Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
469 lines (393 sloc) 18.1 KB
# -*- encoding: utf-8 -*-
# Copyright (c) 2015 b<>com
#
# Authors: Jean-Emile DARTOIS <jean-emile.dartois@b-com.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from oslo_config import cfg
from oslo_log import log
from watcher._i18n import _
from watcher.decision_engine.model import element
from watcher.decision_engine.strategy.strategies import base
LOG = log.getLogger(__name__)
class BasicConsolidation(base.ServerConsolidationBaseStrategy):
"""Good server consolidation strategy
Basic offline consolidation using live migration
Consolidation of VMs is essential to achieve energy optimization in cloud
environments such as OpenStack. As VMs are spinned up and/or moved over
time, it becomes necessary to migrate VMs among servers to lower the
costs. However, migration of VMs introduces runtime overheads and
consumes extra energy, thus a good server consolidation strategy should
carefully plan for migration in order to both minimize energy consumption
and comply to the various SLAs.
This algorithm not only minimizes the overall number of used servers,
but also minimizes the number of migrations.
It has been developed only for tests. You must have at least 2 physical
compute nodes to run it, so you can easily run it on DevStack. It assumes
that live migration is possible on your OpenStack cluster.
"""
DATASOURCE_METRICS = ['host_cpu_usage', 'instance_cpu_usage']
CHANGE_NOVA_SERVICE_STATE = "change_nova_service_state"
def __init__(self, config, osc=None):
"""Basic offline Consolidation using live migration
:param config: A mapping containing the configuration of this strategy
:type config: :py:class:`~.Struct` instance
:param osc: :py:class:`~.OpenStackClients` instance
"""
super(BasicConsolidation, self).__init__(config, osc)
# set default value for the number of enabled compute nodes
self.number_of_enabled_nodes = 0
# set default value for the number of released nodes
self.number_of_released_nodes = 0
# set default value for the number of migrations
self.number_of_migrations = 0
# set default value for the efficacy
self.efficacy = 100
# TODO(jed): improve threshold overbooking?
self.threshold_mem = 1
self.threshold_disk = 1
self.threshold_cores = 1
@classmethod
def get_name(cls):
return "basic"
@property
def migration_attempts(self):
return self.input_parameters.get('migration_attempts', 0)
@property
def period(self):
return self.input_parameters.get('period', 7200)
@property
def granularity(self):
return self.input_parameters.get('granularity', 300)
@property
def aggregation_method(self):
return self.input_parameters.get(
'aggregation_method', {
"instance": 'mean',
"compute_node": 'mean',
"node": ''
}
)
@classmethod
def get_display_name(cls):
return _("Basic offline consolidation")
@classmethod
def get_translatable_display_name(cls):
return "Basic offline consolidation"
@classmethod
def get_schema(cls):
# Mandatory default setting for each element
return {
"properties": {
"migration_attempts": {
"description": "Maximum number of combinations to be "
"tried by the strategy while searching "
"for potential candidates. To remove the "
"limit, set it to 0 (by default)",
"type": "number",
"default": 0
},
"period": {
"description": "The time interval in seconds for "
"getting statistic aggregation",
"type": "number",
"default": 7200
},
"granularity": {
"description": "The time between two measures in an "
"aggregated timeseries of a metric.",
"type": "number",
"default": 300
},
"aggregation_method": {
"description": "Function used to aggregate multiple "
"measures into an aggregate. For example, "
"the min aggregation method will aggregate "
"the values of different measures to the "
"minimum value of all the measures in the "
"time range.",
"type": "object",
"properties": {
"instance": {
"type": "string",
"default": 'mean'
},
"compute_node": {
"type": "string",
"default": 'mean'
},
"node": {
"type": "string",
# node is deprecated
"default": ''
},
},
"default": {
"instance": 'mean',
"compute_node": 'mean',
# node is deprecated
"node": '',
}
},
},
}
@classmethod
def get_config_opts(cls):
return super(BasicConsolidation, cls).get_config_opts() + [
cfg.BoolOpt(
'check_optimize_metadata',
help='Check optimize metadata field in instance before'
' migration',
default=False),
]
def get_available_compute_nodes(self):
default_node_scope = [element.ServiceState.ENABLED.value,
element.ServiceState.DISABLED.value]
return {uuid: cn for uuid, cn in
self.compute_model.get_all_compute_nodes().items()
if cn.state == element.ServiceState.ONLINE.value and
cn.status in default_node_scope}
def check_migration(self, source_node, destination_node,
instance_to_migrate):
"""Check if the migration is possible
:param source_node: the current node of the virtual machine
:param destination_node: the destination of the virtual machine
:param instance_to_migrate: the instance / virtual machine
:return: True if there is enough place otherwise false
"""
if source_node == destination_node:
return False
LOG.debug('Migrate instance %s from %s to %s',
instance_to_migrate, source_node, destination_node)
total_cores = 0
total_disk = 0
total_mem = 0
for instance in self.compute_model.get_node_instances(
destination_node):
total_cores += instance.vcpus
total_disk += instance.disk
total_mem += instance.memory
# capacity requested by the compute node
total_cores += instance_to_migrate.vcpus
total_disk += instance_to_migrate.disk
total_mem += instance_to_migrate.memory
return self.check_threshold(destination_node, total_cores, total_disk,
total_mem)
def check_threshold(self, destination_node, total_cores,
total_disk, total_mem):
"""Check threshold
Check the threshold value defined by the ratio of
aggregated CPU capacity of VMs on one node to CPU capacity
of this node must not exceed the threshold value.
