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Introduction

Introduction I

The aim of this presentation is to propose a practical approach to cope with uncertainties
in an industrial optimization process .
Even if the accumulated knowledge gives a good view of the optimization problem an
optimal design has to solve, and even if all the relevant numerical models are available,
some parts of the problem are still subject to uncertainties :

Some parts of the system may have still to be designed

Some design quantities are known up to a finite precision

Some environmental parameters are intrinsically stochastic

. . .

To this end, we focus on

the introduction of uncertainties in a parametric optimization problem

the relevant formulations depending on the industrial objectives of the engineer.

We adopt a probabilistic framework to model the sources of uncertainty, and we make
the link between a parametric optimization problem and its robust counterpart.

Here robust is a generic term to design both robustness, ie the low sensitivity of the
objective function to uncertainties, and reliability, ie the fact that the system remains
in the feasible set for all (or most of) the possible values of the uncertainties.
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Introduction

Introduction II

A practical approach is proposed through the description of a four steps generic
methodology, as a guide to help engineers to incorporate uncertainties in an optimization
process.

This methodology will be demonstrated on an academic example in order to give a
concrete feeling of the different new concepts we introduce.

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 4 / 55



Introduction

Module otrobopt

The otrobopt module has been specified by Airbus and implemented by Phimeca in the
frame of the IRT project called ROM in 2015-2016.
Read the documentation at openturns.github.io/otrobopt/master
Download otrobopt here https ://github.com/openturns/otrobopt.

All the scripts included into the presentation are available upon request.
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Introduction

Example : manufacturing dispersions I

The performance of a system is governed by two geometrical parameters (x0, x1) and is
given by a function h(x0, x1). The range of parameters is restricted by two constraints
gdet
1 ≥ 0 and gdet

2 ≥ 0 :

Objective function : h(x) = 15
[
(x0 − 1)2 + x21

]
− 160e−5[(x0+1.2)2+(x1+1.2)2]

Constraints : gdet
1 (x) = 4−

[
(x0 − 0.5)2 + x21

]
≥ 0 et

gdet
2 (x) = 4−

[
(x0 + 0.5)2 + x21

]
≥ 0 .

(Scl ) : x∗cl = argmin
gdet

1 (x) ≥ 0
gdet

2 (x) ≥ 0

h(x)

=⇒ x∗cl = (−1.02,−1.08)
. . .but the manufacturing process introduces
dispersions on xcl !
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Introduction

Example : manufacturing dispersions II

Robust model : the actual value of x is the specification plus a deviation Θ, eg
Θ ∼ N (O, σI2) :

Objective function : J(x ,Θ) = h(x + Θ) =⇒ this is a random variable !

Constraints : g1(x ,Θ) = gdet
1 (x + Θ) and g2(x ,Θ) = gdet

2 (x + Θ) =⇒ random
variables !

(Srob) : x∗rob = argmin
P (g1(x,Θ) ≥ 0
∩ g2(x,Θ) ≥ 0) ≥ 0.9

EΘ [J(x,Θ)]

Admissible set :
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Introduction

Classical formulation of the optimization problem

Objective : find x∗ minimizing J(x , θ) subject to the constraints G(x , θ) ≥ 0 where
θ ∈ D .
Several ways to think about it :

1 The parameter θ is given a reasonable value θ0, eg a mean value, a penalized value,
. . .then one minimizes J(x , θ0) s.t. G(x , θ0) ≥ 0

(Scl ) : x∗cl = argmin G(x, θ0) ≥ 0 J(x, θ0)

2 Or one maximises J(x∗(θ), θ) wrt θ ∈ [θ1, θ2], the so-called maximin approach

(Scl ) : x∗cl = arg max
θ∈[θ1,θ2]

min
G(x, θ) ≥ 0

J(x, θ)

3 . . .

Beware : approaches either with no actual uncertainty model or with very conservative
results !
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Introduction

Robust formulation I

The dispersion θ is described by a probability distribution D supposed to be fully
specified.
J(x , θ) and G(x , θ) become random variables, and they are replaced by integrated
counterparts (moments, quantiles, . . .)

J(x , θ)→ ρJ,D(x) : robustness measure ;

G(x , θ)→ λG,D(x) : reliability measure .

