# NOTE(danms): This means the field was not specified in the
# version manifest from the client, so it must not want this
# field, so skip.
lambda ver: _do_subobject_backport(
ver, self, field, primitive))
except exception.TargetBeforeSubobjectExistedException:
# Subobject did not exist, so delete it from the primitive
del primitive[field]
def obj_make_compatible(self, primitive, target_version):
"""Make an object representation compatible with a target version.
This is responsible for taking the primitive representation of
an object and making it suitable for the given target_version.
This may mean converting the format of object attributes, removing
attributes that have been added since the target version, etc. In
- If a new version of an object adds a field, this routine
should remove it for older versions.
- If a new version changed or restricted the format of a field, this
should convert it back to something a client knowing only of the
older version will tolerate.
- If an object that this object depends on is bumped, then this
object should also take a version bump. Then, this routine should
backlevel the dependent object (by calling its obj_make_compatible())
if the requested version of this object is older than the version
where the new dependent object was added.
:param primitive: The result of :meth:`obj_to_primitive`
:param target_version: The version string requested by the recipient
of the object
:raises: :exc:`oslo_versionedobjects.exception.UnsupportedObjectError`
if conversion is not possible for some reason
for key, field in self.fields.items():
if not isinstance(field, (obj_fields.ObjectField,
if not self.obj_attr_is_set(key):
self._obj_make_obj_compatible(primitive, target_version, key)
def obj_make_compatible_from_manifest(self, primitive, target_version,
# NOTE(danms): Stash the manifest on the object so we can use it in
# the deeper layers. We do this because obj_make_compatible() is
# defined library API at this point, yet we need to get this manifest
# to the other bits that get called so we can propagate it to child
# calls. It's not pretty, but a tactical solution. Ideally we will
# either evolve or deprecate obj_make_compatible() in a major version
# bump.
self._obj_version_manifest = version_manifest
return self.obj_make_compatible(primitive, target_version)
delattr(self, '_obj_version_manifest')
def obj_to_primitive(self, target_version=None, version_manifest=None):
"""Simple base-case dehydration.
This calls to_primitive() for each item in fields.
if target_version is None:
target_version = self.VERSION
if (vutils.convert_version_to_tuple(target_version) >
raise exception.InvalidTargetVersion(version=target_version)
primitive = dict()
for name, field in self.fields.items():
if self.obj_attr_is_set(name):
primitive[name] = field.to_primitive(self, name,
getattr(self, name))
# NOTE(danms): If we know we're being asked for a different version,
# then do the compat step. However, even if we think we're not,
# we may have sub-objects that need it, so if we have a manifest we
# have to traverse this object just in case. Previously, we
# required a parent version bump for any child, so the target
# check was enough.
if target_version != self.VERSION or version_manifest:
obj = {self._obj_primitive_key('name'): self.obj_name(),
self._obj_primitive_key('namespace'): (
self._obj_primitive_key('version'): target_version,
self._obj_primitive_key('data'): primitive}
if self.obj_what_changed():
# NOTE(cfriesen): if we're downgrading to a lower version, then
# it's possible that self.obj_what_changed() includes fields that
# no longer exist in the lower version. If so, filter them out.
what_changed = self.obj_what_changed()
changes = [field for field in what_changed if field in primitive]
if changes:
obj[self._obj_primitive_key('changes')] = changes
return obj
def obj_set_defaults(self, *attrs):
if not attrs:
attrs = [name for name, field in self.fields.items()
if field.default != obj_fields.UnspecifiedDefault]
for attr in attrs:
default = copy.deepcopy(self.fields[attr].default)
if default is obj_fields.UnspecifiedDefault:
raise exception.ObjectActionError(
reason='No default set for field %s' % attr)
if not self.obj_attr_is_set(attr):
setattr(self, attr, default)
def obj_load_attr(self, attrname):
"""Load an additional attribute from the real object.
This should load self.$attrname and cache any data that might
be useful for future load operations.
raise NotImplementedError(
_("Cannot load '%s' in the base class") % attrname)
def save(self, context):
"""Save the changed fields back to the store.