:param destination_node: the destination of the virtual machine
:param total_cores: total cores of the virtual machine
:param total_disk: total disk size used by the virtual machine
:param total_mem: total memory used by the virtual machine
:return: True if the threshold is not exceed
"""
cpu_capacity = destination_node.vcpus
disk_capacity = destination_node.disk
memory_capacity = destination_node.memory
return (cpu_capacity >= total_cores * self.threshold_cores and
disk_capacity >= total_disk * self.threshold_disk and
memory_capacity >= total_mem * self.threshold_mem)
def calculate_weight(self, compute_resource, total_cores_used,
total_disk_used, total_memory_used):
"""Calculate weight of every resource
:param compute_resource:
:param total_cores_used:
:param total_disk_used:
:param total_memory_used:
:return:
"""
cpu_capacity = compute_resource.vcpus
disk_capacity = compute_resource.disk
memory_capacity = compute_resource.memory
score_cores = (1 - (float(cpu_capacity) - float(total_cores_used)) /
float(cpu_capacity))
# It's possible that disk_capacity is 0, e.g., m1.nano.disk = 0
if disk_capacity == 0:
score_disk = 0
else:
score_disk = (1 - (float(disk_capacity) - float(total_disk_used)) /
float(disk_capacity))
score_memory = (
1 - (float(memory_capacity) - float(total_memory_used)) /
float(memory_capacity))
# TODO(jed): take in account weight
return (score_cores + score_disk + score_memory) / 3
def get_compute_node_cpu_usage(self, compute_node):
return self.datasource_backend.get_host_cpu_usage(
compute_node, self.period, self.aggregation_method['compute_node'],
self.granularity)
def get_instance_cpu_usage(self, instance):
return self.datasource_backend.get_instance_cpu_usage(
instance, self.period, self.aggregation_method['instance'],
self.granularity)
def calculate_score_node(self, node):
"""Calculate the score that represent the utilization level
:param node: :py:class:`~.ComputeNode` instance
:return: Score for the given compute node
:rtype: float
"""
host_avg_cpu_util = self.get_compute_node_cpu_usage(node)
if host_avg_cpu_util is None:
resource_id = "%s_%s" % (node.uuid, node.hostname)
LOG.error(
"No values returned by %(resource_id)s "
"for %(metric_name)s", dict(
resource_id=resource_id,
metric_name='host_cpu_usage'))
host_avg_cpu_util = 100
total_cores_used = node.vcpus * (host_avg_cpu_util / 100.0)
return self.calculate_weight(node, total_cores_used, 0, 0)
def calculate_score_instance(self, instance):
"""Calculate Score of virtual machine
:param instance: the virtual machine
:return: score
"""
instance_cpu_utilization = self.get_instance_cpu_usage(instance)
if instance_cpu_utilization is None:
LOG.error(
"No values returned by %(resource_id)s "
"for %(metric_name)s", dict(
resource_id=instance.uuid,
metric_name='instance_cpu_usage'))
instance_cpu_utilization = 100
total_cores_used = instance.vcpus * (instance_cpu_utilization / 100.0)
return self.calculate_weight(instance, total_cores_used, 0, 0)
def add_action_disable_node(self, node):
parameters = {'state': element.ServiceState.DISABLED.value,
'disabled_reason': self.REASON_FOR_DISABLE,
'resource_name': node.hostname}
self.solution.add_action(action_type=self.CHANGE_NOVA_SERVICE_STATE,
resource_id=node.uuid,
input_parameters=parameters)
def compute_score_of_nodes(self):
"""Calculate score of nodes based on load by VMs"""
score = []
for node in self.get_available_compute_nodes().values():
if node.status == element.ServiceState.ENABLED.value:
self.number_of_enabled_nodes += 1
instances = self.compute_model.get_node_instances(node)
if len(instances) > 0:
result = self.calculate_score_node(node)
score.append((node.uuid, result))
return score
def node_and_instance_score(self, sorted_scores):
"""Get List of VMs from node"""
node_to_release = sorted_scores[len(sorted_scores) - 1][0]