New problem :

(Srob) : x∗rob = argmin λG,D(x) ≥ 0 ρJ,D(x)

Remarks :
1 The measures ρ and λ are only functions of x : the effect of θ has been integrated wrt its

distribution D ;
2 So (Srob) is a classical deterministic optimization problem, which could be solved by any

classical algorithm... but there is a clever way to solve it !
3 Remark : on can have x∗rob 6= x∗cl (in fact it is expected !).

Some approaches consider only partially known distributions D :
1 The distribution D is given only through moments, bounds, dots which are taken as

constraints over D
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Introduction

Robust formulation II

2 Then the optimization is done also over the set of admissible distributions.

Beware : this approach looks very promising, but the actual optimal distribution is most
of the time discrete, so even if it gives a guarantee wrt the choice of D, it is clearly not
suited to model a continuous quantity !
Example : if one fixes the mean and the variance of the distribution, one get a discrete
distribution with 2 possible values on both sides of the mean value.
In addition to this drawback, asking a user for the values of higher order moments is a
risky game, as the possible values have to satisfy complex algebraic constraints to be the
moments of any distribution.
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Introduction

Robust formulation : modeling steps

(Scl) :x∗cl = argmin
G(x , θ0) ≥ 0

J(x , θ0)

(Srob) :x∗rob = argmin
λG ,D(x) ≥ 0

ρJ,D(x)

The robust counterpart of the initial optimization problem requires additional modeling
steps :

choice of D ;

choice of the robustness measure ρ ;

choice of the reliability measure λ.

Remark : Pay attention to the robust counterpart of equality constraints !
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Introduction

Equality constraints in robust formulations

The equality constraints can be problematic :
If there is a deterministic equality constraint of the form : h(x, θ) = 0, how to
choose a reliability measure if D is a continuous distribution ?

if one choose a probability measure : problemn because in general, P (h(x , θ) = 0) = 0 !
if one choose a regular moment such as the expectation, ok.

If one replace an inequality constraint g(x, θ) ≥ 0 by an equality constraint on a
probability measure P (g(x , θ) ≥ 0) = α, beware of the value of α !

Example : Let’s consider P (xθ ≥ 0) = α with θ ∼ D a continuous random variable which
support contains 0.
Then P (xθ ≥ 0) can take only 3 different values :

P (xθ ≥ 0) =

∣∣∣∣∣∣
FD(0) if x < 0
1− FD(0) if x > 0
1 if x = 0
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Measures of robustness and reliability

Measures Mf ,D(.)

Let f (.,Θ) : Rd → Rp be a function and Θ ∼ D a random vector. A measure Rd → Rp :
x → Mf ,D(x) is a function of x and D, not of specific values of the random vector Θ. It
can be either :

a measure of robustness : x → ρJ,D(x).

a measure of reliability : x → λG ,D(x).

The otrobopt module proposes the following measures :

In the scale of f : MeanMeasure, MeanStandardDeviationTradeoffMeasure,
QuantileMeasure, WorstCaseMeasure

In the scale of f 2 : VarianceMeasure

In a probability scale [0, 1] : JointChanceMeasure, IndividualChanceMeasure

otrobopt (current version) : one can define a problem using any measure
Mf ,D : Rd → Rp but only problems with robustness measure of the form ρJ,D : Rd → R
can be solved (no multiobjective robust optimization yet). If p > 1, one can solve the
formulation expressed using otrobopt by using third party Python modules.
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Measures of robustness and reliability

MeanMeasure

For f (.,Θ) : Rd → Rp, the MeanMeasure is defined by :

Mf ,D(x) = ED[f (x,Θ)]

Example : Additive noise h(x) = (x − 1)2 − 5e−20(2+x)2 , f (x ,Θ) = h(x + Θ) with
Θ ∼ N (0, 0.2).