This is optional for subclasses, but is presented here in the base
class for consistency among those that do.
raise NotImplementedError(_('Cannot save anything in the base class'))
def obj_what_changed(self):
"""Returns a set of fields that have been modified."""
changes = set([field for field in self._changed_fields
if field in self.fields])
for field in self.fields:
if (self.obj_attr_is_set(field) and
isinstance(getattr(self, field), VersionedObject) and
getattr(self, field).obj_what_changed()):
return changes
def obj_get_changes(self):
"""Returns a dict of changed fields and their new values."""
changes = {}
for key in self.obj_what_changed():
changes[key] = getattr(self, key)
return changes
def obj_reset_changes(self, fields=None, recursive=False):
"""Reset the list of fields that have been changed.
:param fields: List of fields to reset, or "all" if None.
:param recursive: Call obj_reset_changes(recursive=True) on
any sub-objects within the list of fields
being reset.
This is NOT "revert to previous values".
Specifying fields on recursive resets will only be honored at the top
level. Everything below the top will reset all.
if recursive:
for field in self.obj_get_changes():
# Ignore fields not in requested set (if applicable)
if fields and field not in fields:
# Skip any fields that are unset
if not self.obj_attr_is_set(field):
value = getattr(self, field)
# Don't reset nulled fields
if value is None:
# Reset straight Object and ListOfObjects fields
if isinstance(self.fields[field], obj_fields.ObjectField):
elif isinstance(self.fields[field],
for thing in value:
if fields:
self._changed_fields -= set(fields)
def obj_attr_is_set(self, attrname):
"""Test object to see if attrname is present.
Returns True if the named attribute has a value set, or
False if not. Raises AttributeError if attrname is not
a valid attribute for this object.
if attrname not in self.obj_fields:
raise AttributeError(
_("%(objname)s object has no attribute '%(attrname)s'") %
{'objname': self.obj_name(), 'attrname': attrname})
return hasattr(self, _get_attrname(attrname))
def obj_fields(self):
return list(self.fields.keys()) + self.obj_extra_fields
def obj_context(self):
return self._context
class ComparableVersionedObject(object):
"""Mix-in to provide comparison methods
When objects are to be compared with each other (in tests for example),
this mixin can be used.
def __eq__(self, obj):
# FIXME(inc0): this can return incorrect value if we consider partially
# loaded objects from db and fields which are dropped out differ
if hasattr(obj, 'obj_to_primitive'):
return self.obj_to_primitive() == obj.obj_to_primitive()
return NotImplemented
def __hash__(self):
return super(ComparableVersionedObject, self).__hash__()
def __ne__(self, obj):
if hasattr(obj, 'obj_to_primitive'):
return self.obj_to_primitive() != obj.obj_to_primitive()
return NotImplemented
class TimestampedObject(object):
"""Mixin class for db backed objects with timestamp fields.
Sqlalchemy models that inherit from the oslo_db TimestampMixin will include
these fields and the corresponding objects will benefit from this mixin.
fields = {
'created_at': obj_fields.DateTimeField(nullable=True),
'updated_at': obj_fields.DateTimeField(nullable=True),
class VersionedObjectDictCompat(object):
"""Mix-in to provide dictionary key access compatibility
If an object needs to support attribute access using
dictionary items instead of object attributes, inherit
from this class. This should only be used as a temporary
measure until all callers are converted to use modern
attribute access.
def __iter__(self):
for name in self.obj_fields:
if (self.obj_attr_is_set(name) or
name in self.obj_extra_fields):
yield name
iterkeys = __iter__
def itervalues(self):
for name in self:
yield getattr(self, name)
def iteritems(self):
for name in self:
yield name, getattr(self, name)
if six.PY3:
# NOTE(haypo): Python 3 dictionaries don't have iterkeys(),
# itervalues() or iteritems() methods. These methods are provided to
# ease the transition from Python 2 to Python 3.
keys = iterkeys
values = itervalues
items = iteritems
def keys(self):
return list(self.iterkeys())
def values(self):
return list(self.itervalues())
def items(self):
return list(self.iteritems())
def __getitem__(self, name):
return getattr(self, name)
def __setitem__(self, name, value):
setattr(self, name, value)
def get(self, key, value=_NotSpecifiedSentinel):
if key not in self.obj_fields:
raise AttributeError("'%s' object has no attribute '%s'" % (
self.__class__, key))
if value != _NotSpecifiedSentinel and not self.obj_attr_is_set(key):
return value
return getattr(self, key)
def update(self, updates):
for key, value in updates.items():
setattr(self, key, value)
class ObjectListBase(collections.Sequence):
"""Mixin class for lists of objects.