instances = self.compute_model.get_node_instances(
self.compute_model.get_node_by_uuid(node_to_release))
instances_to_migrate = self.filter_instances_by_audit_tag(instances)
instance_score = []
for instance in instances_to_migrate:
if instance.state == element.InstanceState.ACTIVE.value:
instance_score.append(
(instance, self.calculate_score_instance(instance)))
return node_to_release, instance_score
def create_migration_instance(self, mig_instance, mig_source_node,
mig_destination_node):
"""Create migration VM"""
if self.compute_model.migrate_instance(
mig_instance, mig_source_node, mig_destination_node):
self.add_action_migrate(mig_instance, 'live',
mig_source_node,
mig_destination_node)
if len(self.compute_model.get_node_instances(mig_source_node)) == 0:
self.add_action_disable_node(mig_source_node)
self.number_of_released_nodes += 1
def calculate_num_migrations(self, sorted_instances, node_to_release,
sorted_score):
number_migrations = 0
for mig_instance, __ in sorted_instances:
# skip exclude instance when migrating
if mig_instance.watcher_exclude:
LOG.debug("Instance is excluded by scope, "
"skipped: %s", mig_instance.uuid)
continue
for node_uuid, __ in sorted_score:
mig_source_node = self.compute_model.get_node_by_uuid(
node_to_release)
mig_destination_node = self.compute_model.get_node_by_uuid(
node_uuid)
result = self.check_migration(
mig_source_node, mig_destination_node, mig_instance)
if result:
self.create_migration_instance(
mig_instance, mig_source_node, mig_destination_node)
number_migrations += 1
break
return number_migrations
def unsuccessful_migration_actualization(self, number_migrations,
unsuccessful_migration):
if number_migrations > 0:
self.number_of_migrations += number_migrations
return 0
else:
return unsuccessful_migration + 1
def pre_execute(self):
self._pre_execute()
# backwards compatibility for node parameter.
if self.aggregation_method['node'] is not '':
LOG.warning('Parameter node has been renamed to compute_node and '
'will be removed in next release.')
self.aggregation_method['compute_node'] = \
self.aggregation_method['node']
def do_execute(self):
unsuccessful_migration = 0
scores = self.compute_score_of_nodes()
# Sort compute nodes by Score decreasing
sorted_scores = sorted(scores, reverse=True, key=lambda x: (x[1]))
LOG.debug("Compute node(s) BFD %s", sorted_scores)
# Get Node to be released
if len(scores) == 0:
LOG.warning(
"The workloads of the compute nodes"
" of the cluster is zero")
return
while sorted_scores and (
not self.migration_attempts or
self.migration_attempts >= unsuccessful_migration):
node_to_release, instance_score = self.node_and_instance_score(
sorted_scores)
# Sort instances by Score
sorted_instances = sorted(
instance_score, reverse=True, key=lambda x: (x[1]))
# BFD: Best Fit Decrease
LOG.debug("Instance(s) BFD %s", sorted_instances)
migrations = self.calculate_num_migrations(
sorted_instances, node_to_release, sorted_scores)
unsuccessful_migration = self.unsuccessful_migration_actualization(
migrations, unsuccessful_migration)
if not migrations:
# We don't have any possible migrations to perform on this node
# so we discard the node so we can try to migrate instances
# from the next one in the list
sorted_scores.pop()
infos = {
"compute_nodes_count": self.number_of_enabled_nodes,
"released_compute_nodes_count": self.number_of_released_nodes,
"instance_migrations_count": self.number_of_migrations,
"efficacy": self.efficacy
}
LOG.debug(infos)
def post_execute(self):
self.solution.set_efficacy_indicators(
compute_nodes_count=self.number_of_enabled_nodes,
released_compute_nodes_count=self.number_of_released_nodes,
instance_migrations_count=self.number_of_migrations,
)
LOG.debug(self.compute_model.to_string())
You can’t perform that action at this time.