---------------------------------------------------------------------------------------------- -
>>> thetaDist = ot.Normal(0, 0.2)
>>> f_base = ot.SymbolicFunction([’x’, ’theta’], [’(x+theta)^2-5*exp(-20*(x+theta+2)^2)’])
>>> f = ot.ParametricFunction(f_base, [1], thetaDist.getMean())
>>> measure = otrobopt.MeanMeasure(f, thetaDist)

>>> ot.Show(measure.draw(-3.0, 3.0, 128))
---------------------------------------------------------------------------------------------- -

510 calls to f to compute Mf ,D(−2.0).
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Measures of robustness and reliability

VarianceMeasure

for f (.,Θ) : Rd → R the VarianceMeasure is defined by :

Mf ,D(x) = VarD[f (x,Θ)]

For f (.,Θ) : Rd → Rp, Mf ,D(x) = (Mf1,D(x), . . . ,Mfp ,D(x)).

Example : Additive noise h(x) = (x − 1)2 − 5e−20(2+x)2 , f (x ,Θ) = h(x + Θ) with
Θ ∼ N (0, 0.2).

----------------------------------------------------
>>> measure = otrobopt.VarianceMeasure(f, thetaDist)
----------------------------------------------------

390 calls to f to compute Mf ,D(−2.0).
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Measures of robustness and reliability

MeanStandardDeviationTradeoffMeasure

This measure is a tradeoff between the mean and the standard deviation of f .
For f (.,Θ) : Rd → R, µ = ED[f (x ,Θ)]] and σ2 = VarD[f (x ,Θ)] the
MeanStandardDeviationTradeoffMeasure is defined by :

Mf ,D,α(x) = (1− α)µ + ασ

Pour f (.,Θ) : Rd → Rp, Mf ,D,α(x) = (Mf1,D,α1(x), . . . ,Mfp ,D,αp (x)).

Example : Additive noise h(x) = (x − 1)2 − 5e−20(2+x)2 , f (x ,Θ) = h(x + Θ) with
Θ ∼ N (0, 0.2).

----------------------------------------------------------------------------------
>>> alpha = 0.7
>>> measure = otrobopt.MeanStandardDeviationTradeoffMeasure(f, thetaDist, [alpha])
----------------------------------------------------------------------------------

570 calls to f to compute Mf ,D(−2.0).
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Measures of robustness and reliability

QuantileMeasure

This measure is the quantile of order α of f (x ,Θ).
For f (.,Θ) : Rd → Rp the QuantileMeasure is defined by :

Mf ,D,α(x) = inf{ s ∈ Rd | P (f (x,Θ) ≤ s) ≥ α }

Example : Additive noise h(x) = (x − 1)2 − 5e−20(2+x)2 , f (x ,Θ) = h(x + Θ) with
Θ ∼ N (0, 0.2).
If f is the weight of a part, one looks for the best dimension x∗ to mimimize the quantile of order 70% of the weght :

the actual weight w = f (x + Θ) will be les than the optimal weight w∗ = f (x∗) in 70% of the cases.

------------------------------------------------------ -
>>> q = 0.7
>>> measure = otrobopt.QuantileMeasure(f, thetaDist, q)
------------------------------------------------------ -

9090 calls to f were needed to compute
Mf ,D(−2.0).
Remark : The computation of Ff (x,Θ)(s) is done using an

adaptive Gauss-Kronrod quadrature. Brent’s method (a

mix of bisection and inverse quadratic interpolation) is

then used to find s such that Ff (x,Θ)(s) = α =⇒ high cost !
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Measures of robustness and reliability

WorstCaseMeasure

For f (.,Θ) : Rd → Rp the WorstCaseMeasure is defined by :

Mf ,D,α(x) = inf
Θ∈SuppD

f (x,Θ) or Mf ,D,α(x) = sup
Θ∈SuppD

f (x,Θ)

Example : f (x ,Θ) = xΘ, Θ ∼ U(−1, 4) and one takes the inf measure.

------------------------------------------------------------------
>>> distTheta = ot.Uniform(-1.0, 4.0)
>>> f_base = SymbolicFunction([’x’, ’theta’], [’x*theta’])
>>> f = ot.ParametricFunction(f_base, [1], thetaDist.getMean())
>>> myMeasure = WorstCaseMeasure(f, distTheta, True)
------------------------------------------------------------------

Remarques :

We only use the support of D, not the actual distribution.

If SuppD has an infinite bound, it is explored up to the (finite) bounds of the numerical
range of D. Beware of the problems where sup f (x ,Θ) does not depend on x !

IF SuppD = [θ1, θ2] =⇒ what is the benefit of the robust formulation ?