This mixin class can be added as a base class for an object that
is implementing a list of objects. It adds a single field of 'objects',
which is the list store, and behaves like a list itself. It supports
serialization of the list of objects automatically.
fields = {
'objects': obj_fields.ListOfObjectsField('VersionedObject'),
# This is a dictionary of my_version:child_version mappings so that
# we can support backleveling our contents based on the version
# requested of the list object.
child_versions = {}
def __init__(self, *args, **kwargs):
super(ObjectListBase, self).__init__(*args, **kwargs)
if 'objects' not in kwargs:
self.objects = []
def __len__(self):
"""List length."""
return len(self.objects)
def __getitem__(self, index):
"""List index access."""
if isinstance(index, slice):
new_obj = self.__class__()
new_obj.objects = self.objects[index]
# NOTE(danms): We must be mixed in with a VersionedObject!
new_obj._context = self._context
return new_obj
return self.objects[index]
def sort(self, key=None, reverse=False):
self.objects.sort(key=key, reverse=reverse)
def obj_make_compatible(self, primitive, target_version):
# Give priority to using child_versions, if that isn't set, try
# obj_relationships
if self.child_versions:
relationships = self.child_versions.items()
relationships = self._obj_relationship_for('objects',
except exception.ObjectActionError:
# No relationship for this found in manifest or
# in obj_relationships
relationships = {}
# NOTE(rlrossit): If we have no version information, just
# backport to child version 1.0 (maintaining default
# behavior)
if relationships:
_get_subobject_version(target_version, relationships,
lambda ver: _do_subobject_backport(
ver, self, 'objects', primitive))
_do_subobject_backport('1.0', self, 'objects', primitive)
except exception.TargetBeforeSubobjectExistedException:
# Child did not exist, so delete it from the primitive
del primitive['objects']
def obj_what_changed(self):
changes = set(self._changed_fields)
for child in self.objects:
if child.obj_what_changed():
return changes
def __add__(self, other):
# Handling arbitrary fields may not make sense if those fields are not
# all concatenatable. Only concatenate if the base 'objects' field is
# the only one and the classes match.
if (self.__class__ == other.__class__ and
list(self.__class__.fields.keys()) == ['objects']):
return self.__class__(objects=self.objects + other.objects)
raise TypeError("List Objects should be of the same type and only "
"have an 'objects' field")
def __radd__(self, other):
if (self.__class__ == other.__class__ and
list(self.__class__.fields.keys()) == ['objects']):
# This should never be run in practice. If the above condition is
# met then __add__ would have been run.
raise NotImplementedError('__radd__ is not implemented for '
'objects of the same type')
raise TypeError("List Objects should be of the same type and only "
"have an 'objects' field")
class VersionedObjectSerializer(messaging.NoOpSerializer):
"""A VersionedObject-aware Serializer.
This implements the Oslo Serializer interface and provides the
ability to serialize and deserialize VersionedObject entities. Any service
that needs to accept or return VersionedObjects as arguments or result
values should pass this to its RPCClient and RPCServer objects.
# Base class to use for object hydration
OBJ_BASE_CLASS = VersionedObject
def _do_backport(self, context, objprim, objclass):
obj_versions = obj_tree_get_versions(objclass.obj_name())
indirection_api = self.OBJ_BASE_CLASS.indirection_api
return indirection_api.object_backport_versions(
context, objprim, obj_versions)
except NotImplementedError:
# FIXME(danms): Maybe start to warn here about deprecation?
return indirection_api.object_backport(context, objprim,
def _process_object(self, context, objprim):
return self.OBJ_BASE_CLASS.obj_from_primitive(
objprim, context=context)
except exception.IncompatibleObjectVersion:
with excutils.save_and_reraise_exception(reraise=False) as ctxt:
verkey = \
objver = objprim[verkey]
if objver.count('.') == 2:
# NOTE(danms): For our purposes, the .z part of the version
# should be safe to accept without requiring a backport
objprim[verkey] = \
return self._process_object(context, objprim)
objname = objprim[namekey]
supported = VersionedObjectRegistry.obj_classes().get(objname,
if self.OBJ_BASE_CLASS.indirection_api and supported:
return self._do_backport(context, objprim, supported[0])
ctxt.reraise = True
def _process_iterable(self, context, action_fn, values):
"""Process an iterable, taking an action on each value.
:param:context: Request context
:param:action_fn: Action to take on each item in values
:param:values: Iterable container of things to take action on
:returns: A new container of the same type (except set) with
items from values having had action applied.
iterable = values.__class__
if issubclass(iterable, dict):
return iterable([(k, action_fn(context, v))
for k, v in values.items()])
# NOTE(danms, gibi) A set can't have an unhashable value inside,
# such as a dict. Convert the set to list, which is fine, since we
# can't send them over RPC anyway. We convert it to list as this
# way there will be no semantic change between the fake rpc driver
# used in functional test and a normal rpc driver.
if iterable == set:
iterable = list
return iterable([action_fn(context, value) for value in values])
def serialize_entity(self, context, entity):
if isinstance(entity, (tuple, list, set, dict)):
entity = self._process_iterable(context, self.serialize_entity,
elif (hasattr(entity, 'obj_to_primitive') and
entity = entity.obj_to_primitive()
return entity
def deserialize_entity(self, context, entity):
if isinstance(entity, dict) and namekey in entity:
entity = self._process_object(context, entity)
elif isinstance(entity, (tuple, list, set, dict)):
entity = self._process_iterable(context, self.deserialize_entity,
return entity
class VersionedObjectIndirectionAPI(object):
def object_action(self, context, objinst, objmethod, args, kwargs):
"""Perform an action on a VersionedObject instance.
When indirection_api is set on a VersionedObject (to a class
implementing this interface), method calls on remotable methods
will cause this to be executed to actually make the desired
call. This often involves performing RPC.
:param context: The context within which to perform the action
:param objinst: The object instance on which to perform the action
:param objmethod: The name of the action method to call
:param args: The positional arguments to the action method
:param kwargs: The keyword arguments to the action method
:returns: The result of the action method
def object_class_action(self, context, objname, objmethod, objver,
args, kwargs):
""".. deprecated:: 0.10.0
Use :func:`object_class_action_versions` instead.
Perform an action on a VersionedObject class.
When indirection_api is set on a VersionedObject (to a class
implementing this interface), classmethod calls on
remotable_classmethod methods will cause this to be executed to
actually make the desired call. This usually involves performing
:param context: The context within which to perform the action
:param objname: The registry name of the object
:param objmethod: The name of the action method to call
:param objver: The (remote) version of the object on which the
action is being taken
:param args: The positional arguments to the action method
:param kwargs: The keyword arguments to the action method
:returns: The result of the action method, which may (or may not)
be an instance of the implementing VersionedObject class.
def object_class_action_versions(self, context, objname, objmethod,
object_versions, args, kwargs):
"""Perform an action on a VersionedObject class.
When indirection_api is set on a VersionedObject (to a class
implementing this interface), classmethod calls on
remotable_classmethod methods will cause this to be executed to
actually make the desired call. This usually involves performing
This differs from object_class_action() in that it is provided
with object_versions, a manifest of client-side object versions
for easier nested backports. The manifest is the result of
calling obj_tree_get_versions().
NOTE: This was not in the initial spec for this interface, so the
base class raises NotImplementedError if you don't implement it.
For backports, this method will be tried first, and if unimplemented,
will fall back to object_class_action(). New implementations should
provide this method instead of object_class_action()
:param context: The context within which to perform the action
:param objname: The registry name of the object
:param objmethod: The name of the action method to call
:param object_versions: A dict of {objname: version} mappings
:param args: The positional arguments to the action method
:param kwargs: The keyword arguments to the action method
:returns: The result of the action method, which may (or may not)
be an instance of the implementing VersionedObject class.
warnings.warn('object_class_action() is deprecated in favor of '
'object_class_action_versions() and will be removed '
'in a later release', DeprecationWarning)
raise NotImplementedError('Multi-version class action not supported')
def object_backport(self, context, objinst, target_version):
""".. deprecated:: 0.10.0
Use :func:`object_backport_versions` instead.
Perform a backport of an object instance to a specified version.
When indirection_api is set on a VersionedObject (to a class
implementing this interface), the default behavior of the base
VersionedObjectSerializer, upon receiving an object with a version
newer than what is in the lcoal registry, is to call this method to
request a backport of the object. In an environment where there is
an RPC-able service on the bus which can gracefully downgrade newer
objects for older services, this method services as a translation
mechanism for older code when receiving objects from newer code.
NOTE: This older/original method is soon to be deprecated. When a
backport is required, the newer object_backport_versions() will be
tried, and if it raises NotImplementedError, then we will fall back
to this (less optimal) method.
:param context: The context within which to perform the backport
:param objinst: An instance of a VersionedObject to be backported
:param target_version: The maximum version of the objinst's class
that is understood by the requesting host.