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 25 / 55



Measures of robustness and reliability

JointChanceMeasure

This measure is mainly used as a reliability measure.
For f (.,Θ) : Rd → Rp the JointChanceMeasure is defined by :

Mf ,D,α(x) = P (f1(x,Θ) ≥ 0 ∩ . . . ∩ fp(x,Θ) ≥ 0)− α

The reliability constraint is P (f1(x ,Θ) ≥ 0 ∩ . . . ∩ fp(x ,Θ) ≥ 0) ≥ α (or ≤).
Example : f (x ,Θ) = [x −Θ, x −Θ2], Θ ∼ N (1, 1) and α = 0.95.

-----------------------------------------------------------------------------------
>>> thetaDist = ot.Normal(1.0, 1.0)
>>> f_base = ot.SymbolicFunction([’x’, ’theta’], [’x-theta’, ’x-theta^2’])
>>> f = ot.ParametricFunction(f_base, [1], thetaDist.getMean())
>>> measure = otrobopt.JointChanceMeasure(f, thetaDist, ot.GreaterOrEqual(), 0.95)
-----------------------------------------------------------------------------------

2340 calls to f to compute Mf ,D(2.0) .
Remark :
Mf ,D,α(x) =

∫
Rp

∏p
k=1 1fk (x,θ)≥0p(θ) dθ − α.
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Measures of robustness and reliability

IndividualChanceMeasure

This measure is mainly used as a reliability measure.
For f (.,Θ) : Rd → Rp, the
IndividualChanceMeasure is defined by :

Mf ,D,α(x) =

∣∣∣∣∣∣
P (f1(x, θ) ≥ 0)− α1

. . .
P (fp(x, θ) ≥ 0)− αp

The reliability constraint is :
P (f1(x , θ) ≥ 0) ≥ α1

. . .
P (fp(x , θ) ≥ 0) ≥ αp

Example : f (x ,Θ) = [x −Θ, x −Θ2], Θ ∼ N (1, 1) and α = 0.95.
-----------------------------------------------------------------------------------------------
>>> thetaDist = ot.Normal(1.0, 1.0)
>>> f_base = ot.SymbolicFunction([’x’, ’theta’], [’x-theta’, ’x-theta^2’])
>>> f = ot.ParametricFunction(f_base, [1], thetaDist.getMean())
>>> measure = otrobopt.IndividualChanceMeasure(f, thetaDist, ot.GreaterOrEqual(), [0.95, 0.5])
-----------------------------------------------------------------------------------------------

2970 calls to f to compute Mf ,D(2.0).
Beware : What is the nonadmissibility level of
x∗rob ? the probability to satisfy all the
constraints is ≤ minP (fi (x ,Θ) ≥ 0).
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Measures of robustness and reliability

Aggregated measures

One can stack different measures :

Robustness measures −→ for multiobjective optimization

Reliability measures −→ for multiconstrained optimization

One creates the measure

M(f1,...,fK ),D(x) =

∣∣∣∣∣∣
Mf1,D(x)
. . .
MfK ,D(x)

Beware : All the individual measures share the same distibution D !

---------------------------------------------------------------
>>> meas1 = otrobopt.QuantileMeasure(f1, thetaDist, q)
>>> meas2 = otrobopt.MeanMeasure(f2, thetaDist)
>>> meas2 = otrobopt.JointChanceMeasure(f3, thetaDist, alpha)
>>> measure = otrobopt.AggregatedMeasure([meas1, meas2, meas3])
>>> ot.Show(measure.getMarginal(0).draw(-2.0, 2.0, 128))
---------------------------------------------------------------
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Creation of the robust optimization problem
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Creation of the robust optimization problem

Classification of robust optimization problems

Specific names for specific robust optimisation problems :

λ− ρ Measure Function
Measure Robustness pro-

blem with reliability
constraint

Reliability problem

Function Constrained robustness
problem

×

∅ Robustness problem ×

These names correspond to the following mathematical formulations :

λ− ρ Measure Function
Measure argmin

λG ,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x) argmin
λG ,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

J(x)

Function argmin
G(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x) ×

∅ argmin ρJ,D(x) ×
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Creation of the robust optimization problem

Instantiation with otrobopt

The OptimizationProblem class (OpenTURNS) allows to define any classical optimization
problem.
The RobustOptimizationProblem class (otrobopt) allows to define a robust optimization
problem.
To define :

(Srob) : x∗ = argmin
λG,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x)

with additional deterministic constraints (here, bound contraints and equality constraints), one
write :

---------------------------------------------------------------------------------------
>>> myRobProblem = otrobopt.RobustOptimizationProblem(robustnessMeas, reliabilityMeas)
>>> myRobProblem.setEqualityConstraint(h)
>>> myRobProblem.setBounds(Interval(a, b))
---------------------------------------------------------------------------------------
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Resolution of a robust optimization problem
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Resolution of a robust optimization problem

How to solve a robust optimization problem ? I

(Srob) : x∗ = argmin
λG,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x)

General comments :

If dim(θ) = 1 : the adaptive quadrature methods used to compute integrales are
both accurate (error of order 10−10) and reasonably fast (hundreds of calls). It may
be reasonable to solve (Srob) as a classical optimization problem :
---------------------------------------
>>> algo = ot.Cobyla(myRobProblem)
>>> algo.setStartingPoint([startPoint])
>>> algo.run()
---------------------------------------

OpenTURNS has many different algorithms to solve constrained/unconstrained
optimization problems, see eg. the OptPP, NLopt, DLib, Ceres classes.
If dim(θ) ≥ 2 : the adaptive quadrature methods are expansive. otrobopt proposes
two algorithms to solve robust optimization problems :

1 The plugin method ;
2 A sequential Monte Carlo method.
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Resolution of a robust optimization problem

The plugin method I

Given a sampling size N > 0, the plugin method build a discretized approximation (S
(N)
rob )

of (Srob) where D is replaced by a discrete distribution with N values :

(Srob) :

x∗ = argmin
λG,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x)
=⇒

(S (N)
rob ) :

x∗N = argmin
λG,DN (x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,DN (x)

Remarks :

The integrals wrt θ are replaced by finite weighted sums
∑N

i=1. The resulting optimization
problem can then be solved using one of the classical algorithms.

The discrete distribution DN is given by : DN =
∑N

i=1 ωiδθi were (ωi , θi )i are
WeightedExperiment : MonteCarloExp, LHSExp, ImportanceSamplingExp,
GaussProductExp, . . .

Even if D is already discrete, one can gain a lot by discretizing D : it can reduce a lot the
number of values of D, thus the number of evaluations of the underlying parametric
functions.
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Resolution of a robust optimization problem

The plugin method II

To solve (Srob) using the plugin method, the measures are discretized using the
MeasureFactory class. The problem is then solved by one of the standard optimization
package.

Example : D is discretized using an LHS design with 50 points.
------------------------------------------------------------------------------------------
>>> robustnessMeasure = otrobopt.MeanMeasure(f, thetaDist)
>>> reliabilityMeasure = otrobopt.JointChanceMeasure(g, thetaDist, ot.Greater(), 0.95)
>>> N = 50
>>> experiment = ot.LHSExperiment(N)
>>> factory = otrobopt.MeasureFactory(experiment)
>>> collDiscMeas = factory.buildCollection([robustnessMeasure, reliabilityMeasure])
>>> myPlugInProblem = otrobopt.RobustOptimizationProblem(collDiscMeas[0], collDiscMeas[1])
>>> algo = ot.Cobyla(problem)
------------------------------------------------------------------------------------------

Beware : Use the same discretization DN for all the measures !
Example : Additive noise : h(x) = (x − 1)2 − 5e−20(2+x)2 , f (x ,Θ) = h(x + Θ) with
Θ ∼ N (0, 0.2).
One choose the robustness measure ρf ,D(x) = ED[f (x , θ)].
Using the Gauss-Kronrod quadrature, we get the following reference solution
x∗ref = 10−5.
We discretize D using different sampling methods :
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Resolution of a robust optimization problem

The plugin method III

N = 50 using either LHS or Monte Carlo : the sampling and the resolution are done
Nsimu = 106 to capture the distribution of x∗disc
Gauss-Product : The number of integration nodes is increased (from 1 to 7).