:returns: The downgraded instance of objinst
def object_backport_versions(self, context, objinst, object_versions):
"""Perform a backport of an object instance.
This method is basically just like object_backport() but instead of
providing a specific target version for the toplevel object and
relying on the service-side mapping to handle sub-objects, this sends
a mapping of all the dependent objects and their client-supported
versions. The server will backport objects within the tree starting
at objinst to the versions specified in object_versions, removing
objects that have no entry. Use obj_tree_get_versions() to generate
this mapping.
NOTE: This was not in the initial spec for this interface, so the
base class raises NotImplementedError if you don't implement it.
For backports, this method will be tried first, and if unimplemented,
will fall back to object_backport().
:param context: The context within which to perform the backport
:param objinst: An instance of a VersionedObject to be backported
:param object_versions: A dict of {objname: version} mappings
warnings.warn('object_backport() is deprecated in favor of '
'object_backport_versions() and will be removed '
'in a later release', DeprecationWarning)
raise NotImplementedError('Multi-version backport not supported')
def obj_make_list(context, list_obj, item_cls, db_list, **extra_args):
"""Construct an object list from a list of primitives.
This calls item_cls._from_db_object() on each item of db_list, and
adds the resulting object to list_obj.
:param:context: Request context
:param:list_obj: An ObjectListBase object
:param:item_cls: The VersionedObject class of the objects within the list
:param:db_list: The list of primitives to convert to objects
:param:extra_args: Extra arguments to pass to _from_db_object()
:returns: list_obj
list_obj.objects = []
for db_item in db_list:
item = item_cls._from_db_object(context, item_cls(), db_item,
list_obj._context = context
return list_obj
def obj_tree_get_versions(objname, tree=None):
"""Construct a mapping of dependent object versions.
This method builds a list of dependent object versions given a top-
level object with other objects as fields. It walks the tree recursively
to determine all the objects (by symbolic name) that could be contained
within the top-level object, and the maximum versions of each. The result
is a dict like::
{'MyObject': '1.23', ... }
:param objname: The top-level object at which to start
:param tree: Used internally, pass None here.
:returns: A dictionary of object names and versions
if tree is None:
tree = {}
if objname in tree:
return tree
objclass = VersionedObjectRegistry.obj_classes()[objname][0]
tree[objname] = objclass.VERSION
for field_name in objclass.fields:
field = objclass.fields[field_name]
if isinstance(field, obj_fields.ObjectField):
child_cls = field._type._obj_name
elif isinstance(field, obj_fields.ListOfObjectsField):
child_cls = field._type._element_type._type._obj_name
obj_tree_get_versions(child_cls, tree=tree)
return tree
def _get_subobject_version(tgt_version, relationships, backport_func):
"""Get the version to which we need to convert a subobject.
This uses the relationships between a parent and a subobject,
along with the target parent version, to decide the version we need
to convert a subobject to. If the subobject did not exist in the parent at
the target version, TargetBeforeChildExistedException is raised. If there
is a need to backport, backport_func is called and the subobject version
to backport to is passed in.
:param tgt_version: The version we are converting the parent to
:param relationships: A list of (parent, subobject) version tuples
:param backport_func: A backport function that takes in the subobject
:returns: The version we need to convert the subobject to
tgt = vutils.convert_version_to_tuple(tgt_version)
for index, versions in enumerate(relationships):
parent, child = versions
parent = vutils.convert_version_to_tuple(parent)
if tgt < parent:
if index == 0:
# We're backporting to a version of the parent that did
# not contain this subobject
raise exception.TargetBeforeSubobjectExistedException(
# We're in a gap between index-1 and index, so set the desired
# version to the previous index's version
child = relationships[index - 1][1]
elif tgt == parent:
# We found the version we want, so backport to it
def _do_subobject_backport(to_version, parent, field, primitive):
obj = getattr(parent, field)
manifest = (hasattr(parent, '_obj_version_manifest') and
parent._obj_version_manifest or None)
if isinstance(obj, VersionedObject):
obj._obj_primitive_field(primitive[field], 'data'),
to_version, version_manifest=manifest)
ver_key = obj._obj_primitive_key('version')
primitive[field][ver_key] = to_version
elif isinstance(obj, list):
for i, element in enumerate(obj):
element._obj_primitive_field(primitive[field][i], 'data'),
to_version, version_manifest=manifest)
ver_key = element._obj_primitive_key('version')
primitive[field][i][ver_key] = to_version