N x∗GP
1 4.76e − 6
3 1.03e − 5
5 1.03e − 5
7 1.03e − 5
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Resolution of a robust optimization problem

Sequential Monte Carlo algorithm I

The sequential Monte Carlo algorithm proceeds by successive approximations (S
(Nk )
rob ) of

(Srob). This is done by replacing D by a discrete counterpart DNk which is updated
sequentially using a sample of size Nk , with Nk → +∞ when k → +∞ :

(Srob) :

x∗ = argmin
λG,D(x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,D(x)
=⇒

Iteration k : (S (Nk )
rob ) :

x∗k = argmin
λG,DNk (x) ≥ 0
h(x) = 0
a ≤ x ≤ b

ρJ,DNk (x)

Each approximate problem (S
(Nk )
rob ) is solved up to a precision εk , with εk → 0 when

k → +∞.
Convergence theorem : The sequence x∗k → x∗ when k → +∞ if εk → 0 and Nk → +∞
as soon as ρ is strongly convex and λ defines a strongly convex set (cf [7]).
The iterations proceed this way. We denote by Sk the sample of Θ used to discretize D
at the k-th iteration.
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Resolution of a robust optimization problem

Sequential Monte Carlo algorithm II

At iteration k + 1, one takes : 

x0k+1 = x∗k

Nk+1 = 2Nk

Sk ⊂ Sk+1

εk+1 =
ε0√
Nk+1

Roughly speaking, this method make the bet that if x∗k ∈ DA(x∗), then
x∗k+1 ∈ DA(x∗). So the choice of the starting point x∗0 is a key element of the method
when used outside of the hypotheses of the theorem !
The initial step is here to put the algorithm on the good convergence path. For step
k = 0, one seek a solution x∗0 of (S

(N0)
rob ) in the attraction set of the global optimum x∗.

In the current implementation of the algorithm, this globalization search is done using
multi start :

1 We choose Nstart starting points de départ répartis selon un plan LHS (loi uniforme
sur un domaine borné [a, b]) : (x0,1, . . . , x0,Nstart

)

2 We compute the Nstart solutions of (S
(N0)
rob ) : (x∗0,1, . . . , x

∗
0,Nstart

) ;
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Resolution of a robust optimization problem

Sequential Monte Carlo algorithm III
3 We select the best solution x∗0 = argmin q = 1, . . . ,NstartρJ,DNk (x∗0,q)

Remarks :

All the starting points x∗0,q are admissible.

Beware, this step may be very expansive !

Under the hypotheses of the theorem, on can choose Nstart = 1 !
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Resolution of a robust optimization problem

Sequential Monte Carlo algorithm IV

With otrobopt : SequentialMonteCarloRobustAlgorithm.

--------------------------------------------------------------------------------------------
>>> robustnessMeasure = otrobopt.MeanMeasure(f, thetaDist)
>>> reliabilityMeasure = otrobopt.JointChanceMeasure(g, thetaDist, ot.Greater(), 0.95)
>>> myRobProblem = otrobopt.RobustOptimizationProblem(robustnessMeasure, reliabilityMeasure)
>>> mySolver = ot.Cobyla()
>>> algo = otrobopt.SequentialMonteCarloRobustAlgorithm(myRobProblem, mySolver)
>>> algo.run()
--------------------------------------------------------------------------------------------

Example : random noise. We take an initial sampling size N0 = 2 to discretize D, then
the size is doubled at each iteration.
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Resolution of a robust optimization problem

Sequential Monte Carlo algorithm V

Remark : the admissible set
changes with the
discretization of D. Only the
final admissible set is shown
on the figure.
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CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 42 / 55



Resolution of a robust optimization problem

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 43 / 55



Resolution of a robust optimization problem

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 44 / 55



Resolution of a robust optimization problem

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 45 / 55



Resolution of a robust optimization problem

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 46 / 55



Methodology

Robust optimization with OpenTURNS

1 Introduction

2 Measures of robustness and reliability

3 Creation of the robust optimization problem

4 Resolution of a robust optimization problem

5 Methodology

6 Conclusion

CRT/VPE/XRV Robust optimization with OpenTURNS 25 octobre 2019 47 / 55



Methodology

Presentation I

We propose a four - step methodology, in order to organize and to sum - up the different
aspects we presented on how to take into account uncertainties in an industrial
optimization process :

Step 1 : Problem Specification

Step 2 : Robustness & Risk formulation

Step 3 : Resolution

Step 4 : Feedback Analysis
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Methodology

Step 1 : Problem Specification I

This is the very first step of the methodology. Its goal is to gather all the information to
set up the robust optimization problem, to identify the sources of uncertainty, and also
the expected behaviour of the system regarding the uncertainties in order to select later
the relevant measures of robustness and reliability.
Here are the information about the different functions appearing in ?? :

What are the cost/objective function(s) J to minimize/maximize ?

What are the constraint functions G = (g1, . . . , gM) ?

What is the mathematical and computational complexity of these functions
(nonlinearity, smoothness, availability of gradients, CPU cost, approximations, etc.) ?

Here are the information about the quantification of the uncertainties :

What are the variables that would be subjected to uncertainties ?...

Needs in terms of robustness : which behaviour (regarding uncertainties) do we want
to avoid in the cost function ?...

Needs in terms of risk and Reliability : which behaviour (regarding uncertainties) do
we want to avoid in the constraints ?...
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Methodology

Step 2 : Robustness & Risk formulation I

The goal of this step is to select the relevant measures of robustness and reliability.

What is the joint distribution of the uncertainties and how is it assessed (statistical
data, engineering model) ?

Which robustness measure ρJ is relevant to express the industrial needs regarding
the robustness of the design ?

Which reliability measure ρG is relevant according to the internal or external
regulation or to a given reliability target. At this point it is always possible to
introduce a worst - case approach by specifying a joint probability constraint of level
1.
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Methodology

Step 3 : Resolution I

The goal of this step is to define a numerical strategy to solve the robust optimization
problem efficiently given a level of precision.

What are the computing resources (memory, cores, etc.) ?

What is the software availability ?

What is the error tolerance allowed ?

Define a numerical strategy to compute the robust version of the objective function
ρJ (J (x, ω))

Define a numerical strategy to explore the domain Dα or Dβ
It exists several algorithmic strategies to solve the problem, one of the most versatile is
the sequential Monte Carlo approach.
The key point is that the sample counterparts of the robustness and reliability measures
have the same smoothness as the true ones, so there is no noise effect as if the sample
was redrawn for each value of x .
Many other options are available to compute approximations of the robustness and
reliability methods, such as the perturbation methods, the asymptotic approximations
FORM and SORM. . .
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Methodology

Step 4 : Analysis I

The goal of this step is the qualification of the generated optimum.

We analyse the robustness of the solution through the value of ρJ at the optimum
and see if the optimal design is good with respect to the performance target ;

We analyse the reliability of the solution, in particular the reliability gap in case of
disjoint chance constraints : what are the inactive constraints and what is the
probability gap, to be compared with the sampling error.

We analyze the sensitivity of the optimum w.r.t the uncertainties : does a small
change in the distribution generates a large change in the robust optimization
problem ? This last step is much less expansive than a full robust optimization
resolution as all the analysis is done for x = x∗.
The expected feedbacks are :

An improvement in the model J and/or the constraints G (high fidelity model, etc.)
→ return to Step 1 "Problem Specification"

A change in the formulation (robustness, reliability, confidence, etc.)
→ return to Step 2 "Robustness & Reliability"
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Conclusion

Conclusion I

The introduction of uncertainties in an industrial optimization problem can be done using
a probabilistic approach in an efficient and structured way. It allows to quantify the
sources of uncertainty and to propagate them into the optimization process in a
mathematically founded way.
The drawback is that for many problems, the numerical cost of solving the resulting
robust optimization problem is significantly higher than the cost of solving one
deterministic optimization problem. In order to solve this issue, one has to resort to meta
- models, which introduces an additional source of uncertainties which has to be taken
into account.
In its final form, the robust optimization problem cannot be solved efficiently using a blind
approach in reusing of - the - shelf optimization libraries. An adaptation of the numerical
methods is needed in order to recover the smoothness needed by most of these libraries.
The very good point is that when these difficulties have been solved, one get a solution
of the optimization problem with uncertainties wich has a direct interpretation in terms
of reliability and robustness, the main objective of the optimization under uncertainties.
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